JP2009276079A - On-line phase difference measuring device - Google Patents

On-line phase difference measuring device Download PDF

Info

Publication number
JP2009276079A
JP2009276079A JP2008124842A JP2008124842A JP2009276079A JP 2009276079 A JP2009276079 A JP 2009276079A JP 2008124842 A JP2008124842 A JP 2008124842A JP 2008124842 A JP2008124842 A JP 2008124842A JP 2009276079 A JP2009276079 A JP 2009276079A
Authority
JP
Japan
Prior art keywords
phase difference
measured
spectrum
value
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008124842A
Other languages
Japanese (ja)
Other versions
JP5060388B2 (en
Inventor
Kiyokazu Sakai
清和 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OJI KEISOKU KIKI KK
New Oji Paper Co Ltd
Original Assignee
OJI KEISOKU KIKI KK
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OJI KEISOKU KIKI KK, Oji Paper Co Ltd filed Critical OJI KEISOKU KIKI KK
Priority to JP2008124842A priority Critical patent/JP5060388B2/en
Publication of JP2009276079A publication Critical patent/JP2009276079A/en
Application granted granted Critical
Publication of JP5060388B2 publication Critical patent/JP5060388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable on-line measurement even to a measuring object wherein a phase difference R is changed as much as a half of a measuring wavelength λ or more. <P>SOLUTION: A plurality of addition spectrums I<SB>T</SB>calculated with each different phase difference are held, and an addition spectrum measured value I<SB>T</SB>' is calculated from transmission light spectral spectrums I<SB>0</SB>(0), I<SB>0</SB>(45), in the state not having the measuring object and transmission light spectral spectrums I(0), I(45), in the state having the measuring object, and I<SB>T</SB>wherein a difference between the calculated value I<SB>T</SB>and the measured value I<SB>T</SB>' becomes minimum is determined, and a phase difference R(λ) pertinent to the I<SB>T</SB>is adopted as a phase difference Rm(λ) of the measuring object. In this case, following formulas are organized: I<SB>T</SB>'=I(0)/I<SB>0</SB>(0)+I(45)/I<SB>0</SB>(45), I<SB>T</SB>=(C+3)/2, and C=cos (2πR(λ)/λ). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は被測定物の少なくとも位相差をオンラインで求めるための位相差測定装置に関する。   The present invention relates to a phase difference measuring apparatus for obtaining at least a phase difference of an object to be measured online.

被測定物の位相差を測定する方法としては、偏光子と検光子それぞれの透過軸を平行に配置し、偏光子と検光子との間に被測定物を置き、偏光子と検光子とを平行ニコル状態に保って1回転し、そのときの透過光強度変化から被測定物の位相差と配向角とを求める方法(平行ニコル回転法)がある。   As a method of measuring the phase difference of the object to be measured, the transmission axes of the polarizer and the analyzer are arranged in parallel, the object to be measured is placed between the polarizer and the analyzer, and the polarizer and the analyzer are connected. There is a method (parallel Nicol rotation method) in which the phase difference and the orientation angle of the object to be measured are determined from the change in transmitted light intensity at that time while maintaining a parallel Nicol state.

平行ニコル回転法をオンライン測定に適用し、単一波長の測定光を用いて透明フィルム・シートの位相差と配向角とをオンラインで測定可能にしたものがある(特許文献1,2参照。)。そのような装置は実際に光学フィルム製造工程で使用されている。光学フィルムの場合は、測定値である位相差に目標値があり、極力その変動を抑えて均一なものを製造することが重要であるので、測定すべき位相差の変動幅はごく限られた小さい範囲である。したがって、平行ニコル回転法でオンライン測定する場合も、1つの波長で測定するだけで十分な精度で位相差と配向角を測定できる。   There is one in which the parallel Nicol rotation method is applied to on-line measurement, and the phase difference and orientation angle of a transparent film / sheet can be measured on-line using a single wavelength measurement light (see Patent Documents 1 and 2). . Such an apparatus is actually used in an optical film manufacturing process. In the case of optical films, there is a target value for the phase difference that is a measurement value, and it is important to produce a uniform film with as little variation as possible. Therefore, the fluctuation range of the phase difference to be measured is very limited. It is a small range. Therefore, even when performing on-line measurement by the parallel Nicol rotation method, the phase difference and the orientation angle can be measured with sufficient accuracy only by measuring at one wavelength.

図11は平行ニコル回転法のときの測定波長λと位相差Rとによって表されるC(=cos2πR/λ)を位相差Rに対して示したものである。その下に示した図形は、それぞれの位相差をもつ被測定物に対して偏光子と検光子とを平行ニコル状態に保って1回転したときの透過光の検出強度図形である。
特許第2791506号公報 特許第2927145号公報 日本写真学会誌, Vol.27, No.6, pp.478-483 (1990)
FIG. 11 shows C (= cos 2πR / λ) represented by the measurement wavelength λ and the phase difference R in the parallel Nicol rotation method with respect to the phase difference R. The figure shown below is a detected intensity figure of transmitted light when the object to be measured having each phase difference is rotated once while the polarizer and the analyzer are kept in a parallel Nicol state.
Japanese Patent No. 2791506 Japanese Patent No. 2927145 Journal of the Japan Society of Photography, Vol.27, No.6, pp.478-483 (1990)

平行ニコル回転法では、透過光強度図形からCの値を求めて位相差Rを算出するが、位相差Rがλの整数倍近傍になったときに検出光強度図形が円になって、位相差と配向角はともに測定精度が悪くなる。   In the parallel Nicol rotation method, the value of C is obtained from the transmitted light intensity diagram to calculate the phase difference R. When the phase difference R is close to an integral multiple of λ, the detected light intensity diagram becomes a circle, and the phase difference R is calculated. Both the phase difference and the orientation angle have poor measurement accuracy.

また、平行ニコル回転法で1つの波長で測定したとき、図11からも分かるように、追随可能な位相差Rの変化範囲は測定波長λの半分以内に制限される。しかし、一般フィルムの場合は位相差Rの変化範囲は大きいことがある。例えば透明フィルム・シートの位相差と配向角とをフィルム・シートの製造工程中に設置してオンライン測定しようとすると、MD方向(長手方向、引っ張り方向又は巻取り方向)又はTD方向(MD方向と直角する方向)における位相差変動が大きく、変化量が数100nm以上になる場合もある。そのため、1波長による平行ニコル回転法では位相差Rの変化に対して追随できなくなり、測定は実質的に困難となる。   Further, when measured at one wavelength by the parallel Nicol rotation method, as can be seen from FIG. 11, the change range of the phase difference R that can be followed is limited to within half of the measurement wavelength λ. However, in the case of a general film, the change range of the retardation R may be large. For example, when the phase difference and orientation angle of a transparent film / sheet are installed during the film / sheet manufacturing process and an on-line measurement is attempted, the MD direction (longitudinal direction, pulling direction or winding direction) or TD direction (MD direction and There is a case where the variation in the phase difference in the direction (at right angles) is large and the amount of change is several hundred nm or more. Therefore, the parallel Nicol rotation method with one wavelength cannot follow the change of the phase difference R, and the measurement becomes substantially difficult.

本発明は、位相差Rが測定波長λの半分以上変化する被測定物に対しても測定可能なオンライン測定装置を提供することを目的とするものである。   An object of the present invention is to provide an on-line measuring device capable of measuring even an object to be measured whose phase difference R changes by half or more of the measurement wavelength λ.

