JPH0682365A - Double refraction measuring device - Google Patents

Double refraction measuring device

Info

Publication number
JPH0682365A
JPH0682365A JP23249792A JP23249792A JPH0682365A JP H0682365 A JPH0682365 A JP H0682365A JP 23249792 A JP23249792 A JP 23249792A JP 23249792 A JP23249792 A JP 23249792A JP H0682365 A JPH0682365 A JP H0682365A
Authority
JP
Japan
Prior art keywords
polarizer
sample
sensor
analyzer
polarizing elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23249792A
Other languages
Japanese (ja)
Inventor
Hiroshi Tajima
洋 田島
Kiyokazu Sakai
清和 酒井
Shinichi Nagata
紳一 永田
Kura Tomita
蔵 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP23249792A priority Critical patent/JPH0682365A/en
Publication of JPH0682365A publication Critical patent/JPH0682365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure retardation by arranging respective polarizing elements different in azimuth angle around a center part in a fan-shaped radial state and irradiating the periphery of the center part with common measuring beam. CONSTITUTION:The center of a polarizer 11 and that of an analyser 14 are present on the axis of measuring beam and the mutually corresponding small polarizing elements of both of them are constituted in the relation of parallel Nicol. The measuring beam emitted from the side of the polarizer 12 passes through the polarizer 12 and a sample 4 and further passes through the analyser 14 to be taken in an area sensor 15 and the output corresponding to the intensity of transmitted beam is detected. Since it is known which places of the sensor 15 the intensities of transmitted beam calculated from the small polarizing elements of the polarizer 12 and the analyser 14 correspond to, the part where data must be obtained of measuring beam can be selected at the time of the reading of detection output. The reading place of the sensor 15 can be arbitrarily indicated and, when the number of pixels to be used and the centers thereof are selected, the range of a reading place can be determined and, therefore, the respective intensities of transmitted beam are instantaneously calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複屈折測定装置、特に
測定点の微小化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringence measuring device, and more particularly to miniaturization of measuring points.

【0002】[0002]

【従来の技術】材料は、内部歪みや延伸加工等により異
方性を生じ、複屈折を生じさせるようになる。逆に複屈
折の測定により、材料の内部歪みや材料の延伸の度合い
を調べることができる。複屈折の測定には試料に直線偏
光を入射させ、その直交2成分偏光の試料透過時の位相
差を検出することにより行う。
2. Description of the Related Art Materials are anisotropy due to internal strain, stretching, etc., and birefringence occurs. On the contrary, by measuring the birefringence, the internal strain of the material and the degree of stretching of the material can be examined. The birefringence is measured by making linearly polarized light incident on the sample and detecting the phase difference of the orthogonal two-component polarized light at the time of sample transmission.

【0003】長尺のシート類で長さ方向に連続的に測定
を行う複屈折測定装置として、複数の小偏光素子を互い
に少しずつ方位角を変えて一平面上に集合配置して一つ
の偏光素子として、同様の構成で偏光子の各偏光素子に
対応する部分の偏光素子の方位が偏光子の偏光素子と平
行であるようにした検光子を対向配置し、その間に試料
を配置するようにし、検光子の各偏光素子の方位角とか
ら、偏光子、試料、検光子の三者の透過光の強度と偏光
素子の方位角との関係式を算定し、この関係式から透過
強度の最大、最少を検出して、試料のレターデーション
を求めるものがある(特開平4−89553号)。
As a birefringence measuring device for continuously measuring lengthwise sheets in a lengthwise direction, a plurality of small polarizing elements are arranged collectively on one plane while changing their azimuth angles little by little. As an element, in the same configuration, the analyzers are arranged so that the orientation of the polarizing element of the portion corresponding to each polarizing element of the polarizer is parallel to the polarizing element of the polarizer, and the sample is placed between them. From the azimuth angle of each polarization element of the analyzer, calculate the relational expression between the transmitted light intensity of the three elements of the polarizer, the sample, and the analyzer and the azimuth angle of the polarization element. , There is a method in which the minimum is detected to obtain the retardation of the sample (Japanese Patent Laid-Open No. 4-89553).

