JPH06229912A - Orientation measuring apparatus - Google Patents

Orientation measuring apparatus

Info

Publication number
JPH06229912A
JPH06229912A JP1430993A JP1430993A JPH06229912A JP H06229912 A JPH06229912 A JP H06229912A JP 1430993 A JP1430993 A JP 1430993A JP 1430993 A JP1430993 A JP 1430993A JP H06229912 A JPH06229912 A JP H06229912A
Authority
JP
Japan
Prior art keywords
light
detecting
sheet
polarizing
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1430993A
Other languages
Japanese (ja)
Inventor
Kiyokazu Sakai
清和 酒井
Kyoji Imagawa
恭次 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP1430993A priority Critical patent/JPH06229912A/en
Publication of JPH06229912A publication Critical patent/JPH06229912A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform on-line measurement for orientation of film having large anisotropy by detecting the transmission degrees for three or more kinds of the polarized lights having the different polarizing directions. CONSTITUTION:Polarizers 41, 42... and analyzers 51, 52... are assembled at the positions corresponding to the optical axes of holding plates 40 and 50 of a polarizing part 4 and an analyzing part 5. The polarizing directions of the polarizers of the polarizing part 4 are shifted by, e.g. 30 degrees. The polarizing direction is imparted for each polarizer of the polarizing part 4 so as to obtain the relation of parallel Nicol. A sheet S to be measured is made to run between the polarizing part 4 and the analyzing part 5. The intensities of the transmitted lights through the polarizers 41, 42..., the sample S and the analyzers 51, 52... with respect to the light having the specified wavelength transmitted through the filter 3 from the light source 2 are detected with detecting elements 61, 62... of a detecting part 6. The orientation degree and the direction of the main refractive index of the sheet S to be measured are computed based on the bearing and intensity of each transmitted light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配向性測定装置、とく
に、高分子材料よりなるフィルムあるいはシートで、特
に2軸延伸フィルム等の縦延伸工程後のように異方性が
大きいものに対する測定装置に関するものであり、特
に、測定が短時間であるため、フィルム或いはシートの
製造工程におけるオンライン計測、制御用に好適であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orientation measuring device, particularly to a film or sheet made of a polymer material, which has a large anisotropy such as after a longitudinal stretching process such as a biaxially stretched film. The present invention relates to an apparatus, and in particular, it is suitable for on-line measurement and control in the manufacturing process of a film or sheet, because the measurement takes a short time.

【0002】[0002]

【従来の技術】透明あるいは半透明な材料の光学的異方
性を求める方法として、複屈折測定がよく利用される。
従来、シート状材料のオンライン複屈折測定は、例えば
平成3年特許願第318229号のように、一定の偏光
方位関係(平行ニコル状態)に配置された3組以上の偏
光子と検光子との間に被測定シートを通過させ、単一波
長光束を偏光子に照射したときの各検光子の透過光強度
を測定して被測定シートのレターデーションと主屈折率
の方向を求めるものがある。
2. Description of the Related Art Birefringence measurement is often used as a method for determining the optical anisotropy of a transparent or semitransparent material.
Conventionally, on-line birefringence measurement of a sheet-shaped material is performed by three or more pairs of polarizers and analyzers arranged in a constant polarization azimuth relationship (parallel Nicol state), for example, as in Japanese Patent Application No. 318229 of 1991. In some cases, the retardation and the main refractive index direction of the measured sheet are obtained by measuring the transmitted light intensity of each analyzer when the polarizer is irradiated with a single wavelength light flux while passing through the measured sheet.

【0003】この方法の場合、被測定シートのレターデ
ーションが数千nm以下の比較的異方性が小さい場合に
は有効であるが、2軸延伸フィルムの縦延伸工程の後の
ように異方性が大きくかつフィルム厚さも厚い場合に
は、レターデーションも1万nm以上と大きくなって、
上記の方法のように光学次数の特定を必要とする方法で
は、正確なレターデーションの測定は困難であった。
This method is effective when the retardation of the sheet to be measured is a few thousand nm or less and has a relatively small anisotropy, but it is anisotropic such as after the longitudinal stretching step of a biaxially stretched film. When the film is large and the film thickness is large, the retardation also increases to 10,000 nm or more,
It is difficult to accurately measure the retardation by the method that requires the specification of the optical order as in the above method.

【0004】[0004]

【発明が解決しようとする課題】本発明は、異方性の大
きい高分子フィルムあるいはシートの製造工程中におけ
る配向性のオンライン計測を可能とする配向性測定装置
を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to provide an orientation measuring apparatus capable of on-line measurement of orientation during the manufacturing process of a polymer film or sheet having large anisotropy.

【0005】[0005]

【課題を解決するための手段】本発明は、平行ニコル状
態に置かれた3対以上の偏光子及び検光子の組を互いに
偏光方向をずらせて配置し、偏光子と検光子との間に被
測定シートを走行させ、特定の波長の光に対する偏光
子、試料および検光子の透過光強度をそれぞれ検出する
手段と、各透過光の偏光の方位と強度とから、被測定シ
ートの配向度及び主屈折率の方向を算出する手段とを備
えたことを特徴とするものである。
According to the present invention, three or more pairs of polarizers and analyzers placed in a parallel Nicol state are arranged with their polarization directions shifted from each other, and between the polarizers and the analyzers. Running the measured sheet, a means for detecting the transmitted light intensity of the polarizer, the sample and the analyzer for light of a specific wavelength, and the azimuth and intensity of the polarization of each transmitted light, the degree of orientation of the measured sheet and And a means for calculating the direction of the main refractive index.

