JPH08226892A - Measuring equipment of birefringence - Google Patents

Measuring equipment of birefringence

Info

Publication number
JPH08226892A
JPH08226892A JP3229395A JP3229395A JPH08226892A JP H08226892 A JPH08226892 A JP H08226892A JP 3229395 A JP3229395 A JP 3229395A JP 3229395 A JP3229395 A JP 3229395A JP H08226892 A JPH08226892 A JP H08226892A
Authority
JP
Japan
Prior art keywords
light
birefringence
polarizer
vertical
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3229395A
Other languages
Japanese (ja)
Other versions
JP3474021B2 (en
Inventor
Yoichi Sato
洋一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP03229395A priority Critical patent/JP3474021B2/en
Publication of JPH08226892A publication Critical patent/JPH08226892A/en
Application granted granted Critical
Publication of JP3474021B2 publication Critical patent/JP3474021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To enable high-speed and stable measurement of a value of birefringence of a material to be measured, by calculating values of birefringence in states of parallel and vertical nicols from a ratio between the quantities of measuring light and reference light and by determining the average value. CONSTITUTION: A light flux emitted from a halogen illumination device 10 is made a light of a single wavelength by a wavelength filter 40 and divided into lights of branch fiber parts 51-54 by a multi-branch fiber 50. The illumination light of the fiber part 54 is received 60 and amplified 70 and inputted as a reference light to an arithmetic device 80. The illumination lights of the fiber parts 51-53 are converged 91-93, passed through polarizers 101-103 and transmitted through a birefringent film A, parallel parts 111a-113a of polarizers 111-113 and vertical parts 111b-113b sequentially and the transmitted lights are received 121a-123a and 121b-123b and amplified 131a-133a and 131b-133b respectively and inputted as measuring lights to the arithmetic device 80. The arithmetic device 80 calculates a ratio between the quantities of the measuring light and the reference light, determines values of birefringence in states of parallel and vertical nicols from the relation between a ratio between set quantities of these lights and the values of birefringence and calculates the average value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複屈折フィルムの複屈
折値を測定する複屈折測定装置に関し、特に、液晶ディ
スプレイなどに用いられる高分子フィルムの製造ライン
において、高速測定が要求されるオンライン測定に適し
た複屈折測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringence measuring device for measuring a birefringence value of a birefringent film, and particularly in a production line of a polymer film used for a liquid crystal display or the like, on-line where high speed measurement is required. The present invention relates to a birefringence measuring device suitable for measurement.

【0002】[0002]

【従来の技術】一般に、高分子フィルムに延伸加工を施
すと、複屈折性を持たせることができる。高分子フィル
ムの延伸率を変化させると、所望の複屈折値を有する高
分子フィルムが得られる。かかる複屈折値は、平行に配
置した偏光子と検光子との間に高分子フィルムを挿入し
て、偏光子および検光子の高分子フィルムに対する相対
角位置をモーターにより変更すると共に、照明手段より
光を照射し、高分子フィルムを透過する光の強度の最大
値と最小値の比を測定して求められる。なお、このよう
な技術は、たとえば特開平4−218751号公報に開
示されている。
2. Description of the Related Art Generally, when a polymer film is stretched, it has birefringence. By changing the stretch ratio of the polymer film, a polymer film having a desired birefringence value can be obtained. Such a birefringence value is obtained by inserting a polymer film between the polarizer and the analyzer arranged in parallel, changing the relative angular position of the polarizer and the analyzer with respect to the polymer film by a motor, and by illuminating means. It is obtained by irradiating light and measuring the ratio of the maximum value and the minimum value of the intensity of the light transmitted through the polymer film. Incidentally, such a technique is disclosed in, for example, Japanese Patent Laid-Open No. 4-218751.