【0004】ここで、その各透過光強度を計測するもの
として、各偏光子、偏光子の組合せに受光素子をそれぞ
れ設けている。このため複数個の受光素子を必要とし、
同一個所での測定は難しい。そのため、微小面積で厚み
が均一でないサンプルや、レターデーションが不均一な
サンプルについては、従来タイプの偏光子、検光子にサ
ンプルを挟んで、サンプルを回転させ、その透過光強度
と回転角からレターデーションを求めるものと測定位置
が異なるため、数値が異なる等の問題があった。
Here, in order to measure the intensity of each transmitted light, a light receiving element is provided for each polarizer and combination of the polarizers. Therefore, a plurality of light receiving elements are required,
Measurement at the same location is difficult. Therefore, for samples with a small area and non-uniform thickness, or samples with non-uniform retardation, sandwich the sample between conventional polarizers and analyzers, rotate the sample, and then adjust the transmitted light intensity and rotation angle. Since the measurement position is different from that for obtaining the foundation, there are problems such as different numerical values.

【0005】[0005]

【発明が解決しようとする課題】本発明は、微小面積の
透過光強度を選定することにより、できる限り同一個所
での測定を可能とし、より正確な値を算出しようとする
ものである。
SUMMARY OF THE INVENTION The present invention is intended to enable measurement at the same place as much as possible by selecting the transmitted light intensity of a minute area and to calculate a more accurate value.

【0006】[0006]

【課題を解決するための手段】本発明は、複数の小偏光
素子を互いに少しずつ方位角を変えて一平面上に集合配
置して一つの偏光子として、同様の構成で偏光子の各偏
光子に対応する部分の偏光素子の方位が偏光子の偏光素
子と平行であるようにした検光子を対向配置し、その間
に試料を配置し、偏光子側から測定光を照射して検光子
の各偏光素子から得られた出力をエリアセンサーで感知
し、対応する偏光素子の方位角とから偏光子、試料、検
光子三者透過光の強度として、偏光素子の方位角との関
係式を算定し、試料のレターデーションを求めるデータ
処理装置を備えたことを特徴とする複屈折測定装置であ
り、方位角の異なる各偏光素子が中心部のまわりに扇形
放射状に配置され、その中心部のまわりに(中心部と同
軸に)共通の測定光束を照射するように構成したことを
特徴とするものである。
SUMMARY OF THE INVENTION According to the present invention, a plurality of small polarizing elements are arranged in a plane by changing their azimuth angles little by little to form one polarizer. The orientation of the polarizing element of the part corresponding to the polarizer is arranged opposite to that of the polarizing element of the polarizer, the sample is placed between them, and the measuring light is radiated from the polarizer side. The output obtained from each polarizing element is detected by the area sensor, and the relational expression with the azimuth angle of the polarizing element is calculated as the intensity of the transmitted light of the polarizer, sample, and analyzer from the azimuth angle of the corresponding polarizing element. However, the birefringence measuring device is characterized by comprising a data processing device for determining the retardation of the sample, in which the polarizing elements having different azimuth angles are arranged in a fan-shaped radial pattern around the central part, and Common measurement (coaxial with the center) It is characterized in that it has configured to illuminate a bundle.

【0007】[0007]

【作用】従来は、センサー毎の受光部面積が大きいた
め、レターデーションの測定対象面(測定点)に或る程
度の面積を必要とした。レターデーションが試料上の測
定部位によつてばらつきのある場合には、精確度の点で
はオフラインの場合には及ばなかった。
In the past, since the light receiving area of each sensor was large, a certain area was required on the measurement surface (measurement point) of the retardation. When the retardation varied depending on the measurement site on the sample, the accuracy was lower than that in the offline case.