【0006】本発明はまた,偏光方向の異なる3種以上
の偏光に対する透過度をそれぞれ検出する手段と,これ
らの検出手段の検出出力を所定のプログラムに従ってサ
ンプリングする手段と,サンプリングしたデータを記憶
する手段と,サンプリングデータから偏光度値の値及び
主屈折率方向を算出する手段,偏光透過度の角度分布を
オンライン表示する手段をも有している。
The present invention also stores means for detecting the transmittances of three or more kinds of polarized light having different polarization directions, means for sampling the detection outputs of these detecting means according to a predetermined program, and storing the sampled data. It also has a means, a means for calculating the value of the polarization degree value and the main refractive index direction from the sampling data, and a means for displaying the angular distribution of the polarization transmission degree online.

【0007】本発明はさらに、モニター光束用光路を備
え、装置の種々の動作を監視する手段を有している。
The present invention further comprises means for monitoring the various operations of the device, including an optical path for the monitor light flux.

【0008】[0008]

【作用】発明の具体例として、平行ニコル状態で、か
つ、それぞれの偏光方位を異にした3組以上の偏光子及
び検光子を用いた場合について説明する。このとき、検
光子透過光強度I(θ)は,次式で表わされる。 I(θi )=A2 (α2 cos4 (θi −φ)+sin4 (θi −φ) +1/2・C・α・sin2 2(θi −φ)}・・・(1) C≡cos(2πR/λ) ・・・(2) ここで、 R :試料のレターデーション A :試料に入射する直線偏光波の振幅 α :試料の2つの主屈折率方向の直線偏光波の振幅透
過率比(本発明ではこれを「偏光度」とも呼ぶことにす
る。) λ :測定光の波長 θi :試料の基準方向(MD方向)に対する偏光子,検
光子の方位角 φ :試料主屈折率の方位角 i :偏光子と検光子の組の数 である。
As a specific example of the present invention, a case will be described in which three or more pairs of polarizers and analyzers in the parallel Nicol state and having different polarization directions are used. At this time, the analyzer transmitted light intensity I (θ) is expressed by the following equation. I (θ i ) = A 22 cos 4i −φ) + sin 4i −φ) + 1/2 · C · α · sin 2 2 (θ i −φ)} ... (1 ) C≡cos (2πR / λ) (2) where R: Retardation of the sample A: Amplitude of linearly polarized light incident on the sample α: Linearly polarized waves in the two main refractive index directions of the sample Amplitude transmittance ratio (this is also referred to as “polarization degree” in the present invention.) Λ: wavelength of measurement light θ i : azimuth angle of polarizer and analyzer with respect to sample reference direction (MD direction) φ: sample Azimuth angle of main refractive index i: Number of pairs of polarizer and analyzer.

【0009】屈折楕円率とI(θi )の分布は一般に図
5のような関係になる。式(1)の両辺をそれぞれ,
A、C、αで偏微分すると,次のようになる。 ∂I/∂A=2A{α2 cos4 (θ1 ーφ)+sin4 (θ ーφ) +1/2・C・α・sin2 2(θ1 ーφ)} ・・・(3) ∂I/∂C=1/2・A2 ・α・sin2 2(θ1 ーφ) ・・・(4) ∂I/∂α=A2 {2・α・cos4 (θ1 −φ) +1/2・C・sin2 2(θ1 −φ) ・・・(5) 次式のような関数行列Bを考え、
The distribution of the refractive ellipticity and I (θ i ) generally has the relationship shown in FIG. Both sides of equation (1)
Partial differentiation with A, C and α is as follows. ∂I / ∂A = 2A {α 2 cos 41 -φ) + sin 4 (θ -φ) + 1/2 · C · α · sin 2 2 (θ 1 -φ)} ... (3) ∂ I / ∂C = 1/2 ・ A 2・ α ・ sin 2 2 (θ 1 -φ) ・ ・ ・ (4) ∂I / ∂α = A 2 {2 ・ α ・ cos 41 -φ) + 1/2 · C · sin 2 2 (θ 1 −φ) (5) Considering the function matrix B as in the following equation,

【0010】[0010]

【数1】 [Equation 1]

【0011】P=(A0 +C0 +α0 )に適当な初期値
を与え、残差行列をSとして、 e=−(Bt B)-1t S ・・・(7) を計算し,次に, P=P+e ・・・(8) として,P+eを新しい初期値として,再び同様の計算
を行い,収束条件を満たすまで,計算を繰り返す。
Given an appropriate initial value for P = (A 0 + C 0 + α 0 ), and letting the residual matrix be S, e =-(B t B) -1 B t S (7) is calculated. , Next, P = P + e (8) is set, P + e is set as a new initial value, the same calculation is performed again, and the calculation is repeated until the convergence condition is satisfied.

【0012】このとき式(1)において,φの値も未知
であるが,上記の数値計算により,収束値A,C、αを
求める場合には,φは既知の値として取り扱う。具体的
には,1回目のサンプリング値I(θi)を用いて,
A,C、αを計算する場合には,例えばφの値は−90
°から90°まで,1°ごとに変化させて,上記の計算
を行い、1°毎のφに対応するA,C、αの値を求め、
サンプリング値と計算値の残差の2乗和が最小になると
きのφの値φ0 をφの最適値とする方法をとる。このφ
0 に対応するαの値をもって配向度とする。
At this time, although the value of φ is not known in the equation (1), φ is treated as a known value when the convergent values A, C and α are obtained by the above numerical calculation. Specifically, using the first sampling value I (θi),
When calculating A, C, and α, for example, the value of φ is -90.
The above calculation is performed by changing from 1 ° to 90 ° in 1 ° steps, and the values of A, C, and α corresponding to φ in 1 ° steps are obtained.
A method is adopted in which the value φ 0 of φ when the sum of squares of the residuals of the sampled value and the calculated value is the minimum is the optimum value of φ. This φ
The value of α corresponding to 0 is taken as the degree of orientation.