本発明のオンライン位相差測定装置は、白色光のような多波長成分を含む測定光が移動する被測定物に偏光子を通して照射され、被測定物を透過した測定光が検光子を通して分光器(分散素子及び検出器を含む。)に入射して透過光分光スペクトルが測定される位相差測定部と、位相差測定部で測定された透過光分光スペクトルから被測定物の位相差を少なくとも算出する演算処理部を備えている。位相差測定部では、偏光子、検光子及び分光器は被測定物の移動方向に沿って配置された第1、第2の2組を含み、各組の偏光子と検光子は平行ニコルの状態に配置され、かつ第1の組の偏光子と検光子は基準方位に対する偏光方位(透過軸方位)が0°に設定され、第2の組の偏光子と検光子は基準方位に対する偏光方位が45°に設定されている。基準方位は任意に設定することができ、MD方向、TD方向又は他の方位に設定することができる。   The on-line phase difference measuring apparatus of the present invention irradiates a measurement object containing multi-wavelength components such as white light through a polarizer, and the measurement light transmitted through the measurement object passes through the analyzer through a spectrometer ( A phase difference measuring unit that is incident on a dispersion element and a detector to measure a transmitted light spectrum, and calculates a phase difference of the object to be measured from the transmitted light spectrum measured by the phase difference measuring unit. An arithmetic processing unit is provided. In the phase difference measuring unit, the polarizer, the analyzer, and the spectroscope include first and second sets arranged along the moving direction of the object to be measured, and each set of the polarizer and the analyzer includes parallel Nicols. And the first set of polarizers and analyzers are set to a polarization orientation (transmission axis orientation) of 0 ° with respect to the reference orientation, and the second set of polarizers and analyzers are polarization orientations with respect to the reference orientation. Is set to 45 °. The reference azimuth can be arbitrarily set, and can be set to the MD direction, the TD direction, or another azimuth.

平行ニコル配置の場合、一般的に検出光強度は下記の式で表現される。
I(θ)
=I0{α2cos4(θ−φ)+sin4(θ−φ)+(Cα/2)sin2 2(θ−φ )}
(1)
ただし、C =cos(2πR /λ ) (2)
ここで、θは偏光子・検光子の透過軸方位、I0は被測定物がないときの検出光強度、αは直交する2つの光学主軸方向に直線偏光が透過するときの振幅透過率比、φは被測定物の配向角(被測定物の2つの光学主軸のうちの屈折率が大きい方向)、Rは被測定物の位相差、λは測定波長である。θとφは適当に設定した基準方位に対する角度である。
In the case of the parallel Nicol arrangement, the detection light intensity is generally expressed by the following equation.
I (θ)
= I 02 cos 4 (θ−φ) + sin 4 (θ−φ) + (Cα / 2) sin 2 2 (θ−φ)}
(1)
Where C = cos (2πR / λ) (2)
Where θ is the transmission axis orientation of the polarizer / analyzer, I 0 is the detected light intensity when there is no object to be measured, α is the amplitude transmittance ratio when linearly polarized light is transmitted in the two optical principal axis directions orthogonal to each other , Φ is the orientation angle of the object to be measured (the direction in which the refractive index of the two optical principal axes of the object to be measured is large), R is the phase difference of the object to be measured, and λ is the measurement wavelength. θ and φ are angles with respect to an appropriately set reference direction.

(1)式において、I0及びRは測定波長λに依存する。また、αはほとんどの場合ほぼ1であるが、被測定物の位相差が大きいときは2つの光学主軸の屈折率差が大きいことに相当するため、2つの方向において表面反射率に差が生じ、その結果2つの光学主軸方向に対する直線偏光の透過率にも差が生じて、αは1より小さくなる。しかし、その場合でもαは0.95程度まで小さくなるだけであり、かつ可視域の波長全体について考える場合、αの波長依存性は無視できることが多い。 In the equation (1), I 0 and R depend on the measurement wavelength λ. In addition, α is almost 1 in most cases, but when the phase difference of the object to be measured is large, this corresponds to a large difference in refractive index between the two optical main axes. As a result, a difference also occurs in the transmittance of linearly polarized light with respect to the two optical principal axis directions, and α is smaller than 1. However, even in that case, α is only reduced to about 0.95, and when considering the entire wavelength in the visible range, the wavelength dependency of α is often negligible.

まず簡単のために、(1)式においてα=1の場合について考える。θ=0°と45°のときの検出光強度をI(0)とI(45)と表記し、θ=0°と45°のときのI0を区別してI0(0)とI0(45)とすると、I(0)とI(45)はそれぞれ次のように表される。
I(0)={I0(0)/2}{2+(C−1)sin22φ} (3)
I(45)={I0(45)/2}{2+(C−1)cos22φ} (4)
被測定物がないときの検出光強度I0(0)とI0(45)とは本来ほとんど同じであるが、それぞれの偏光子の特性や分光器の波長特性に僅かの違いがある場合も考えられるので、一応異なるものとして扱う。
First, for the sake of simplicity, consider the case where α = 1 in equation (1). The detected light intensities when θ = 0 ° and 45 ° are expressed as I (0) and I (45), and I 0 (0) and I 0 are distinguished from I 0 when θ = 0 ° and 45 °. Assuming that (45), I (0) and I (45) are expressed as follows.
I (0) = {I 0 (0) / 2} {2+ (C−1) sin 2 2φ} (3)
I (45) = {I 0 (45) / 2} {2+ (C−1) cos 2 2φ} (4)
The detected light intensities I 0 (0) and I 0 (45) when there is no object to be measured are essentially the same, but there may be slight differences in the characteristics of the polarizers and the wavelength characteristics of the spectrometer. Since it is considered, it is treated as something different.

そこで、I(0)/I0(0)とI(45)/I0(45)とを計算した後、それらを合算した値をITとすると、式(3),(4)からITは次のように表される。
T=(C+3)/2 (5)
(5)式からITはCすなわち位相差Rと測定波長λによって決まり、被測定物の配向角φには影響されないことがわかる。ただし、(5)式のITは偏光子や分光器の波長特性を除くために被測定物がないときの値I0(0),I0(45)で除したものである。
Therefore, after calculating I (0) / I 0 (0) and I (45) / I 0 (45), the sum of them is I T. T is expressed as follows.
I T = (C + 3) / 2 (5)
From equation (5), it is understood that I T is determined by C, that is, the phase difference R and the measurement wavelength λ, and is not affected by the orientation angle φ of the object to be measured. However, I T in equation (5) is divided by values I 0 (0) and I 0 (45) when there is no object to be measured in order to exclude the wavelength characteristics of the polarizer and the spectroscope.

例えば2000nmの位相差Rをもつ被測定物を波長λが590nmの測定光による平行ニコル回転法で測定した場合、被測定物を配向角φが0°の状態に配置したときの検出光強度図形と被測定物を配向角φが20°の状態に配置したときの検出光強度図形を示すと図1のようになる。φが0°の場合とφが20°の場合とでは、I(0)とI(45)は異なるが、(5)式の結果によればI(0)+I(45)はφによらず一定ということを意味している。図1においても、I(0)+I(45)はφが0°の場合とφが20°の場合とで等しくなることが窺われる。   For example, when a measurement object having a phase difference R of 2000 nm is measured by the parallel Nicol rotation method using a measurement light having a wavelength λ of 590 nm, the detected light intensity diagram when the measurement object is arranged in a state where the orientation angle φ is 0 ° FIG. 1 shows a detected light intensity diagram when the object to be measured is arranged in a state where the orientation angle φ is 20 °. When φ is 0 ° and φ is 20 °, I (0) and I (45) are different, but according to the result of equation (5), I (0) + I (45) depends on φ. It means that it is constant. Also in FIG. 1, it can be seen that I (0) + I (45) is equal when φ is 0 ° and when φ is 20 °.