【0003】[0003]

【発明が解決しようとする課題】ところが、前述した複
屈折測定装置においては、次のような問題点があること
が本発明者により見い出された。すなわち、偏光子およ
び検光子の高分子フィルムに対する相対角位置を、モー
ターにより徐々に変更していたので、測定に多くの時間
を要する。従って、高速測定が要求されるオンライン測
定ができない。また、照明手段の照度に変化が生じたと
き、透過光強度の最大値と最小値の特定に影響を与え、
安定した測定ができなくなる。
However, the present inventor has found that the above-described birefringence measuring device has the following problems. That is, since the relative angular positions of the polarizer and the analyzer with respect to the polymer film are gradually changed by the motor, it takes a lot of time for measurement. Therefore, online measurement, which requires high-speed measurement, cannot be performed. Further, when the illuminance of the illumination means changes, it affects the specification of the maximum and minimum values of transmitted light intensity,
Stable measurement will not be possible.

【0004】本発明の目的は、前述した問題点に鑑み、
照明手段の光量の変化に関係なく、複屈折値を高速かつ
安定的に測定することができる複屈折測定装置を提供す
ることにある。本発明の前記ならびにその他の目的と新
規な特徴は、本明細書の記述および添付図面から明らか
になるであろう。
The object of the present invention is to solve the above-mentioned problems.
It is an object of the present invention to provide a birefringence measuring device capable of measuring a birefringence value at high speed and stably regardless of the change in the light quantity of the illumination means. The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.

【0005】[0005]

【課題を解決するための手段】本発明の概要を簡単に説
明すれば、以下のとおりである。本発明の複屈折測定装
置は、光を照射する照明手段と、前記照明手段より照射
される光を分割する光分岐手段と、分割された分光を直
接受光する第1の受光素子と、分割された他の分光を偏
光する第1の偏光子および第2の偏光子と、前記第1の
偏光子および前記第2の偏光子を透過する前記他の分光
を受光する第2の受光素子と、前記第1の受光素子およ
び前記第2の受光素子を透過した光量を演算する演算手
段とを備え、前記第1の偏光子と前記第2の偏光子と
は、平行ニコルおよび垂直ニコルの偏光方向関係を有す
るものである。
The outline of the present invention will be briefly described as follows. The birefringence measuring apparatus of the present invention is divided into an illuminating unit that irradiates light, a light splitting unit that splits the light emitted from the illuminating unit, and a first light receiving element that directly receives the split spectrum. A first polarizer and a second polarizer that polarize the other spectrum, and a second light receiving element that receives the other spectrum that transmits the first polarizer and the second polarizer, And a calculation unit that calculates the amount of light transmitted through the first light receiving element and the second light receiving element, wherein the first polarizer and the second polarizer are parallel Nicols and vertical Nicols polarization directions. Have a relationship.

【0006】[0006]

【作 用】前述した手段によれば、複屈折測定装置に、
照明手段から照射される光を直接受光する第1の受光素
子、偏光方向を平行および垂直ニコル状態にした第1、
第2の偏光子、第1、第2の偏光子を透過する光を受光
する第2の受光素子および第1、第2の受光素子を透過
した光量を演算する演算手段を設けたので、演算手段に
より第2の受光素子で受光した測定光と第1の受光素子
で受光した参照光との光量比を演算し、この光量比と既
知の複屈折値との関係を予め求め、高次関数で近似し、
基準式として設定しておき、演算手段により未知の被測
定物に対する測定光と参照光との光量比から平行および
垂直ニコル状態の複屈折値を算出し、その平均値を計算
することで被測定物の複屈折値が得られる。
[Operation] According to the above-mentioned means, the birefringence measuring device,
A first light-receiving element for directly receiving the light emitted from the illuminating means, a first for setting the polarization directions to parallel and vertical Nicols,
Since the second polarizer, the second light receiving element for receiving the light transmitted through the first and second polarizers, and the calculation means for calculating the amount of light transmitted through the first and second light receiving elements are provided, the calculation is performed. Means calculates a light quantity ratio between the measurement light received by the second light receiving element and the reference light received by the first light receiving element, and obtains a relationship between the light quantity ratio and a known birefringence value in advance to obtain a higher-order function. And approximate
It is set as a reference formula, and the birefringence value in parallel and vertical Nicols state is calculated from the light quantity ratio of the measurement light and the reference light to the unknown DUT by the calculation means, and the average value is calculated to calculate the measured value. The birefringence value of the object is obtained.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。ここで、図1は本発明の一実施例である
複屈折測定装置の概略構成図、図2は平行ニコル状態お
よび垂直ニコル状態における複屈折値と透過光強度との
特性図、図3は平行ニコル状態における測定光/参照光
の光量比と既知の複屈折値との特性図、図4は垂直ニコ
ル状態における測定光/参照光の光量比と既知の複屈折
値との特性図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. Here, FIG. 1 is a schematic configuration diagram of a birefringence measuring apparatus which is an embodiment of the present invention, FIG. 2 is a characteristic diagram of birefringence value and transmitted light intensity in a parallel Nicol state and a vertical Nicol state, and FIG. FIG. 4 shows a characteristic diagram of the light quantity ratio of the measurement light / reference light and the known birefringence value in the Nicol state, and FIG. 4 shows a characteristic chart of the light quantity ratio of the measurement light / reference light in the vertical Nicol state and the known birefringence value.