【0013】2回目以降のサンプリング値I(θi )か
らφ、αを求める場合には、φの範囲を前回のサンプリ
ング値から求めたφ0 を中心として、±5°程度の範囲
で変化させて、同様の手順によりφとαを求めれば、計
算時間も短くなり、フィルム製造工程における、φおよ
びαの時間的変化も正確に求めることが可能となる。
When obtaining φ and α from the second and subsequent sampling values I (θ i ), the range of φ is changed within a range of ± 5 ° around φ 0 obtained from the previous sampling value. Then, if φ and α are obtained by the same procedure, the calculation time is shortened, and it is possible to accurately obtain the temporal changes of φ and α in the film manufacturing process.

【0014】[0014]

【実施例】図1は,本発明の配向度測定装置の1実施例
の概略構成図であり,(S)は測定試料、(1)は測定
試料の通過する試料部,(2)は光源部,(3)はフィ
ルタ部,(4)は偏光部、(5)は検光部,(6)は検
光子透過光強度を光電変換する光検出器である。
FIG. 1 is a schematic configuration diagram of an embodiment of the orientation measuring apparatus of the present invention. (S) is a measurement sample, (1) is a sample portion through which the measurement sample passes, and (2) is a light source. , (3) is a filter section, (4) is a polarization section, (5) is an analysis section, and (6) is a photodetector for photoelectrically converting the transmitted light intensity of the analyzer.

【0015】光源部(2)は,保持円盤(20)に所要
の複数個,例えば5〜6個程度の小光源(21).(2
2)・・・が同一円周上にほぼ均等な角度間隔で設けら
れており,図2(a)に平面図で示されるように,同一
強度,同一断面の適当な径の平行光束(L1),(L
2),・・・(L6)を,図1の下向き方向に照射す
る。個別の光源の代わりに,円盤状光源または円環状光
源を用い,集光レンズ(または集光ミラー)等の集光系
と絞り孔(またはスリット)等により上記のような複数
平行光束を取り出すようにしてもよい。また1個の光源
からの光を集光系により適当な径の光束とした後,適当
な本数の光ファイバーにより所要個数の上記平行光束を
取り出すように構成してもよい。
The light source unit (2) includes a plurality of required light sources (21), such as about 5 to 6 small light sources (21) for the holding disk (20). (2
2) ... Are provided on the same circumference at substantially equal angular intervals, and as shown in the plan view of FIG. 2A, a parallel light flux (L1 ), (L
2), ... (L6) are irradiated in the downward direction of FIG. A disc-shaped light source or a ring-shaped light source is used instead of an individual light source, and a plurality of parallel light beams as described above are taken out by a condensing system such as a condensing lens (or condensing mirror) and a diaphragm hole (or slit). You may Alternatively, the light from one light source may be converted into a light beam having an appropriate diameter by a condensing system, and then the required number of the parallel light beams may be extracted by an appropriate number of optical fibers.

【0016】フィルタ部(3)は,1枚のフィルタ板で
構成するか,保持板の各光束に対応する位置にフィルタ
素子を組み込んで構成してもよい。また光源部(2)か
ら検出部(6)までの光路上の他の位置に代えて配置し
ても良い。偏光部(4)及び検光部(5)は,図2
(b),(c)に平面図でそれぞれ示されるように,保
持板(40),(50)の各光軸に対応する位置にそれ
ぞれ偏光子(41),(42),・・・,検光子(5
1),(52),・・・が組み込まれ,偏光部(4)の
偏光素子の偏光方向は,30度ずつずれている。例え
ば,偏光子(41)を0°方向とすると,偏光子(4
2)・・(46)に反時計方向にそれぞれ+30°,+
60°,+90°,+120°,+150°の偏光方向
の素子が配置される。検光部(5)の各偏光子は,偏光
部(3)の各偏光子に対して,同一光軸上のものが互い
に所定の偏光方向関係,例えば平行ニコルの関係になる
ように偏光方向が与えられている。
The filter section (3) may be composed of a single filter plate or may be composed by incorporating a filter element at a position corresponding to each light flux of the holding plate. Further, it may be arranged in place of another position on the optical path from the light source section (2) to the detection section (6). The polarizing unit (4) and the light detecting unit (5) are shown in FIG.
As shown in plan views in (b) and (c) respectively, the polarizers (41), (42), ..., At the positions corresponding to the optical axes of the holding plates (40) and (50), respectively. Analyzer (5
1), (52), ... Are incorporated, and the polarization directions of the polarization elements of the polarization section (4) are shifted by 30 degrees. For example, if the polarizer (41) is oriented at 0 °, the polarizer (4
2) ··· (46) counterclockwise + 30 °, +
Elements having polarization directions of 60 °, + 90 °, + 120 °, and + 150 ° are arranged. The respective polarizers of the light detecting section (5) are arranged so that those on the same optical axis have a predetermined polarization direction relationship, for example, a parallel Nicol relationship, with respect to the respective polarizers of the polarization section (3). Is given.