このことは1つの波長についてだけではなく、すべての波長に対して成立するので、分光スペクトルについても同様のことが成り立つ。また、Cが取り得る範囲は−1〜1であるから、α=1のときITは1〜2の範囲の値になる。 Since this is true not only for one wavelength but for all wavelengths, the same is true for the spectral spectrum. Further, since the range in which C is possible is -1 to 1, I T when alpha = 1 becomes a value in the range of 1-2.

そこで、図9に示されるように、本発明のオンライン位相差測定装置は、演算処理部10として、位相差R(λ)を異ならせて算出された複数の合算位相差IT(=(C+3)/2)の分光スペクトルを保持する分光スペクトル保持部102と、位相差測定部において被測定物がない状態での2組の偏光子と検光子による透過光分光スペクトルI0(0),I0(45)と被測定物がある状態での2組の偏光子と検光子による透過光分光スペクトルI(0),I(45)とから合算スペクトル実測値IT’(ただし、IT’=I(0)/I0(0)+I(45)/I0(45)である。)を算出する合算スペクトル算出部104と、分光スペクトル保持部102に保持された計算値ITと合算スペクトル算出部104で算出された実測値IT’の差が最小になるITを求めてそのITに該当する位相差R(λ)をその被測定物の位相差Rm(λ)とする位相差算出部106を備えている。 Therefore, as shown in FIG. 9, the on-line phase difference measuring apparatus according to the present invention has, as the arithmetic processing unit 10, a plurality of total phase differences I T (= (C + 3) calculated by varying the phase difference R (λ). ) / 2) a spectral spectrum holding unit 102 that holds the spectral spectrum, and a transmitted light spectral spectrum I 0 (0), I by two sets of polarizers and analyzers in the state where there is no object to be measured in the phase difference measuring unit. 0 (45) and the transmitted spectrums I (0) and I (45) of the two sets of polarizers and analyzers in the presence of the object to be measured, the combined spectrum measured value I T ′ (where I T ′ = I (0) / I 0 (0) + I (45) / I 0 (45)), and the calculated value I T held in the spectral spectrum holding unit 102 is added up. Difference in measured value I T ′ calculated by spectrum calculation unit 104 There has been a phase difference calculation unit 106 to the phase difference Rm (lambda) of the phase difference R (lambda) and the measured object seeking I T corresponding to that I T which is minimal.

さらに、演算処理部10は、位相差をR(λ)として波長分散を次式で表し、あらかじめ式中の係数a、b、cを材料ごとに区別して登録しておくことができる(非特許文献1参照)。
R(λ)=a+b/(λ2−c2) (6)
a、b、cの各係数の値は、例えば王子計測機器(株)製の位相差測定装置KOBRA−WRを用いれば容易に求めることができる。
Further, the arithmetic processing unit 10 can express the chromatic dispersion by the following equation using the phase difference as R (λ), and can preliminarily register the coefficients a, b, and c in the equation separately for each material (non-patent). Reference 1).
R (λ) = a + b / (λ 2 −c 2 ) (6)
The values of the coefficients a, b, and c can be easily obtained by using, for example, a phase difference measuring device KOBRA-WR manufactured by Oji Scientific Instruments.

ここで、基準波長をλ0とすると、(6)式より基準波長λ0に対する任意の波長λでの分散比率R(λ)/R(λ0)は容易に求まる。基準波長は任意に定めることができる。フィルムの延伸倍率の違いや厚さの違いによって位相差R(λ)が異なる場合も、この分散比率R(λ)/R(λ0)は材料ごとにほぼ等しくなることがよく知られている。図2(A)は5種のPETフィルムの位相差R(λ)の波長依存性を示したものであり、(B)はその分散比率R(λ)/R(λ0)の波長依存性を示したグラフであるが、実際に分散比率R(λ)/R(λ0)はほぼ1本の曲線に重なっている。したがって、(6)式の各係数を設定して波長分散式を登録しておくことにより、基準波長に対する分散比率も求まり、計算上R(λ0)を所定の範囲だけ所定の刻みで変化させれば、その都度任意の波長に対してR(λ)も容易に計算できる。すなわち、被測定物の位相差の波長分散式が既知であれば基準波長に対する位相差を任意に変化させながら、そのときの(5)式のITに相当する分光スペクトルを自由に計算できることを意味している。 Here, when the reference wavelength is λ 0 , the dispersion ratio R (λ) / R (λ 0 ) at an arbitrary wavelength λ with respect to the reference wavelength λ 0 can be easily obtained from the equation (6). The reference wavelength can be arbitrarily determined. It is well known that the dispersion ratio R (λ) / R (λ 0 ) is substantially equal for each material even when the phase difference R (λ) varies depending on the difference in the stretching ratio and thickness of the film. . FIG. 2A shows the wavelength dependence of the retardation R (λ) of five types of PET films, and FIG. 2B shows the wavelength dependence of the dispersion ratio R (λ) / R (λ 0 ). In practice, the dispersion ratio R (λ) / R (λ 0 ) substantially overlaps one curve. Therefore, by setting each coefficient of equation (6) and registering the chromatic dispersion equation, the dispersion ratio with respect to the reference wavelength can also be obtained, and R (λ 0 ) is changed by a predetermined range within a predetermined range in calculation. Then, R (λ) can be easily calculated for an arbitrary wavelength each time. That is, while arbitrarily changing the phase difference with respect to the reference wavelength if known wavelength dispersion type retardation of the object, that the spectrum equivalent to I T of the equation (5) at that time can be freely calculated I mean.

そこで、本発明の好ましい形態では、図9に示されるように、演算処理部10は被測定物についての位相差R(λ)の波長分散式から基準波長λ0に対する位相差の分散比率R(λ)/R(λ0)を計算する分散比率算出部108をさらに備え、分光スペクトル保持部102に保持されているIT分光スペクトルは、R(λ0)を複数に変化させたときの対応するR(λ)から算出されたものであり、位相差算出部106は計算値ITと実測値IT’の差が最小になるITに該当する位相差として基準波長λ0での位相差Rm(λ0)を求め、分散比率を用いて任意の波長λでの位相差Rm(λ)を求めるものとすることができる。 Therefore, in a preferred embodiment of the present invention, as shown in FIG. 9, the arithmetic processing unit 10 calculates the phase difference dispersion ratio R (with respect to the reference wavelength λ 0 from the wavelength dispersion formula of the phase difference R (λ) for the device under test. The dispersion ratio calculation unit 108 for calculating λ) / R (λ 0 ) is further provided, and the I T spectral spectrum held in the spectral spectrum holding unit 102 corresponds to a case where R (λ 0 ) is changed to a plurality. The phase difference calculation unit 106 calculates the phase difference at the reference wavelength λ 0 as a phase difference corresponding to I T at which the difference between the calculated value I T and the measured value I T ′ is minimized. The phase difference Rm (λ 0 ) is obtained, and the phase difference Rm (λ) at an arbitrary wavelength λ can be obtained using the dispersion ratio.