【0008】図1において、複屈折測定装置では、照明
手段、たとえばハロゲン照明装置10に光ファイバー2
0を介して中継レンズ30が配設され、中継レンズ30
の下流側には、光の通過帯域が極めて狭くハロゲン照明
装置10より照射される光を単一波長の光に変換する波
長フィルター40が配設されている。50は波長フィル
ター40より下流側に位置し、光を分岐する光分岐手
段、たとえば、多分岐光ファイバーであり、この多分岐
光ファイバー50は、分岐光ファイバー部51、52、
53、54よりなる。分岐光ファイバー部54の下流端
には、フォトダイオードなどの第1の受光素子60、第
1のアンプ70、演算装置(演算手段)80が順次接続
されている。
In FIG. 1, in the birefringence measuring apparatus, an optical fiber 2 is provided to an illuminating means such as a halogen illuminating device 10.
The relay lens 30 is disposed through the
A wavelength filter 40 for converting the light emitted from the halogen illuminating device 10 into the light of a single wavelength is disposed on the downstream side of the light having a very narrow pass band. Reference numeral 50 denotes an optical branching unit located downstream of the wavelength filter 40 for branching light, for example, a multi-branch optical fiber. The multi-branch optical fiber 50 includes branch optical fiber units 51, 52,
It consists of 53 and 54. A first light receiving element 60 such as a photodiode, a first amplifier 70, and an arithmetic device (arithmetic means) 80 are sequentially connected to the downstream end of the branched optical fiber portion 54.

【0009】また、分岐光ファイバー部51、52、5
3のそれぞれ下流端には、集光レンズ91、92、93
が個別に配設され、集光レンズ91、92、93上には
第1の偏光子101、102、103がそれぞれ個別に
配設されている。さらに、第1の偏光子101、10
2、103上には、第2の偏光子111、112、11
3が個別に配設されており、第2の偏光子111、11
2、113は、第1の偏光子101、102、103と
平行状態にある平行部111a、112a、113aお
よび垂直状態にある垂直部111b、112b、113
bにそれぞれ等分割されている。
The branch optical fiber parts 51, 52, 5
Condensing lenses 91, 92, 93 are provided at the downstream ends of 3 respectively.
Are individually arranged, and the first polarizers 101, 102 and 103 are individually arranged on the condenser lenses 91, 92 and 93. Furthermore, the first polarizers 101, 10
The second polarizers 111, 112, 11 on the second and third 103
3 are individually arranged, and the second polarizers 111 and 11 are provided.
Reference numerals 2 and 113 denote parallel portions 111a, 112a, 113a in a parallel state with the first polarizers 101, 102, 103 and vertical portions 111b, 112b, 113 in a vertical state.
Each is equally divided into b.