【0017】試料部(1)は,特に図示されていない
が,生産ラインから連続的に送り出されて来るシート状
の試料を通過させる狭い間隙を有する測定空間が設けら
れている。この測定空間は,狭い幅の測定シートでは幅
方向の両端が閉じていてもよいが,測定シートへの測光
部のセット作業,測定シートの幅方向の任意位置への測
光部の設定,幅方向での測光部(測定点)の走査その他
の点で,測定空間の幅方向の一方を解放型に形成する方
が好ましい。このためには,測光部を1個のユニットと
して形成する場合,光源部から偏光部までの投光ユニッ
トと検光部及び検出部の受光部ユニットとを試料シート
の一方の側端部の外で支持する片持ち(「コの字型」)
方式の保持機構を設けるのがよい。
The sample portion (1) is provided with a measuring space (not shown) having a narrow gap for passing a sheet-like sample continuously sent out from the production line. This measurement space may be closed at both ends in the width direction with a narrow width measurement sheet, but setting work of the photometry unit on the measurement sheet, setting of the photometry unit at an arbitrary position in the width direction of the measurement sheet, width direction It is preferable that one side of the measurement space in the width direction is formed as an open type in terms of the scanning of the photometric portion (measurement point) in FIG. To this end, when the photometric unit is formed as one unit, the light projecting unit from the light source unit to the polarizing unit and the light receiving unit of the light detecting unit and the detecting unit are provided outside one side end of the sample sheet. Cantilever supported by "(U-shaped")
It is preferable to provide a system-type holding mechanism.

【0018】あるいは、投光ユニットおよび受光ユニッ
トを測定シートの幅方向に同期走査させながら計測する
こともできる。
Alternatively, it is possible to perform the measurement while synchronously scanning the light projecting unit and the light receiving unit in the width direction of the measurement sheet.

【0019】また試料部には,測定シートの一定距離移
動ごとに,一定時間毎に,または測定データのサンプリ
ングのタイミングに合わせて,測定シート上の測定点に
該当する位置に(測定点に対応するシートの側端,また
は測定点上等)に,測定位置識別マークを付すインクジ
ェット方式その他適当な方式のマーキング機構を設けて
おき,検出信号のサンプリングデータにもシートに付し
たコードに対応した識別コードを付して,データ処理を
行うようにしてもよい。測定結果の作表,測定・記憶デ
ータからの任意データの抽出,処理,測定データの再チ
ェックその他に適宜利用することができる。
In addition, the sample portion is placed at a position corresponding to a measurement point on the measurement sheet (corresponding to the measurement point) at every constant distance movement of the measurement sheet, at every constant time, or at the sampling timing of the measurement data. A marking mechanism such as an inkjet method that attaches a measurement position identification mark is provided on the side edge of the sheet to be measured, or on a measurement point, etc., and the sampling data of the detection signal is also identified according to the code attached to the sheet. Data may be processed by attaching a code. It can be appropriately used for tabulating measurement results, extracting and processing arbitrary data from measured / stored data, rechecking measured data, and so on.

【0020】検出部(6)には,検出素子(61),
(62),・・・が保持板(60)上に,各光軸位置に
対応して配置されている。検出素子としては,光電変換
素子,たとえば太陽電池,フォトダイオード,CCD素
子等を用いる。以上の光源部,フィルタ部,偏光部,試
料部,検光部,及び検出部を含む複数光束測光部は,測
定シートの通過用空間を設けた状態で,1個のユニット
として形成することができる。これにより測光部全体の
コンパクト化,測光部各部の各要素の設計,製作,測光
部の組立,調整,検査等を標準化して,精度,生産効率
を向上することができる。またユニット化により,測光
部を1個の検出端として取り扱うことができるので,生
産ライン中に設置,特に,計装作業や測定シートの幅方
向への測定点(従って測光部)の走査,現場環境の温
度,雰囲気等に対する測光部の外装その他の保護計装,
設置作業,測定シートの幅方向への測定点の走査機構の
設置等の効率化をもたらすことができる。
The detection section (6) includes a detection element (61),
, (62) are arranged on the holding plate (60) in correspondence with the respective optical axis positions. A photoelectric conversion element such as a solar cell, a photodiode, or a CCD element is used as the detection element. The multi-beam photometric unit including the light source unit, the filter unit, the polarizing unit, the sample unit, the light detecting unit, and the detecting unit may be formed as a single unit with a space for passing the measurement sheet. it can. As a result, the entire photometry unit can be made compact, the design and production of each element of each unit of the photometry unit, the assembly, adjustment, inspection, etc. of the photometry unit can be standardized, and accuracy and production efficiency can be improved. Also, the unitization allows the photometric unit to be handled as a single detection end, so it can be installed in the production line, especially for instrumentation work and scanning of the measurement point (and therefore the photometric unit) in the width direction of the measurement sheet, and the site. Exterior and other protective instrumentation of the photometry unit against environmental temperature and atmosphere,
It is possible to improve efficiency in installation work, installation of a scanning mechanism for measuring points in the width direction of the measurement sheet, and the like.

【0021】この測光部ユニットの測定点のサイズ(必
要な各方向の偏光光束全体)は,例えば数mm〜10m
m前後の径(φ)の円または同程度の方形に形成成する
こともできるが,長尺シートの粗いオンライン測定用と
しては,例えば2〜3cm径または平方程度でもよい。
以下の部分はデータ処理部・制御部であり,主体部分を
測光部とは別に現場環境から離れた場所に設置すること
ができ,測光部との間の測定データ,制御指令等の伝送
は,有線または無線の電気信号のほか,光ファイバーに
よる光通信等の手段も用いることができる。
The size of the measurement point of this photometric unit (the required total polarized light flux in each direction) is, for example, several mm to 10 m.
Although it may be formed into a circle having a diameter (φ) of around m, or a rectangular shape of the same size, for coarse online measurement of a long sheet, for example, a diameter of 2 to 3 cm or a square may be used.
The following parts are the data processing part and control part, and the main part can be installed in a place apart from the site environment separately from the photometric part, and the transmission of measurement data, control commands, etc. with the photometric part is In addition to wired or wireless electric signals, optical communication means such as optical fibers can be used.