次に、2つの光学主軸方向の振幅透過率比αが1ではない場合を検討する。α≠1のときの(5)式に相当する値をIT’とすると、IT’は位相差Rと測定波長λだけでなく、被測定物の配向角φや振幅透過率比αによって変わる。例えばPETフィルムを仮定し、基準波長λ0=590nmでの位相差Rを2000nm、配向角φ=20°及び振幅透過率比α=0.95としたとき、I(0)/I0(0)、I(45)/I0(45)及びIT’は図3のようになり、IT’の最大値は2にはならない。図3においてITはα=1のときの分光スペクトルである。 Next, a case where the amplitude transmittance ratio α in the two optical principal axis directions is not 1 will be considered. When the value corresponding to the equation (5) when α ≠ 1 is I T ′, I T ′ is determined not only by the phase difference R and the measurement wavelength λ, but also by the orientation angle φ of the object to be measured and the amplitude transmittance ratio α. change. For example, assuming a PET film, when the phase difference R at the reference wavelength λ 0 = 590 nm is 2000 nm, the orientation angle φ = 20 °, and the amplitude transmittance ratio α = 0.95, I (0) / I 0 (0 ), I (45) / I 0 (45) and I T ′ are as shown in FIG. 3, and the maximum value of I T ′ is not 2. In FIG. 3, I T is a spectral spectrum when α = 1.

さらに、同じPETフィルムの条件で配向角φ及び振幅透過率比αの値を変えたときのIT’の最大値を調べ、その結果をグラフにすると図4のようになり、IT’の最大値はφとαのいずれの影響も受けることがわかる。また、位相差Rが変わればこれらの関係も変わる。α≠1のときにφやRがどのような値であっても、測定されたIT’の情報から精度よくRとφを求めるために、α=1のときにITの最大値が2になることを考慮に入れて、β1=2/(IT’の最大値)とし、β1×IT’の分光スペクトルを考える。図3のα=0.95のときのIT’についてこの処理を行なうと、図5のようになり、α=1としたときのITの分光スペクトルと近い曲線が得られる。したがって、I(0)/I0(0)、I(45)/I0(45)を合計したIT’の分光スペクトルを実測し、IT’の最大値から上記のβ1を求めた後、β1×IT’の分光スペクトルを測定値とし、一方で登録した波長分散式と(5)式を利用した前述の計算方法によってITの分光スペクトルを算出し、β1×IT’とITの2つの分光スペクトルの差が最小になるときの基準波長に対する位相差Rm(λ0)を決定する。 Furthermore, I T when changing the value of the orientation angle φ and amplitude transmittance ratio α in the condition of the same PET film 'examining the maximum, is shown in Figure 4 when the result in a graph, I T' of It can be seen that the maximum value is affected by both φ and α. Further, if the phase difference R changes, these relationships also change. Whatever value φ or R when the alpha ≠ 1, in order to determine the accuracy R and φ from the information of the measured I T ', the maximum value of I T when alpha = 1 is Considering the fact that it becomes 2, let β1 = 2 / (the maximum value of I T ′) and consider the spectrum of β1 × I T ′. When this process is performed for I T ′ when α = 0.95 in FIG. 3, a curve close to the spectrum of I T when α = 1 is obtained as shown in FIG. Therefore, after measuring the spectrum of I T ′ obtained by adding I (0) / I 0 (0) and I (45) / I 0 (45) and obtaining the above β1 from the maximum value of I T ′ , Β1 × I T ′ is taken as a measured value, and on the other hand, the spectrum of I T is calculated by the above-described calculation method using the registered chromatic dispersion formula and formula (5), and β1 × I T ′ and I The phase difference Rm (λ 0 ) with respect to the reference wavelength when the difference between the two spectral spectra of T is minimized is determined.

そこで、本発明の他の好ましい形態では、図9に示されるように、演算処理部10は補正係数β1として2/(IT’の最大値)を計算する補正係数算出部110をさらに備え、位相差算出部106は計算値ITと比較する実測値IT'としてβ1で補正された補正実測値分光スペクトルβ1×IT'を用いるようにすることができる。 Therefore, in another preferred embodiment of the present invention, as shown in FIG. 9, the arithmetic processing unit 10 further includes a correction coefficient calculation unit 110 that calculates 2 / (maximum value of I T ′) as the correction coefficient β1, The phase difference calculation unit 106 can use the corrected measured value spectrum β1 × I T ′ corrected by β1 as the measured value I T ′ to be compared with the calculated value I T.

この場合も、位相差算出部106が位相差として基準波長λ0での位相差Rm(λ0)を求めるようにした場合には、分散比率を用いて任意の波長λでの位相差Rm(λ)を求めることができる。 Also in this case, when the phase difference calculating unit 106 obtains the phase difference Rm (λ 0 ) at the reference wavelength λ 0 as the phase difference, the phase difference Rm (at any wavelength λ using the dispersion ratio). λ) can be determined.

また、さらに他の好ましい形態として、位相差算出部106は計算値ITと実測値IT’の差として波長ごとの残差2乗和を計算するようにすることができる。 As yet another preferred mode, the phase difference calculation unit 106 can calculate the residual sum of squares for each wavelength as the difference between the calculated value I T and the actually measured value I T ′.

次に、被測定物の配向角φを決定する方法を説明する。配向角φを決定するために、本発明のさらに他の好ましい形態では、図9に示されるように、演算処理部10は、偏光方位が0°又は45°のいずれかの偏光子と検光子の組における透過光分光スペクトル実測値I(0)又はI(45)と、位相差算出部106により求められた位相差Rm(λ)を用い実測時と同じ偏光方位について被測定物の光学主軸φを変化させて計算した複数の透過光分光スペクトル計算値I(0)又はI(45)とを比較し、その差が最小になるときの光学主軸φを被測定物の配向角φmとする配向角算出部112をさらに備えている。   Next, a method for determining the orientation angle φ of the object to be measured will be described. In order to determine the orientation angle φ, in still another preferred embodiment of the present invention, as shown in FIG. 9, the arithmetic processing unit 10 includes a polarizer and an analyzer whose polarization direction is either 0 ° or 45 °. The optical principal axis of the object to be measured with respect to the same polarization azimuth as in the actual measurement using the transmitted light spectral spectrum measured value I (0) or I (45) in the set of and the phase difference Rm (λ) obtained by the phase difference calculation unit 106 A plurality of transmitted light spectral spectrum calculation values I (0) or I (45) calculated by changing φ are compared, and the optical principal axis φ when the difference is minimized is set as the orientation angle φm of the object to be measured. An orientation angle calculation unit 112 is further provided.

配向角算出部112は、透過光分光スペクトル実測値I(0)又はI(45)に代えてIS’としてI(0)/I0(0)又はI(45)/I0(45)を使用し、透過光分光スペクトル計算値I(0)又はI(45)に代えてIsとして{2+(C−1)sin22φ}/2又は{2+(C−1)cos22φ}/2を使用するようにしてもよい。 The orientation angle calculation unit 112 uses I (0) / I 0 (0) or I (45) / I 0 (45) as I S ′ instead of the actually measured transmitted light spectrum spectrum value I (0) or I (45). {2+ (C-1) sin 2 2φ} / 2 or {2+ (C-1) cos 2 2φ} / as Is instead of the transmitted light spectral spectrum calculation value I (0) or I (45) 2 may be used.

I(0)/I0(0)、I(45)/I0(45)の分光スペクトルの最大値はα=1のときはいずれも1になるが、α≠1のときの最大値は1にはならない。そこで、配向角算出部112はIs’の最大値が1になるように補正をした上で透過光分光スペクトル計算値Isと比較するものとしてもよい。 The maximum value of the spectrum of I (0) / I 0 (0) and I (45) / I 0 (45) is 1 when α = 1, but the maximum value when α ≠ 1 is It will not be 1. Therefore, the orientation angle calculation unit 112 may correct the maximum value of I s ′ to 1 and compare it with the transmitted light spectral spectrum calculation value Is.