【0010】また、第2の偏光子111、112、11
3の平行部111a、112a、113a上には第2の
受光素子121a、122a、123aが配設されると
共に、第2の偏光子111、112、113の垂直部1
11b、112b、113b上には第3の受光素子12
1b、122b、123bがそれぞれ配設されている。
In addition, the second polarizers 111, 112, 11
The second light receiving elements 121a, 122a, 123a are arranged on the three parallel portions 111a, 112a, 113a, and the vertical portion 1 of the second polarizer 111, 112, 113 is arranged.
The third light-receiving element 12 is provided on 11b, 112b, 113b.
1b, 122b, 123b are arranged respectively.

【0011】さらに、第2の受光素子121a、122
a、123aには第2のアンプ131a、132a、1
33aが接続され、第3の受光素子121b、122
b、123bには第3のアンプ131b、132b、1
33bがそれぞれ接続されている。そして、これら第2
および第3のアンプ131a、132a、133a、1
31b、132b、133bは演算装置80に接続され
ている。なお、Aは、第1の偏光子101、102、1
03と第2の偏光子111、112、113との間に介
装された被測定物の複屈折フィルムである。
Further, the second light receiving elements 121a and 122 are provided.
a and 123a have second amplifiers 131a, 132a, 1
33a is connected to the third light receiving elements 121b and 122.
b and 123b have third amplifiers 131b, 132b, 1
33b are respectively connected. And these second
And the third amplifiers 131a, 132a, 133a, 1
31b, 132b, 133b are connected to the arithmetic unit 80. In addition, A is the first polarizer 101, 102, 1
03 and the second polarizer 111, 112, 113 is a birefringent film of the object to be measured.

【0012】次に、かかる構成の複屈折測定装置による
複屈折値の測定方法について述べる。まず、ハロゲン照
明装置10から可視全域に亘って発光された光束は、光
ファイバー20および中継レンズ30を通して波長フィ
ルター40に照射される。その後、光束は波長フィルタ
ー40で複屈折値を測定するのに適した所望の単一波長
の光に変換される。ここで、光ファイバー20を用いた
のは、ハロゲン照明装置10から発生する赤外線をカッ
トして熱ストレスの発生を防ぐためであり、ハロゲン照
明装置10において、波長フィルター40に熱をかけな
い工夫がなされている場合は、光ファイバー20は不要
である。
Next, a method for measuring a birefringence value by the birefringence measuring device having the above structure will be described. First, the luminous flux emitted from the halogen lighting device 10 over the entire visible range is applied to the wavelength filter 40 through the optical fiber 20 and the relay lens 30. Thereafter, the light beam is converted by the wavelength filter 40 into light having a desired single wavelength suitable for measuring the birefringence value. Here, the use of the optical fiber 20 is for cutting infrared rays generated from the halogen lighting device 10 to prevent generation of heat stress, and the halogen lighting device 10 is devised so as not to heat the wavelength filter 40. If so, the optical fiber 20 is unnecessary.

【0013】続いて、単一波長光は、所望する測定ポイ
ントより多い分岐を有する多分岐光ファイバー50によ
って複数の光に分割される。分割された光は、それぞれ
分岐光ファイバー部51〜54に導かれる。分岐光ファ
イバー部54より照射される光は、第1の受光素子60
に受光され、第1のアンプ70で増幅されて、参照光と
して演算装置80に取り込まれる。
The single wavelength light is then split into a plurality of lights by a multi-branch optical fiber 50 having more branches than desired measurement points. The split lights are guided to the branch optical fiber units 51 to 54, respectively. The light emitted from the branch optical fiber unit 54 is the first light receiving element 60.
Is received, is amplified by the first amplifier 70, and is taken into the arithmetic unit 80 as reference light.