【0022】(7)は検出部(6)の各検出出力の増
幅,A/D変換等を行い,これをデータ処理部に導入す
る入力信号処理部である。これらの要素及び送信部は,
測定装置全体のシステム構成に応じて適宜検出端の個所
に設けてもよい。(B)はデータ処理・制御部のデータ
バスライン,(8)はCPUである。(9)はROM,
EPROM等の固定(または半固定)メモリで構成さ
れ,各種の制御・演算プログラムを内蔵するプログラム
格納部であり,(91)は装置全体の動作を制御する制
御プログラムの格納領域であり,全体的な制御プログラ
ムのほか,測定シート上への測定位置識別マークの付
与,フイルタ交換等の作動用等の個別のプログラムを備
えておいてもよい。,(92)は検出出力からのデータ
のサンプリングを指示するサンプリングプログラムの格
納領域,(93)は後述のメモリ(10)中に格納され
た測定データから上記のような各種の所要の演算を行う
ための演算プログラムの格納領域,(94)は処理され
たデータをCRT(11),プリンタ(12)等に出力
するための出力プログラムの格納領域である。
Reference numeral (7) is an input signal processing section for amplifying each detection output of the detection section (6), A / D converting, etc., and introducing this to the data processing section. These elements and the transmitter are
It may be appropriately provided at the position of the detection end according to the system configuration of the entire measuring apparatus. (B) is a data bus line of the data processing / control unit, and (8) is a CPU. (9) is a ROM,
A program storage unit that is composed of fixed (or semi-fixed) memory such as EPROM and that stores various control / calculation programs, and (91) is a storage area for control programs that control the operation of the entire device. In addition to such a control program, a separate program for providing a measurement position identification mark on the measurement sheet, operating a filter, or the like may be provided. , (92) is a storage area of a sampling program for instructing the sampling of data from the detection output, and (93) is the above-mentioned various necessary calculations from measurement data stored in a memory (10) described later. The storage area of the arithmetic program for (94) is the storage area of the output program for outputting the processed data to the CRT (11), the printer (12) and the like.

【0023】上記サンプリングプログラムは,生産ライ
ンから出てくる連続シート状試料の所定移動距離または
所定時間ごとにデータをサンプリングする方式,或いは
試料上の特定点(試料の静止,移動に関係なく,例えば
マーキングをした点等)のデータをサンプリングする方
式その他種々考えられ,選択したサンプリングプログラ
ムに従って,各検出素子の検出出力が入力処理部(7)
でサンプリングされ,検出素子の番号(従って偏光方
向)の情報,試料上の測定位置の情報とともに,メモリ
(10)に格納される。
The above-mentioned sampling program is a method of sampling data at a predetermined moving distance or a predetermined time of a continuous sheet-like sample coming out of a production line, or a specific point on the sample (regardless of whether the sample is stationary or moving, for example, Various other methods such as a method of sampling data of marking points, etc. are considered, and the detection output of each detection element is input processing unit (7) according to the selected sampling program.
The data is sampled at, and stored in the memory (10) together with the information of the number of the detecting element (hence the polarization direction) and the information of the measurement position on the sample.

【0024】上記演算プログラムは,メモリ(10)に
格納されている基礎データ及び測定データから偏光度、
主屈折率方向の算出演算を含む必要な各種の演算を行う
ものである。上記出力プログラムは,測定結果のCRT
表示,印字出力その他,出力制御全般を処理するが,検
出部出力がサンプリングされ,メモリ(10)に格納さ
れる毎に,偏光透過強度の角度分布図を表示し,被測定
シートの流れ方向の配向特性(または複屈折特性)の変
化をオンラインで連続表示する等の処理を行わせること
もできる。
The calculation program described above uses the basic data and the measurement data stored in the memory (10) to determine the polarization degree,
It performs various necessary calculations including a calculation calculation of the main refractive index direction. The above output program is a CRT of measurement results.
Display, print output, and other output control are processed, but each time the detector output is sampled and stored in the memory (10), an angle distribution map of the polarized light transmission intensity is displayed to show the flow direction of the measured sheet. It is also possible to perform processing such as continuously displaying changes in the orientation characteristics (or birefringence characteristics) online.

【0025】メモリ(10)は,例えばRAMで形成さ
れた記憶内容可変のメモリであり,入力処理部(7)か
ら導入された上記の測定データ等を一時記憶するための
入力バッファメモリ(101),処理済データ等の記憶
のための演算処理データ記憶領域(102),データ処
理に必要な基本データ,数式等を記憶した基礎データ記
憶領域(103),CRT表示,印字出力等のためのデ
ータを記憶する出力バッファメモリ(104)等の領域
を有する。(14)はキーボード入力装置である。
The memory (10) is a memory having variable storage contents, which is formed of, for example, a RAM, and an input buffer memory (101) for temporarily storing the measurement data and the like introduced from the input processing unit (7). , Storage area for arithmetic processing data (102) for storing processed data, basic data storage area (103) for storing basic data necessary for data processing, mathematical formulas, etc., data for CRT display, print output, etc. Has an area such as an output buffer memory (104) for storing (14) is a keyboard input device.

【0026】図3は、本発明の他の1実施例の配向度測
定装置の概略システム構成図であり、基本的には図3と
同じ構成であって共通する要素は同じ番号あるいは符号
で示されている。図3の装置が図1の構成と異なるとこ
ろは、偏光方向の異なる偏光光束による透過度を測定す
るための各光軸(L1),(L2),・・・(L6)の
集合体の中心にモニター用光路(光軸L7)が設けられ
ている点である。
FIG. 3 is a schematic system configuration diagram of an orientation measuring apparatus according to another embodiment of the present invention, which basically has the same configuration as that of FIG. 3 and common elements are denoted by the same numbers or reference numerals. Has been done. 3 is different from the configuration of FIG. 1 in that the center of an assembly of optical axes (L1), (L2), ... (L6) for measuring the transmittance of polarized light beams with different polarization directions. Is provided with a monitor optical path (optical axis L7).