【0008】本発明では、受光素子を複数個設ける代わ
りに、エリアセンサーを受光素子として用いる。エリア
センサーは、1素子内に20数万個程度の受光部素子を
持っており、これを用いることにより、ごく微小な面積
の透過光強度の測定が可能となる。これを利用して、複
数の小偏光素子を互いに少しずつ方位角を異ならせて一
平面上に集合配置して、一つの偏光子として、同様の構
成で偏光子の各偏光素子に対応する部分の偏光素子の方
位が偏光子の偏光素子と平行であるようにした検光子を
対向配置し、その間に試料を配置するようにし、検光子
の各偏光素子から得られた出力を受光し、センサー各部
よりそれぞれの透過光強度を求め、レターデーションを
求める。このため、本発明は、従来より近い距離でそれ
ぞれの測定が行えるので、より精確なレターデーション
測定が可能となる。
In the present invention, an area sensor is used as a light receiving element instead of providing a plurality of light receiving elements. The area sensor has approximately 200,000 light receiving element elements in one element, and by using this, it is possible to measure the transmitted light intensity in a very small area. Utilizing this, multiple small polarizing elements are arranged collectively on one plane with slightly different azimuth angles, and as a single polarizer, a portion corresponding to each polarizing element of the polarizer with the same configuration. Of the polarizing element of the polarizer is arranged in parallel with the polarizing element of the polarizer, and the sample is placed between them, and the output from each polarizing element of the analyzer is received, and the sensor The transmitted light intensity is obtained from each part, and the retardation is obtained. Therefore, according to the present invention, each measurement can be performed at a distance closer to that in the related art, and thus more accurate retardation measurement can be performed.

【0009】[0009]

【実施例】図1は、本発明の一実施例の複屈折測定装置
の概略構成図、図2は図1の装置における偏光子・検光
子の構成例を示す。図1において、(1)はデータ処理
装置であり、測定動作の制御及びセンサー部の検出結果
のデータ処理等を行う。(2)は、複屈折測定の検出デ
ータの測光を行う測定ヘッドのうち、試料に測定光束を
照射する照明装置(光源側)であり、白色光源、光源か
ら所要の断面積の平行光束を形成する光学系(集光用の
レンズまたはミラー、コリメータ、光束絞り)、波長選
択フィルタ等より構成される。
FIG. 1 is a schematic configuration diagram of a birefringence measuring apparatus according to an embodiment of the present invention, and FIG. 2 shows a configuration example of a polarizer / analyzer in the apparatus of FIG. In FIG. 1, (1) is a data processing device, which controls the measurement operation and processes the data of the detection result of the sensor unit. (2) is an illuminating device (light source side) that irradiates a sample with a measurement light beam in a measurement head that performs photometry of detection data of birefringence measurement, and forms a parallel light beam with a required cross-sectional area from a white light source The optical system (condensing lens or mirror, collimator, light beam diaphragm), wavelength selection filter, and the like.

【0010】(3)は測定ヘッドの検出側であり、検光
子、透過光強度を検出するセンサ等より構成されるが、
上記の波長選択手段は、光源側ではなく検出側、例えば
検光子とセンサとの中間に設けてもよい。(4)は測定
試料であり、例えば高分子フルム等の生産ラインにおけ
るオンライン走行中のシート等であるが、また原反から
適当な寸法に裁断されたシートでもよい。
(3) is the detection side of the measuring head, which is composed of an analyzer, a sensor for detecting the transmitted light intensity, and the like.
The wavelength selection means may be provided on the detection side instead of the light source side, for example, in the middle of the analyzer and the sensor. Reference numeral (4) is a measurement sample, for example, a sheet that is running online in a production line of polymer flume or the like, but may be a sheet that is cut into an appropriate size from an original sheet.