また、偏光子・検光子方位が0°と45°の2つの角度のみに着目しているため、配向角φ=22.5°及び−67.5°のときには、必ずI(0)=I(45)となる。配向角φを決定するにはI(0)/I0(0)、I(45)/I0(45)のいずれか一方の分光スペクトルを利用すればよいが、できるだけ波長に対して変化の大きい方のスペクトルを採用した方が計算値との一致が判断しやすい。そこで、α≠1のときのI(0)/I0(0)、I(45)/I0(45)それぞれの最大値をI0max、I45maxとし、φの値を−90°〜90°の範囲で変えて両者の大小を調べると、次のような結果が得られた。
−90°≦φ<−67.5°のときI0max>I45max
−67.5°≦φ<22.5°のときI0max≦I45max
22.5°≦φ≦90°のときI0max≧I45max
Also, since the polarizer / analyzer orientation focuses only on two angles of 0 ° and 45 °, when the orientation angles φ = 22.5 ° and −67.5 °, I (0) = I (45). In order to determine the orientation angle φ, one of the spectral spectra of I (0) / I 0 (0) and I (45) / I 0 (45) may be used. It is easier to judge the coincidence with the calculated value by adopting the larger spectrum. Therefore, I when the α ≠ 1 (0) / I 0 (0), I (45) / I 0 (45) , respectively of the maximum value I 0max, and I 45max, -90 ° the value of phi to 90 The following results were obtained when the magnitude of both was examined in the range of °.
When −90 ° ≦ φ <−67.5 °, I 0max > I 45max
When −67.5 ° ≦ φ <22.5 °, I 0max ≦ I 45max
I 0max ≧ I 45max when 22.5 ° ≦ φ ≦ 90 °

さらに、I0max、I45maxのうち大きい値に対応した方の分光スペクトルが波長に対する変化が大きいことも分かった。したがって、まずI0max、I45maxのいずれが大きいかを調べた後、大きい方の分光スペクトルに着目すればよい。 It was also found that the spectrum corresponding to the larger value of I 0max and I 45max has a large change with respect to the wavelength. Therefore, after investigating which of I 0max and I 45max is larger, attention should be paid to the larger spectral spectrum.

例としてI(0)/I0(0)に着目する場合について考える。β2=1/I0maxを求めてIS’=β2×I(0)/I0(0)を測定値の分光スペクトルとする。一方、計算でφを−90°≦φ<−67.5°及び22.5°≦φ≦90°の範囲を所定の刻みで変化させながら、先に決定したRm(λ)と(3)式とを利用して、α=1のときのIS=I(0)/I0(0)の分光スペクトルを算出し、測定値IS’と計算値ISの2つの分光スペクトルの残差2乗和が最小になるときの配向角φmを決定する。 As an example, consider the case where attention is paid to I (0) / I 0 (0). β2 = 1 / I 0max is obtained, and I S ′ = β2 × I (0) / I 0 (0) is taken as the spectrum of the measured value. On the other hand, while changing φ in the range of −90 ° ≦ φ <−67.5 ° and 22.5 ° ≦ φ ≦ 90 ° by calculation, Rm (λ) and (3) previously determined The spectral spectrum of I S = I (0) / I 0 (0) when α = 1 is calculated using the equation, and the remaining two spectral spectra of the measured value I S ′ and the calculated value I S are calculated. The orientation angle φm when the difference sum of squares is minimized is determined.

I(45)/I0(45)に着目する場合は、β2=1/I45maxとし、(3)式の代わりに(4)式を利用し、−67.5°≦φ<22.5°の範囲でφを変化させて配向角φmを決定する。 When paying attention to I (45) / I 0 (45), β2 = 1 / I 45max, and instead of the equation (3), the equation (4) is used and −67.5 ° ≦ φ <22.5 The orientation angle φm is determined by changing φ in the range of °.

図6は上記に示した位相差Rm(λ)の決定手順で最も好ましい方法をまとめて示したフローチャートであり、図7は上記に示した配向角φmの決定手順で最も好ましい方法をまとめて示したフローチャートである。   FIG. 6 is a flowchart summarizing the most preferable method in the procedure for determining the phase difference Rm (λ) described above, and FIG. 7 collectively shows the most preferable method in the procedure for determining the orientation angle φm described above. It is a flowchart.

本発明によれば、被測定物がない状態での2組の偏光子と検光子による透過光分光スペクトルI0(0),I0(45)と被測定物がある状態での2組の偏光子と検光子による透過光分光スペクトルI(0),I(45)とから合算スペクトル実測値IT’(=I(0)/I0(0)+I(45)/I0(45))を算出し、位相差を異ならせて算出された複数の合算スペクトルIT(=(C+3)/2)とを比較し、その差が最小になるITを求めてそのITに該当する位相差R(λ)をその被測定物の位相差Rm(λ)とするので、位相差Rが測定波長λの半分以上変化する被測定物に対しても位相差Rm(λ)を精度よく、しかも短時間に測定することができるので、オンライン測定装置を実現することができる。 According to the present invention, transmitted light spectrums I 0 (0), I 0 (45) by two sets of polarizers and an analyzer in the absence of an object to be measured, and two sets in the state of an object to be measured. From the transmitted light spectrums I (0) and I (45) by the polarizer and the analyzer, the total spectrum measured value I T ′ (= I (0) / I 0 (0) + I (45) / I 0 (45) ), And a plurality of summed spectra I T (= (C + 3) / 2) calculated with different phase differences are compared, and I T that minimizes the difference is obtained and corresponds to the I T Since the phase difference R (λ) is the phase difference Rm (λ) of the object to be measured, the phase difference Rm (λ) is accurately determined even for an object to be measured whose phase difference R changes by more than half of the measurement wavelength λ. And since it can measure in a short time, an on-line measuring device is realizable.

さらに、透過光分光スペクトル実測値I(0)又はI(45)と、求められた位相差Rm(λ)を用い実測と同じ偏光方位について被測定物の光学主軸φを変化させて計算した複数の透過光分光スペクトル計算値I(0)又はI(45)とを比較し、その差が最小になるときの光学主軸φを被測定物の配向角φmとするようにすれば、配向角φmも精度よく、しかも短時間に測定することができるので、位相差Rm(λ)と配向角φmをともに測定するオンライン測定装置を実現することができる。   Further, a plurality of values calculated by changing the optical principal axis φ of the object to be measured for the same polarization direction as the actual measurement using the actually measured transmitted light spectrum spectrum value I (0) or I (45) and the obtained phase difference Rm (λ). If the optical principal axis φ when the difference is minimized is taken as the orientation angle φm of the object to be measured, the calculated value I (0) or I (45) of the transmitted light spectrum is compared. Can be measured with high accuracy and in a short time, an on-line measuring device that measures both the phase difference Rm (λ) and the orientation angle φm can be realized.

図8は、本発明のオンライン位相差測定装置の第1の実施例の概略構成図であり、位相差測定部と、位相差測定部で測定された透過光分光スペクトルから被測定物の位相差と配向角を算出する演算処理部10を備えている。演算処理部10と被測定物6を除く部分が位相差測定部を構成している。   FIG. 8 is a schematic configuration diagram of the first embodiment of the on-line phase difference measuring apparatus according to the present invention. The phase difference of the object to be measured from the phase difference measuring unit and the transmitted light spectrum measured by the phase difference measuring unit. And an arithmetic processing unit 10 for calculating the orientation angle. A portion excluding the arithmetic processing unit 10 and the DUT 6 constitutes a phase difference measuring unit.

位相差測定部において、光源1は例えばハロゲンランプの光をライトガイドで導いた発光源であり、多波長成分を含む測定光として白色光を供給するものである。光源1としては白色LED(発光ダイオード)を用いた光源であってもよい。   In the phase difference measuring unit, the light source 1 is, for example, a light source that guides light from a halogen lamp with a light guide, and supplies white light as measurement light including multi-wavelength components. The light source 1 may be a light source using a white LED (light emitting diode).