【0027】即ち光源部(2)では光源(27)が設け
られ、また偏光部(4)、検光部(5)には保持円盤
(40),(50)の中心に透孔(47),(57)が
それぞれ設けられ、さらに検出部(6)では保持円盤
(60)の中心に光検出素子(67)が設けられてい
る。これらの各要素(27),(47),(57)及び
(67)は光軸上に位置している。この光軸(L7)の
位置は各光軸(L1)〜(L6)の中心が好ましいが、
その位置は厳密なものではない。
That is, the light source section (2) is provided with a light source (27), and the polarizing section (4) and the light detecting section (5) have through holes (47) at the centers of the holding disks (40) and (50). , (57) are provided, and further, in the detection section (6), a photodetection element (67) is provided at the center of the holding disk (60). These respective elements (27), (47), (57) and (67) are located on the optical axis. The position of this optical axis (L7) is preferably the center of each optical axis (L1) to (L6),
Its position is not exact.

【0028】なお光源部(2)からの投射光は分割され
た光束である必要はなく、広い断面の平行光束を発生す
る面光源でもよく、また検出部(6)も、各光路の透過
光をそれぞれ検出するものであれば、例えば2次元CC
D検出素子等の面検出器で構成しても良い。検出素子
(67)の検出出力は、(61)〜(66)の偏光透過
度検出出力と同様に入力処理部(7)を経てデータ処理
制御部に導入され、制御プログラム格納部に格納されて
いる監視プログラム(95)により、種々の装置動作状
態の監視等に利用される。
The light projected from the light source section (2) does not have to be a divided light beam, and may be a surface light source which generates a parallel light beam having a wide cross section. The detecting section (6) also transmits light through each optical path. 2D CCs for detecting the
It may be configured by a surface detector such as a D detection element. The detection output of the detection element (67) is introduced into the data processing control unit via the input processing unit (7) and stored in the control program storage unit, similarly to the polarization transmission detection outputs of (61) to (66). The monitoring program (95) is used to monitor various device operating states.

【0029】例えば被測定シートの無い状態での検出素
子(67)での出力により、光源ランプの光量が基準値
以上あるかどうかを確認して、ランプ寿命を判断するこ
とができる。この確認は一定の装置使用時間ごとに自動
的に行うようにしてもよいし、またさらに随時行うよう
にも構成することができる。また測定シートの幅方向に
走査して計測する場合に、検出素子(67)の検出出力
の変動によりシートのエッジを検出することができ、例
えば幅方向走査の制御にも利用できる。さらに被測定シ
ートに継ぎ目や汚れがある場合に、この部分の付近では
(67)の光量変化が大きくなるので、これを検出する
ことにより、サンプリングデータから配向度及び主屈折
率の方向を算出する場合に、値が大きく変化してそれ以
降の計測に悪影響を与えることを防止することも可能と
なる。なお透孔(47),(57)にそれぞれ(41)
〜(47)、((51)〜((57)と同様の偏光子、
検光子を設け、他の偏光子。検光子対とは異なる偏光方
向を与えておけば、主屈折率方向、配向度の算出にも利
用てきる。この場合には、図4に示されるように、偏光
子(47),検光子(57)を含み3素子が一直線上の
配置となり(例えば(41),(457),(44)及
び(61),(67),(67))、この直線配置方向
をシートの流れ方向あるいはシート幅方向に一致させて
おけば、測定点面積をより小さくすることができる。
For example, the lamp life can be judged by checking whether the light quantity of the light source lamp is equal to or more than the reference value by the output of the detecting element (67) without the sheet to be measured. This confirmation may be automatically performed every certain device usage time, or may be performed at any time. Further, when the measurement sheet is scanned in the width direction for measurement, the edge of the sheet can be detected by the fluctuation of the detection output of the detection element (67), and it can be used, for example, in the control of the width direction scanning. Further, when the sheet to be measured has a seam or dirt, the light amount change of (67) becomes large in the vicinity of this portion. Therefore, by detecting this, the orientation degree and the direction of the main refractive index are calculated from the sampling data. In this case, it is possible to prevent the value from greatly changing and adversely affecting the subsequent measurement. The through holes (47) and (57) are respectively (41)
To (47), ((51) to ((57), the same polarizer,
Provide an analyzer and other polarizers. If a polarization direction different from that of the analyzer pair is given, it can be used for calculation of the main refractive index direction and orientation degree. In this case, as shown in FIG. 4, the three elements including the polarizer (47) and the analyzer (57) are arranged in a straight line (for example, (41), (457), (44) and (61). ), (67), (67)) and the linear arrangement direction are made to coincide with the sheet flow direction or the sheet width direction, the measurement point area can be made smaller.

【0030】図4は図3の装置の測光部の一部、光源部
(2),偏光部(4),検光部(5),検出部(6)の
具体的構成の他の例を示し、長方形保持盤20A),
(40A),(50A),(60A)にそれぞれの要素
が円周上及びこの中心部に配置されており、各保持盤の
4隅部には各光軸の位置決め用の透孔(h1)が設けら
れている。さらに保持盤(50A),(60A)には、
両者を一体に組み立てるための透孔(h2)が4隅に設
けられており、簡易にかつコンパクトに両者を一体に結
合また離脱することができる。
FIG. 4 shows another example of the specific structure of a part of the photometric section, the light source section (2), the polarizing section (4), the light detecting section (5), and the detecting section (6) of the apparatus shown in FIG. Shown, rectangular holding plate 20A),
Elements (40A), (50A), and (60A) are arranged on the circumference and at the center thereof, and through holes (h1) for positioning each optical axis are provided at the four corners of each holding plate. Is provided. Furthermore, the holding plates (50A), (60A)
Through holes (h2) for assembling the both together are provided at the four corners, so that they can be easily and compactly combined and separated from each other.