【0011】(5)は測定ヘッドを測定シートの幅方向
に走査するための案内用テーブルであり、さらに図示さ
れていないが、光源側(2)と検出側(3)とを一定の
一関係に保つて幅方向に往復移動させる駆動機構等を備
えている。(6)は測定結果の表示等のためのモニター
表示装置である。図2は、図1の装置の一部をなす本発
明の要部構成図であり、(11)は照射光の投光部の光
学素子(ガラスファイバー束またはコリメータレンズ
等)、(12)は偏光子、(4)は測定試料、(13)
は検出側の受光部光学素子、(14)は検光子、(1
5)はエリアセンサ、例えば2次元CCDセンサ)であ
る。
Reference numeral (5) is a guide table for scanning the measuring head in the width direction of the measuring sheet, and although not shown, the light source side (2) and the detecting side (3) are in a fixed relationship. It is equipped with a drive mechanism and the like for keeping the above-mentioned and reciprocating in the width direction. (6) is a monitor display device for displaying measurement results. 2 is a configuration diagram of a main part of the present invention forming a part of the apparatus shown in FIG. 1. (11) is an optical element (glass fiber bundle or collimator lens or the like) of a projection unit of irradiation light, and (12) is Polarizer, (4) is a measurement sample, (13)
Is an optical element on the detection side, (14) is an analyzer, (1
5) is an area sensor, for example, a two-dimensional CCD sensor).

【0012】偏光子(12)、検光子(14)は、それ
ぞれ円をその半径で数個に等分割して形成される複数の
扇形領域に偏光方位が互いに異なる小偏光素子をそれぞ
れ形成または配置して構成されており、偏光子(12)
と検光子(14)の中心(O)は測定光束の軸(L)上
にあり、両者の相対応する小偏光素子同志は平行ニコル
の関係に構成されている。(なお図で偏光子(12)、
検光子(14)の小偏光素子の斜線の向きはその素子の
偏光方位を示している。)測定光束は、図2のように、
偏光子(12)、検光子(14)の中心と共軸に偏光子
(12)側から照射され、偏光子(12)、試料(4)
を透過した光が検光子を通って、エリアセンサに(1
5)に取り込まれる。エリアセンサ(15)は、取り込
まれた透過光強度に応じて検出出力を生じる。
The polarizer (12) and the analyzer (14) respectively form or dispose small polarizing elements having mutually different polarization directions in a plurality of fan-shaped regions formed by equally dividing a circle into a plurality of circles. Composed of a polarizer (12)
And the center (O) of the analyzer (14) is on the axis (L) of the measurement light beam, and the small polarizing elements that correspond to each other are arranged in a parallel Nicol relationship. (In the figure, the polarizer (12),
The diagonal direction of the small polarization element of the analyzer (14) indicates the polarization direction of the element. ) The measurement luminous flux is as shown in Fig. 2.
The polarizer (12) and the analyzer (14) are irradiated coaxially with the center of the polarizer (12) from the side of the polarizer (12) and the sample (4).
The light that has passed through the
It is taken into 5). The area sensor (15) produces a detection output according to the taken transmitted light intensity.

【0013】本実施例では、エリアセンサ(15)は、
例えばCCDカメラ用のものを用いるが、他の形式の2
次元センサであってもよい。センサ(15)の検出出力
は、任意の2次元位置の出力を読み出しでき、読み出し
出力は、一定時間ごとにA/D変換され、データ処理装
置のメモリに取り込まれ、かつデータ処理装置に内蔵さ
れたプログラムに従ってレターデーション値の算出、表
示、プリント出力その他の処理が行なわれる。取り込み
及び処理用のメモリーとしては、画像メモリを用いる。
In this embodiment, the area sensor (15) is
For example, a CCD camera is used, but other types of 2
It may be a dimension sensor. The detection output of the sensor (15) can read the output of an arbitrary two-dimensional position, and the read output is A / D converted at fixed time intervals, taken into the memory of the data processing device, and incorporated in the data processing device. According to the program, the retardation value is calculated, displayed, printed out and other processes are performed. An image memory is used as a memory for capturing and processing.