移動する被測定物6に直線偏光の測定光を照射するために被測定物6の一方の面に対向し被測定物6の移動方向に沿って2つの偏光子4a,4bが配置されている。被測定物6の他方の面側には被測定物6を挟んで偏光子4a,4bに対向するように2つの検光子5a,5bが配置されている。偏光子4aと検光子5aは平行ニコルの状態に配置され、偏光子4bと検光子5bも平行ニコルの状態に配置されている。基準方位をMD方向(被測定物6の移動方向)とすると、第1の組の偏光子4aと検光子5aは基準方位に対する偏光方位が0°に設定され、第2の組の偏光子4bと検光子5bは基準方位に対する偏光方位が45°に設定されている。   In order to irradiate the measuring object 6 that is moving with linearly polarized measuring light, two polarizers 4 a and 4 b are arranged along the moving direction of the measuring object 6 so as to face one surface of the measuring object 6. . Two analyzers 5a and 5b are arranged on the other surface side of the device under test 6 so as to face the polarizers 4a and 4b with the device under test 6 interposed therebetween. The polarizer 4a and the analyzer 5a are arranged in a parallel Nicols state, and the polarizer 4b and the analyzer 5b are also arranged in a parallel Nicols state. When the reference azimuth is the MD direction (the moving direction of the DUT 6), the first set of polarizers 4a and the analyzer 5a have the polarization azimuth set to 0 ° with respect to the reference azimuth, and the second set of polarizers 4b. The analyzer 5b has a polarization azimuth of 45 ° with respect to the reference azimuth.

光源1からの測定光はライトガイド2によって導かれ、集光レンズ3a,3bを経て偏光子4aと4bに照射されている。偏光子4a,4bから被測定物6及び検光子5a,5bを透過した測定光は、それぞれの集光レンズ7a,7bによって集められ、ライトガイド8a,8bを経てそれぞれの分光器9a,9bに導かれる。分光器9a,9bはそれぞれグレーティングなどの分散素子とCCDカメラなどの検出器を含んでいる。   The measurement light from the light source 1 is guided by the light guide 2 and irradiated to the polarizers 4a and 4b through the condenser lenses 3a and 3b. Measurement light transmitted from the polarizers 4a and 4b through the DUT 6 and the analyzers 5a and 5b is collected by the respective condensing lenses 7a and 7b, and passes through the light guides 8a and 8b to the spectroscopes 9a and 9b. Led. Each of the spectroscopes 9a and 9b includes a dispersion element such as a grating and a detector such as a CCD camera.

分光器9a,9bによって分光され検出されたそれぞれの透過光強度は演算処理部10に取り込まれて、上に述べたように、被測定物6の位相差Rm(λ)と配向角φmが算出される。演算処理部10は専用のコンピュータ又は汎用のパーソナルコンピュータにより実現される。   The transmitted light intensities separated and detected by the spectroscopes 9a and 9b are taken into the arithmetic processing unit 10 to calculate the phase difference Rm (λ) and the orientation angle φm of the object to be measured 6 as described above. Is done. The arithmetic processing unit 10 is realized by a dedicated computer or a general-purpose personal computer.

図10は本発明のオンライン位相差測定装置の第2の実施例の概略構成図である。被測定物6の一方の面に対向し被測定物6の移動方向に沿って2つの偏光子24a,24bが配置されている。偏光子24a,24bは被測定物6の幅方向全体に延びて配置されており、それぞれの偏光子24a,24bに白色光の測定光を照射するために、それぞれの光源21a,21bも被測定物6の幅方向全体に延びて配置されている。被測定物6の他方の面側には被測定物6を挟んで偏光子4a,4bに対向するように2つの検光子5a,5bが配置されている。検光子5a,5bを透過した測定光をそれぞれの集光レンズ7a,7bによって集めライトガイド8a,8bを経てそれぞれの分光器9a,9bに導く受光側の光学系の構成は図8の実施例と同じであるが、図10の実施例では受光側の光学系は被測定物6の幅方向に移動できるように支持されている。   FIG. 10 is a schematic configuration diagram of a second embodiment of the on-line phase difference measuring apparatus of the present invention. Two polarizers 24 a and 24 b are arranged along the moving direction of the DUT 6 so as to face one surface of the DUT 6. The polarizers 24a and 24b are arranged so as to extend in the entire width direction of the object 6 to be measured, and the respective light sources 21a and 21b are also measured in order to irradiate the respective polarizers 24a and 24b with white measurement light. The object 6 is arranged extending in the entire width direction. Two analyzers 5a and 5b are arranged on the other surface side of the device under test 6 so as to face the polarizers 4a and 4b with the device under test 6 interposed therebetween. The configuration of the optical system on the light receiving side that collects the measurement light transmitted through the analyzers 5a and 5b by the respective condensing lenses 7a and 7b and guides them to the spectroscopes 9a and 9b through the light guides 8a and 8b is shown in FIG. However, in the embodiment of FIG. 10, the optical system on the light receiving side is supported so as to be movable in the width direction of the DUT 6.

偏光子24aと検光子5aは平行ニコルの状態に配置され、偏光子24bと検光子5bも平行ニコルの状態に配置され、基準方位をMD方向として偏光子24aと検光子5aは基準方位に対する偏光方位が0°に設定され、偏光子24bと検光子5bは基準方位に対する偏光方位が45°に設定されている。   The polarizer 24a and the analyzer 5a are arranged in a parallel Nicol state, the polarizer 24b and the analyzer 5b are also arranged in a parallel Nicol state, and the polarizer 24a and the analyzer 5a are polarized with respect to the reference direction with the reference direction as the MD direction. The azimuth is set to 0 °, and the polarization azimuth of the polarizer 24b and the analyzer 5b is set to 45 ° with respect to the reference azimuth.

分光器9a,9bによって分光されたそれぞれの透過光は演算処理部10に取り込まれて、上に述べたように、被測定物6の位相差Rm(λ)と配向角φmが算出される。   The respective transmitted lights dispersed by the spectroscopes 9a and 9b are taken into the arithmetic processing unit 10, and the phase difference Rm (λ) and the orientation angle φm of the DUT 6 are calculated as described above.

図10の実施例によれば、受光側の光学系を走査すれば被測定物6の幅方向変化を測定できる。   According to the embodiment of FIG. 10, the change in the width direction of the DUT 6 can be measured by scanning the optical system on the light receiving side.

平行ニコル回転法においてある位相差をもつ被測定物をある測定波長で測定したときの検出光強度を示す図である。It is a figure which shows the detected light intensity when the to-be-measured object which has a certain phase difference in a parallel Nicol rotation method is measured with a certain measurement wavelength. (A)はPETフィルムを測定したときの位相差の波長依存性を示す図、(B)は同じく分散比率の波長依存性を示す図である。(A) is a figure which shows the wavelength dependence of retardation when a PET film is measured, (B) is a figure which similarly shows the wavelength dependence of a dispersion ratio. 本発明で扱う検出光の分光スペクトルの例を示す図である。It is a figure which shows the example of the spectrum of the detection light handled by this invention. 被測定物の振幅透過率比αと検出光の分光スペクトルIT'の最大値との関係を示す図である。It is a figure which shows the relationship between the amplitude transmittance | permeability ratio (alpha) of a to-be-measured object, and the maximum value of the spectral spectrum IT 'of detection light. 検出光の分光スペクトルIT'を補正したものとα=1のときの分光スペクトルITとを比較した図である。Shows a comparison of the spectrum I T when the as obtained by correcting the spectrum I T of the detection light 'alpha = 1. 本発明における位相差Rm(λ)の決定手順で最も好ましい方法を示すフローチャートである。It is a flowchart which shows the most preferable method in the determination procedure of phase difference Rm ((lambda)) in this invention. 本発明における配向角φmの決定手順で最も好ましい方法を示すフローチャートである。It is a flowchart which shows the most preferable method in the determination procedure of orientation angle | corner (phi) m in this invention. 第1の実施例を示す概略構成図である。It is a schematic block diagram which shows a 1st Example. 同実施例における演算処理部を示すブロック図である。It is a block diagram which shows the arithmetic processing part in the Example. 第2の実施例を示す概略構成図である。It is a schematic block diagram which shows 2nd Example. 平行ニコル回転法におけるCと位相差Rの関係、及び検出光強度図形の関係を示す図である。It is a figure which shows the relationship between C and phase difference R in a parallel Nicol rotation method, and the relationship of a detected light intensity figure.