【0031】(実験例) (実験例1)本測定法により、未延伸および1軸延伸フ
ィルムを用いて、主屈折率方向φと配向度αを測定した
結果と、同じフイルムを12.5GHzのマイクロ波を
用いてフィルム面内の誘電率の最大値と最小値の差Δ
ε’とを比較すると次の表1のようになった。
(Experimental Example) (Experimental Example 1) According to this measurement method, the same film at 12.5 GHz was used for the same film as the result of measuring the main refractive index direction φ and the orientation degree α using unstretched and uniaxially stretched films. Difference between the maximum and minimum values of the dielectric constant in the film plane using microwaves Δ
Table 1 below shows a comparison with ε '.

【0032】[0032]

【表1】 [Table 1]

【0033】このときのαとΔε’との相関をみると、
相関係数は−0.987であった。従って、予め同一の
試料について屈折計から得た複屈折ΔNと本測定法によ
るα値との相関関係を求めておけば、複屈折への換算も
容易に行うことができる。
Looking at the correlation between α and Δε'at this time,
The correlation coefficient was -0.987. Therefore, if the correlation between the birefringence ΔN obtained from the refractometer and the α value according to this measurement method is obtained in advance for the same sample, the conversion into the birefringence can be easily performed.

【0034】[0034]

【発明の効果】【The invention's effect】

1)光学次数を決める必要が無いので、異方性が大き
く、厚い試料の測定も容易である。 2)数値演算により、配向度及び主屈折率方向を、少な
い計算時間で有効に求めることができる。また配向度か
ら複屈折値を容易に換算することもできる。 3)配向度の算出に必要な測定データを任意の時点で即
座に得ることができ,複屈折のオンライン測定が可能と
なる。従ってフィルムの生産ライン等において,被測定
シートの流れ方向の特性の変化をきめ細かく知ることが
できる。
1) Since it is not necessary to determine the optical order, the anisotropy is large and the measurement of a thick sample is easy. 2) The degree of orientation and the main refractive index direction can be effectively obtained by a numerical calculation in a short calculation time. The birefringence value can also be easily converted from the degree of orientation. 3) The measurement data necessary for calculating the orientation degree can be immediately obtained at any time point, and the on-line measurement of birefringence becomes possible. Therefore, in a film production line or the like, it is possible to finely know the change in the characteristics of the measured sheet in the flow direction.

【0035】4)配向度と主屈折率方向とを同時に求め
ることができる。 5)充分な測定精度を確保しつつ,データの記憶に必要
なメモリ容量を適度の値に納めることができる。 6)偏光透過強度の角度分布を即座に知ることができる
ので,これを連続表示して,試料の異方性の程度を任意
に視覚的に監視することもできる。
4) It is possible to simultaneously obtain the degree of orientation and the direction of the main refractive index. 5) The memory capacity required for data storage can be kept within an appropriate value while ensuring sufficient measurement accuracy. 6) Since the angle distribution of the polarized light transmission intensity can be immediately known, it is possible to continuously display this and visually monitor the degree of anisotropy of the sample arbitrarily.

【0036】7)モニター光路を設けたことにより、装
置の種々の動作状態の監視を容易に行うことができる。
7) By providing the monitor optical path, it is possible to easily monitor various operating states of the apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は,本発明の1実施例の配向度測定装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an orientation measuring apparatus according to an embodiment of the present invention.

【図2】図2は,図1の構成における偏光子及び検光子
の詳細図である。
FIG. 2 is a detailed diagram of a polarizer and an analyzer in the configuration of FIG.

【図3】図3は、本発明の他の1実施例の配向度測定装
置の概略構成図である。
FIG. 3 is a schematic configuration diagram of an orientation measuring apparatus according to another embodiment of the present invention.

【図4】図4は、図3の装置の測光部の一部の具体的構
成例図である。
FIG. 4 is a diagram showing an example of a specific configuration of a part of a photometric unit of the apparatus shown in FIG.

【図5】図5は、本発明装置の動作説明用図である。FIG. 5 is a diagram for explaining the operation of the device of the present invention.

【図6】図6は,本発明装置による配向度測定結果との
相関関係の一例図である。
FIG. 6 is a diagram showing an example of the correlation with the measurement result of the orientation degree by the device of the present invention.

【符号の説明】[Explanation of symbols]

1 試料部 2 光源部 3 フィルタ部 4 偏光部 5 検光部 6 検出部 7 入力処理部 8 CPU 9 プログラム格納部 10 データ格納部 11 CRT表示装置。 12 プリンタ 13 キーボード入力装置 20,40,50,60 保持盤 21〜26 光源 41〜46 偏光子 51〜56 検光子 61〜66 検出素子 91 制御プログラム格納部 92 サンプリングプログラム格納部 93 演算プログラム格納部 94 出力プログラム格納部 101 入力バッファメモリ 102 演算処理データ格納領域 103 基礎データ格納領域 104 出力バッファメモリ B データバスライン L1〜L6 光軸 S 測定試料 1 sample part 2 light source part 3 filter part 4 polarizing part 5 light detecting part 6 detecting part 7 input processing part 8 CPU 9 program storing part 10 data storing part 11 CRT display device. 12 Printer 13 Keyboard Input Device 20, 40, 50, 60 Holding Board 21-26 Light Source 41-46 Polarizer 51-56 Analyzer 61-66 Detection Element 91 Control Program Storage 92 Sampling Program Storage 93 Calculation Program Storage 94 Output program storage unit 101 Input buffer memory 102 Arithmetic processing data storage area 103 Basic data storage area 104 Output buffer memory B Data bus lines L1 to L6 Optical axis S Measurement sample