【0014】それぞれの偏光子、検光子の小偏光素子か
ら求められる透過光強度は、センサのどの場所に該当す
るか判っているので、検出出力の読み出し時に測定光束
のどの部分(即ち各小偏光素子のどの部分)の情報を得
るかを選択できる。センサの読み出し場所は任意に指定
でき、しかも何個の画素を用いるか及びこれらの画素の
中心等を選択すれば、読み出し場所の範囲を決めること
もできるので(図3参照)、それぞれの透過光強度は瞬
時に求められる。画像メモリへの読み込み後も、各画素
のデータの格納位置が判つているので、取り込まれたデ
ータの範囲内で測定に利用するデータの選択が可能であ
る。
Since it is known to which part of the sensor the transmitted light intensity obtained from the small polarization elements of the respective polarizers and analyzers corresponds, which portion of the measurement light beam (that is, each small polarization light) when the detection output is read out. You can choose which part of the device) you want to get information about. The read-out location of the sensor can be arbitrarily specified, and the range of the read-out location can be determined by selecting the number of pixels to be used and the center of these pixels (see FIG. 3). Strength is instantly required. Since the storage position of the data of each pixel is known even after the reading into the image memory, it is possible to select the data to be used for the measurement within the range of the fetched data.

【0015】光軸を中心としたセンサ中央部のそれぞれ
の小偏光素子に対する透過光強度を求めれば、最も微小
のレターデーションを求めることができる。例えば、従
来はセンサ面積は、例えば5mm×5mm程度であった
ので、測定面積は5mm×5mm以下は測定が困難であ
ったのに対し、一方本発明では、同一面積を捉えるとし
ても、1画素の分解能は例えば10μm×10μm程度
の分解能があり、この微小範囲のレターデーションの測
定が可能となった。
If the transmitted light intensity for each small polarization element at the center of the sensor centering on the optical axis is obtained, the smallest retardation can be obtained. For example, in the past, the sensor area was, for example, about 5 mm × 5 mm, so it was difficult to measure a measurement area of 5 mm × 5 mm or less. On the other hand, in the present invention, even if the same area is captured, one pixel Has a resolution of, for example, about 10 μm × 10 μm, and it is possible to measure the retardation in this minute range.

【0016】[0016]

【発明の効果】本発明によれば、 1)受光素子として2次元センサを用いることにより、
微小面積での透過光強度の測定を可能とし、より精確な
レターデーションの計測を可能とした。 2)2次元センサの出力の内任意の場所に対するデータ
を選択できるから、試料上の測定点の大きさを容易に設
定、変更することができる。 3)複数の小偏光素子に対して測定光束が1つですむの
で、光学系の構成を簡単にできる。
According to the present invention, 1) By using a two-dimensional sensor as a light receiving element,
It is possible to measure the transmitted light intensity in a very small area and to measure the retardation more accurately. 2) Since the data for an arbitrary location can be selected from the outputs of the two-dimensional sensor, the size of the measurement point on the sample can be easily set and changed. 3) Since only one measuring light beam is required for a plurality of small polarization elements, the configuration of the optical system can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の複屈折測定装置の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a birefringence measuring apparatus according to an embodiment of the present invention.

【図2】図1の装置の要部構成図である。2 is a main part configuration diagram of the apparatus of FIG. 1. FIG.

【図3】センサの検出動作の説明図である。FIG. 3 is an explanatory diagram of a detection operation of a sensor.

【符号の説明】[Explanation of symbols]

1 CPU 2 照明装置 3 検出部 4 サンプル 5 テーブル 6 モニター表示装置 11 投光部光学素子 12 偏光子 13 受光部光学素子 14 検光子 15 エリアセンサ DESCRIPTION OF SYMBOLS 1 CPU 2 Illumination device 3 Detection part 4 Sample 5 Table 6 Monitor display device 11 Projection optical element 12 Polarizer 13 Light receiving optical element 14 Analyzer 15 Area sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 蔵 兵庫県尼崎市常光寺4丁目3番1号 神崎 製紙株式会社神崎工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kura Tomita 4-3-1 Jōkoji, Amagasaki City, Hyogo Prefecture Kanzaki Paper Mill Kanzaki Mill