符号の説明Explanation of symbols

1,21a,21b 光源
4a,4b,24a,24b 偏光子
5a,5b 検光子
9a,9b 分光器
10 演算処理部
102 分光スペクトル保持部
104 合算スペクトル算出部
106 位相差算出部
108 分散比率算出部
110 補正係数算出部
112 配向角算出部
1, 21a, 21b Light source 4a, 4b, 24a, 24b Polarizer 5a, 5b Analyzer 9a, 9b Spectrometer 10 Arithmetic processing unit 102 Spectral spectrum holding unit 104 Total spectrum calculating unit 106 Phase difference calculating unit 108 Dispersion ratio calculating unit 110 Correction coefficient calculation unit 112 Orientation angle calculation unit

Claims (7)

多波長成分を含む測定光が移動する被測定物に偏光子を通して照射され、被測定物を透過した測定光が検光子を通して分光器に入射して透過光分光スペクトルが測定される位相差測定部であって、前記偏光子、検光子及び分光器は被測定物の移動方向に沿って配置された第1、第2の2組を含み、各組の偏光子と検光子は平行ニコルの状態に配置され、かつ第1の組の偏光子と検光子は基準方位に対する偏光方位が0°に設定され、第2の組の偏光子と検光子は基準方位に対する偏光方位が45°に設定されている位相差測定部と、
前記位相差測定部で測定された透過光分光スペクトルから被測定物の位相差を少なくとも算出する演算処理部と、を備え、
前記演算処理部は、位相差を異ならせて算出された複数の合算スペクトルIT(=(C+3)/2)(ただし、C=cos(2πR(λ)/λである。)を保持する分光スペクトル保持部と、
前記位相差測定部において被測定物がない状態での2組の偏光子と検光子による透過光分光スペクトルI0(0),I0(45)と被測定物がある状態での2組の偏光子と検光子による透過光分光スペクトルI(0),I(45)とから合算スペクトル実測値IT’(ただし、IT’=I(0)/I0(0)+I(45)/I0(45)である。)を算出する合算スペクトル算出部と、
前記分光スペクトル保持部に保持された計算値ITと前記合算スペクトル算出部で算出された実測値IT’の差が最小になるITを求めてそのITに該当する位相差R(λ)をその被測定物の位相差Rm(λ)とする位相差算出部を備えているオンライン位相差測定装置。
A phase difference measurement unit that measures the transmitted light spectrum by measuring light containing multi-wavelength components irradiating the moving object to be measured through the polarizer, and passing the object to be measured through the analyzer and entering the spectrometer. The polarizer, analyzer, and spectrometer include first and second sets arranged along the moving direction of the object to be measured, and each set of polarizer and analyzer is in a parallel Nicols state. And the first set of polarizers and analyzers is set to 0 ° polarization orientation relative to the reference orientation, and the second set of polarizers and analyzers is set to 45 ° polarization orientation relative to the reference orientation. A phase difference measuring unit,
An arithmetic processing unit that calculates at least the phase difference of the object to be measured from the transmitted light spectrum measured by the phase difference measuring unit,
The arithmetic processing unit is a spectroscope that holds a plurality of combined spectra I T (= (C + 3) / 2) (where C = cos (2πR (λ) / λ)) calculated with different phase differences. A spectrum holding unit;
Two sets of polarizers and analyzers in a state where there is no object to be measured in the phase difference measuring unit, and two sets of light spectrums I 0 (0) and I 0 (45) in a state where there is an object to be measured. The combined spectrum measured value I T ′ (where I T ′ = I (0) / I 0 (0) + I (45) / I 0 (45).)
Phase difference R (lambda corresponding to the I T seeking I T the difference of the spectrum holding Found calculated by the calculated value I T held the summed spectrum calculation section to section I T 'is minimized ) Is an on-line phase difference measuring device provided with a phase difference calculating unit that sets the phase difference Rm (λ) of the measured object.
前記演算処理部は被測定物についての位相差R(λ)の波長分散式から基準波長λ0に対する位相差の分散比率R(λ)/R(λ0)を計算する分散比率算出部をさらに備え、
前記分光スペクトル保持部に保持されているIT分光スペクトルは、R(λ0)を複数に変化させたときの対応するR(λ)から算出されたものであり、
前記位相差算出部は計算値ITと実測値IT’の差が最小になるITに該当する位相差として基準波長λ0での位相差Rm(λ0)を求め、分散比率を用いて任意の波長での位相差Rm(λ)を求めるものである請求項1に記載のオンライン位相差測定装置。
The arithmetic processing unit further includes a dispersion ratio calculating unit that calculates a dispersion ratio R (λ) / R (λ 0 ) of the phase difference with respect to the reference wavelength λ 0 from the wavelength dispersion formula of the phase difference R (λ) of the object to be measured. Prepared,
The I T spectral spectrum held in the spectral spectrum holding unit is calculated from the corresponding R (λ) when R (λ 0 ) is changed to a plurality of values,
The phase difference calculation unit obtains a phase difference Rm (λ 0 ) at the reference wavelength λ 0 as a phase difference corresponding to I T at which the difference between the calculated value I T and the measured value I T ′ is minimized, and uses the dispersion ratio. The on-line phase difference measuring apparatus according to claim 1, wherein the phase difference Rm (λ) at an arbitrary wavelength is obtained.
前記演算処理部は補正係数β1として2/(IT’の最大値)を計算する補正係数算出部をさらに備え、
前記位相差算出部は計算値ITと比較する実測値IT’としてβ1で補正された補正実測値分光スペクトルβ1×IT’を用いる請求項1又は2に記載のオンライン位相差測定装置。
The arithmetic processing unit further includes a correction coefficient calculation unit that calculates 2 / (maximum value of I T ′) as the correction coefficient β1;
The phase difference calculator online phase difference measuring apparatus according to claim 1 or 2 using the calculated value I T measured value is compared with I T 'as .beta.1 in corrected corrected measured value spectrum .beta.1 × I T'.
前記位相差算出部は計算値ITと実測値IT’の差として波長ごとの残差2乗和を計算するものである請求項1から3のいずれか一項に記載のオンライン位相差測定装置。 The on-line phase difference measurement according to any one of claims 1 to 3, wherein the phase difference calculation unit calculates a residual sum of squares for each wavelength as a difference between a calculated value IT and an actual measurement value IT '. apparatus. 前記演算処理部は、偏光方位が0°又は45°のいずれかの偏光子と検光子の組における透過光分光スペクトル実測値I(0)又はI(45)と、求められた位相差Rm(λ)を用い実測時と同じ偏光方位について被測定物の光学主軸φを変化させて計算した複数の透過光分光スペクトル計算値I(0)又はI(45)とを比較し、その差が最小になるときの光学主軸φを被測定物の配向角φmとする配向角算出部をさらに備えている請求項1から4のいずれか一項に記載のオンライン位相差測定装置。   The arithmetic processing unit transmits the transmitted light spectrum spectrum measured value I (0) or I (45) in a pair of a polarizer and an analyzer whose polarization direction is 0 ° or 45 °, and the obtained phase difference Rm ( λ) is used to compare a plurality of transmitted light spectral spectrum calculation values I (0) or I (45) calculated by changing the optical principal axis φ of the object to be measured with respect to the same polarization azimuth as in the actual measurement, and the difference is minimized. The on-line phase difference measurement apparatus according to claim 1, further comprising an orientation angle calculation unit that sets an optical principal axis φ at the time of becoming an orientation angle φm of an object to be measured. 前記配向角算出部は透過光分光スペクトル実測値I(0)又はI(45)に代えてIS’としてI(0)/I0(0)又はI(45)/I0(45)を使用し、
透過光分光スペクトル計算値I(0)又はI(45)に代えてIsとして{2+(C−1)sin22φ}/2又は{2+(C−1)cos22φ}/2を使用するものである請求項5に記載のオンライン位相差測定装置。
The orientation angle calculation unit substitutes I (0) / I 0 (0) or I (45) / I 0 (45) as I S ′ instead of the measured values I (0) or I (45) of the transmitted light spectrum. use,
{2+ (C-1) sin 2 2φ} / 2 or {2+ (C-1) cos 2 2φ} / 2 is used as Is instead of the transmitted light spectral spectrum calculation value I (0) or I (45). The on-line phase difference measuring apparatus according to claim 5, wherein
前記配向角算出部はIS’の最大値が1になるように補正をした上で透過光分光スペクトル計算値ISと比較するものである請求項6に記載のオンライン位相差測定装置。 The on-line phase difference measuring apparatus according to claim 6, wherein the orientation angle calculation unit corrects the maximum value of I S ′ to be 1, and compares the corrected value with a transmitted light spectral spectrum calculation value I S.
JP2008124842A 2008-05-12 2008-05-12 Online phase difference measuring device Active JP5060388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124842A JP5060388B2 (en) 2008-05-12 2008-05-12 Online phase difference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124842A JP5060388B2 (en) 2008-05-12 2008-05-12 Online phase difference measuring device