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】平行ニコル状態に置かれた3対以上の偏光
子及び検光子の組を互いに偏光方向をずらせて配置し、
偏光子と検光子との間に被測定シートを介在させ、特定
の波長の光に対する偏光子、試料および検光子を透過し
た光の強度をそれぞれ検出する手段と、各透過光の偏光
の方位と強度とから、被測定シートの配向度及び主屈折
率の方向を算出する手段とを備えたことを特徴とする配
向性測定装置。
1. A set of three or more pairs of polarizers and analyzers placed in a parallel Nicol state are arranged with their polarization directions displaced from each other,
A sheet to be measured is interposed between a polarizer and an analyzer, a means for detecting the intensity of light transmitted through a polarizer, a sample and an analyzer for light of a specific wavelength, and a direction of polarization of each transmitted light. An orientation measuring apparatus comprising: means for calculating the degree of orientation of a measured sheet and the direction of the main refractive index from the strength.
【請求項2】該透過度検出手段を構成する偏光子、検光
子及び受光手段がほぼ同一円周上に配置されていること
を特徴とする請求項1記載の配向性測定装置。
2. An orientation measuring apparatus according to claim 1, wherein the polarizer, the analyzer and the light receiving means constituting the transmittance detecting means are arranged on substantially the same circumference.
【請求項3】該円周のほぼ中央部にモニター光束用光路
が設けられていることを特徴とする請求項2記載の配向
性測定装置。
3. The orientation measuring apparatus according to claim 2, wherein an optical path for a monitor light beam is provided at a substantially central portion of the circumference.
【請求項4】偏光方向の異なる3種以上の偏光に対する
透過度をそれぞれ検出する手段と,これらの検出手段の
検出出力を所定のプログラムに従ってサンプリングする
手段と,サンプリングしたデータを記憶する手段と,サ
ンプリングデータから偏光度及び主屈折率方向を算出す
る手段を備えたことを特徴とする請求項1,2または3
記載の配向性測定装置。
4. A means for respectively detecting the transmittances of three or more kinds of polarized light having different polarization directions, a means for sampling the detection outputs of these detecting means according to a predetermined program, and a means for storing the sampled data. A means for calculating the polarization degree and the main refractive index direction from the sampling data is provided.
The orientation measuring device described.
【請求項5】光源部,偏光部,検光部及び検出部を含む
測光部がユニットとして形成されていることを特徴とす
る,請求項1,2,3または4記載の配向性測定装置。
5. The orientation measuring apparatus according to claim 1, 2, 3 or 4, wherein a photometric section including a light source section, a polarizing section, a light detecting section and a detecting section is formed as a unit.
JP1430993A 1993-01-29 1993-01-29 Orientation measuring apparatus Pending JPH06229912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1430993A JPH06229912A (en) 1993-01-29 1993-01-29 Orientation measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1430993A JPH06229912A (en) 1993-01-29 1993-01-29 Orientation measuring apparatus

Publications (1)

Publication Number Publication Date
JPH06229912A true JPH06229912A (en) 1994-08-19

Family

ID=11857502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1430993A Pending JPH06229912A (en) 1993-01-29 1993-01-29 Orientation measuring apparatus

Country Status (1)

Country Link
JP (1) JPH06229912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055396A1 (en) * 2007-11-20 2009-05-28 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Optical axis orientation position measurement method for macromolecules in birefringent and transparent optical medium or foil, involves fixing light intensity maximum for controlling and/or regulating orientation position
JP2009276079A (en) * 2008-05-12 2009-11-26 Oji Keisoku Kiki Kk On-line phase difference measuring device
JP2009281787A (en) * 2008-05-20 2009-12-03 Oji Keisoku Kiki Kk Measuring instrument for phase difference distribution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055396A1 (en) * 2007-11-20 2009-05-28 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Optical axis orientation position measurement method for macromolecules in birefringent and transparent optical medium or foil, involves fixing light intensity maximum for controlling and/or regulating orientation position
JP2009276079A (en) * 2008-05-12 2009-11-26 Oji Keisoku Kiki Kk On-line phase difference measuring device
JP2009281787A (en) * 2008-05-20 2009-12-03 Oji Keisoku Kiki Kk Measuring instrument for phase difference distribution

Similar Documents

Publication Publication Date Title
US7239388B2 (en) Retardance measurement system and method
US7277172B2 (en) Measuring overlay and profile asymmetry using symmetric and anti-symmetric scatterometry signals
US6473179B1 (en) Birefringence measurement system
CN100395538C (en) Novel quick-speed elliptical polarized light measurement system
EP0176827B1 (en) Method and apparatus for simultaneously determining gauge and orientation of polymer films
US7286226B2 (en) Method and apparatus for measuring birefringence
EP1397651B1 (en) Birefringence measurement at deep-ultraviolet wavelengths
US2829555A (en) Polarimetric method and apparatus
JPH10332533A (en) Birefringence evaluation system
CA2463768A1 (en) Accuracy calibration of birefringence measurement systems
CN1089897C (en) Method and dichrograph for measurement of circular dichroism, optical rotation and absorption spectra
EP0737856B1 (en) A method of investigating samples by changing polarisation
US6697157B2 (en) Birefringence measurement
KR100336696B1 (en) Apparatus and method for detecting polarization
JPH06229912A (en) Orientation measuring apparatus
US7002685B2 (en) System for measuring of both circular and linear birefringence
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
JPH06337243A (en) Optical measuring apparatus
JP2927145B2 (en) Method and apparatus for measuring retardation
JPH05209823A (en) Double refraction measuring apparatus
JPH06229909A (en) Measuring apparatus for polarized dichroism
WO1999042796A1 (en) Birefringence measurement system
JPH0489553A (en) Double refraction measuring apparatus
JPH0682365A (en) Double refraction measuring device
JPH05281137A (en) Double-refraction measuring apparatus