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の小偏光素子を互いに少しずつ方位角
を変えて一平面上に集合配置して一つの偏光子として、
同様の構成で偏光子の各偏光子に対応する部分の偏光素
子の方位が偏光子の偏光素子と平行であるようにした検
光子を対向配置し、その間に試料を配置し、偏光子側か
ら測定光を照射して検光子の各偏光素子から得られた出
力をエリアセンサーで感知し、対応する偏光素子の方位
角とから偏光子、試料、検光子三者透過光の強度とし
て、偏光素子の方位角との関係式を算定し、試料のレタ
ーデーションを求めるデータ処理装置を備えたことを特
徴とする複屈折測定装置。
1. A plurality of small polarizing elements whose azimuth angles are gradually changed from each other are collectively arranged on one plane to form one polarizer.
In the same configuration, the analyzer is arranged so that the orientation of the polarization element of the part corresponding to each polarizer of the polarizer is parallel to the polarization element of the polarizer, the sample is placed between them, and from the polarizer side The area sensor senses the output obtained from each polarization element of the analyzer by irradiating the measurement light, and determines the polarization direction of the polarizer, sample, and analyzer from the azimuth angle of the corresponding polarization element. A birefringence measuring device, comprising a data processing device for calculating a relational expression with respect to an azimuth angle of the sample and obtaining a retardation of the sample.
【請求項2】方位角の異なる各偏光素子が中心部のまわ
りに扇形放射状に配置され、その中心部のまわりに(中
心部と同軸に)共通の測定光束を照射するように構成し
たことを特徴とする請求項1記載の複屈折測定装置。
2. Polarizing elements having different azimuth angles are fan-shaped radially arranged around a central portion, and a common measuring light flux is irradiated around the central portion (coaxial with the central portion). The birefringence measuring apparatus according to claim 1, which is characterized in that.
JP23249792A 1992-08-31 1992-08-31 Double refraction measuring device Pending JPH0682365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23249792A JPH0682365A (en) 1992-08-31 1992-08-31 Double refraction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23249792A JPH0682365A (en) 1992-08-31 1992-08-31 Double refraction measuring device

Publications (1)

Publication Number Publication Date
JPH0682365A true JPH0682365A (en) 1994-03-22

Family

ID=16940256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23249792A Pending JPH0682365A (en) 1992-08-31 1992-08-31 Double refraction measuring device

Country Status (1)

Country Link
JP (1) JPH0682365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057443A (en) * 2005-08-25 2007-03-08 Nagaoka Univ Of Technology Method and device for evaluating orientation film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057443A (en) * 2005-08-25 2007-03-08 Nagaoka Univ Of Technology Method and device for evaluating orientation film

Similar Documents

Publication Publication Date Title
EP3187856B1 (en) Birefringence measurement device and birefringence measurement method
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JPH0478137B2 (en)
JPS62138708A (en) Method and device for measuring change of thickness and/or orientation in optical active material
US5880845A (en) Apparatus for measuring the photometric and colorimetrics characteristics of an object
US5475233A (en) Method and apparatus for determining the fiber orientation of paper by measuring the intensity of a light beam at eight or more locations distributed on the circumference of a circle
JP3365474B2 (en) Polarizing imaging device
US8525992B2 (en) Method and apparatus of measuring relative phase of bio-cells
JPH0682365A (en) Double refraction measuring device
JPH06337243A (en) Optical measuring apparatus
KR101373709B1 (en) The measurement device and the method of the principle axis and retardation of the 3-dimensional film
JP2000111472A (en) Device for measuring birefringence and device for measuring orientation of film
JP2019100862A (en) Birefringence measurement device and birefringence measurement method
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP2997299B2 (en) Birefringence measurement method
JP3518313B2 (en) Method and apparatus for measuring retardation
JPH06229912A (en) Orientation measuring apparatus
JP3246040B2 (en) Birefringence measurement device
Dix Photoelastic Methods for Measuring Anisotropy Effects
JPH0943100A (en) Lens meter
JPH05281137A (en) Double-refraction measuring apparatus
JP3336276B2 (en) Fiber orientation measurement device and orientation measurement method
JP2927145B2 (en) Method and apparatus for measuring retardation
JPH06229911A (en) Method and apparatus for measuring double refraction
JPH06229909A (en) Measuring apparatus for polarized dichroism