Publications (2)

Publication Number Publication Date
JP2009276079A true JP2009276079A (en) 2009-11-26
JP5060388B2 JP5060388B2 (en) 2012-10-31

Family

ID=41441667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124842A Active JP5060388B2 (en) 2008-05-12 2008-05-12 Online phase difference measuring device

Country Status (1)

Country Link
JP (1) JP5060388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281787A (en) * 2008-05-20 2009-12-03 Oji Keisoku Kiki Kk Measuring instrument for phase difference distribution

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489553A (en) * 1990-07-31 1992-03-23 Kanzaki Paper Mfg Co Ltd Double refraction measuring apparatus
JPH06229912A (en) * 1993-01-29 1994-08-19 New Oji Paper Co Ltd Orientation measuring apparatus
JPH06241987A (en) * 1993-02-17 1994-09-02 New Oji Paper Co Ltd Birefringence measuring device
US5406371A (en) * 1991-07-29 1995-04-11 New Oji Paper Co., Ltd. Apparatus for measuring birefringence and retardation
JPH07301597A (en) * 1994-04-30 1995-11-14 New Oji Paper Co Ltd Apparatus for measuring retardation in polarization of sample
JPH08226892A (en) * 1995-02-21 1996-09-03 Sekisui Chem Co Ltd Measuring equipment of birefringence
US5627645A (en) * 1994-09-30 1997-05-06 New Oji Paper Co., Ltd. Method of and apparatus for measuring retardation of composite layer
US5734472A (en) * 1995-06-26 1998-03-31 Matsushita Electric Industrial Co., Ltd. Method and appratus for measuring thickness of birefringence layer
JP2000111472A (en) * 1998-09-30 2000-04-21 Mitsui Chemicals Inc Device for measuring birefringence and device for measuring orientation of film
JP2001141602A (en) * 1999-11-12 2001-05-25 Unie Opt:Kk System and method for evaluating double refraction
JP2003172691A (en) * 2001-12-06 2003-06-20 Unie Opt:Kk Instrument and method for measuring birefringence taking wavelength dependency into account

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489553A (en) * 1990-07-31 1992-03-23 Kanzaki Paper Mfg Co Ltd Double refraction measuring apparatus
US5406371A (en) * 1991-07-29 1995-04-11 New Oji Paper Co., Ltd. Apparatus for measuring birefringence and retardation
JPH06229912A (en) * 1993-01-29 1994-08-19 New Oji Paper Co Ltd Orientation measuring apparatus
JPH06241987A (en) * 1993-02-17 1994-09-02 New Oji Paper Co Ltd Birefringence measuring device
JPH07301597A (en) * 1994-04-30 1995-11-14 New Oji Paper Co Ltd Apparatus for measuring retardation in polarization of sample
US5627645A (en) * 1994-09-30 1997-05-06 New Oji Paper Co., Ltd. Method of and apparatus for measuring retardation of composite layer
JPH08226892A (en) * 1995-02-21 1996-09-03 Sekisui Chem Co Ltd Measuring equipment of birefringence
US5734472A (en) * 1995-06-26 1998-03-31 Matsushita Electric Industrial Co., Ltd. Method and appratus for measuring thickness of birefringence layer
JP2000111472A (en) * 1998-09-30 2000-04-21 Mitsui Chemicals Inc Device for measuring birefringence and device for measuring orientation of film
JP2001141602A (en) * 1999-11-12 2001-05-25 Unie Opt:Kk System and method for evaluating double refraction
JP2003172691A (en) * 2001-12-06 2003-06-20 Unie Opt:Kk Instrument and method for measuring birefringence taking wavelength dependency into account

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281787A (en) * 2008-05-20 2009-12-03 Oji Keisoku Kiki Kk Measuring instrument for phase difference distribution

Also Published As

Publication number Publication date
JP5060388B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5116345B2 (en) Phase difference measuring method and apparatus
JP5140451B2 (en) Birefringence measuring method, apparatus and program
WO2018043438A1 (en) Optical measurement device, optical measurement method, and stress inspection method
WO2006134840A1 (en) Optical characteristic measuring device and optical characteristic measuring method
Pham et al. Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method
JPWO2006103953A1 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
JP5116346B2 (en) Phase difference measuring device using a spectroscope
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
US20160091416A1 (en) Unambiguous retardance measurement
JP5115928B2 (en) Phase difference distribution measuring device
US9194798B2 (en) Imaging based refractometer for hyperspectral refractive index detection
JP5060388B2 (en) Online phase difference measuring device
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
JP5041508B2 (en) Optical characteristic measuring apparatus and method
Nee Depolarization and principal Mueller matrix measured by null ellipsometry
JP5446644B2 (en) Bonding angle measuring device for elliptical polarizing plate
CN113654996A (en) Device and method for measuring phase retardation of composite achromatic wave plate
KR102033522B1 (en) Polarization analysis device
JP5991230B2 (en) Phase difference measuring method and apparatus
JP2000111472A (en) Device for measuring birefringence and device for measuring orientation of film
JP6239335B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP2009085853A (en) Measurement device and method
Liu et al. Measuring phase retardation of wave plate based on normalized polarization modulation and error analysis
Watkins A phase-stepped spectroscopic ellipsometer
JP5223081B2 (en) Online retardation measuring device for polarizing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5060388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250