【0014】一方、分岐光ファイバー部51〜53より
照射される光は、集光レンズ91〜93で集光され、第
1の偏光子101〜103に導かれる。その後、光は、
複屈折フィルムA、第2の偏光子111〜113の平行
部111a〜113aおよび垂直部111b〜113b
を順次透過する。このとき、平行部111a〜113a
を透過した光は、第2の受光素子121a〜123aに
受光され、第2のアンプ131a〜133aによって増
幅された後、測定光として演算装置80に取り込まれ
る。
On the other hand, the light emitted from the branched optical fiber portions 51 to 53 is condensed by the condenser lenses 91 to 93 and guided to the first polarizers 101 to 103. Then the light
Birefringent film A, parallel parts 111a to 113a and vertical parts 111b to 113b of the second polarizers 111 to 113.
Sequentially transmitted. At this time, the parallel portions 111a to 113a
The light that has passed through is received by the second light receiving elements 121a to 123a, amplified by the second amplifiers 131a to 133a, and then taken into the arithmetic unit 80 as measurement light.

【0015】また、垂直部111b〜113bを透過し
た光は、第3の受光素子121b〜123bに受光さ
れ、第3のアンプ131b〜133bによって増幅され
た後、測定光として演算装置80に取り込まれる。ここ
で、複屈折値がすでに分かっている試料を数種類用意す
る。ただし、これら数種類の試料の複屈折値は、測定さ
れる未知の複屈折値の範囲に分布するものとする。特定
波長における試料の複屈折値と測定装置の透過光強度と
の関係を図2に示す。図2により、測定範囲Bを、複屈
折値に対して透過光強度の変化が大きい部分とする。ま
た、試料は測定範囲Bの全域に亘ってまんべんなく分布
していることが望ましい。
The light transmitted through the vertical portions 111b to 113b is received by the third light receiving elements 121b to 123b, amplified by the third amplifiers 131b to 133b, and then taken into the arithmetic unit 80 as measurement light. . Here, several kinds of samples whose birefringence values are already known are prepared. However, the birefringence values of these several types of samples shall be distributed in the range of unknown birefringence values to be measured. FIG. 2 shows the relationship between the birefringence value of the sample at a specific wavelength and the transmitted light intensity of the measuring device. According to FIG. 2, the measurement range B is a portion where the change in transmitted light intensity is large with respect to the birefringence value. Further, it is desirable that the samples are evenly distributed over the entire measurement range B.

【0016】そして、試料を第1の偏光子101〜10
3と第2の偏光子111〜113との間に配置して、測
定光と参照光とを同時に測定し、演算装置80で測定光
/参照光の光量比を平行および垂直状態についてそれぞ
れ算出する。これにより、図3および図4に示すよう
に、平行および垂直状態で、波長フィルター40に中心
波長500nmを選んだときの既知の複屈折値に対する
光量比が求まる。
Then, the sample is used as the first polarizer 101 to 10
3 and the second polarizers 111 to 113, the measurement light and the reference light are measured at the same time, and the arithmetic unit 80 calculates the light amount ratios of the measurement light / reference light for the parallel and vertical states, respectively. . As a result, as shown in FIGS. 3 and 4, the light amount ratio to the known birefringence value when the center wavelength of 500 nm is selected for the wavelength filter 40 in the parallel and vertical states is obtained.

【0017】これから光量比に対する複屈折値を高次関
数で近似して実際の測定時の基準式とする。すなわち、
平行ニコル状態では、次式(1)となる。 R1 =386.58+0.31352Lr +0.0010811Lr2(1) また、垂直ニコル状態では、次式(2)となる。 R2 =481.07−0.69440Lr +0.00101Lr2 (2) なお、R1 、R2 は複屈折値、Lr は測定光/参照光の
光量比を示す。
From this, the birefringence value with respect to the light quantity ratio is approximated by a higher-order function to form a reference expression for actual measurement. That is,
In the parallel Nicol state, the following equation (1) is obtained. R1 = 386.58 + 0.31352Lr + 0.0010811Lr 2 (1) Further, in the vertical Nicol state, the following equation (2). R2 = 481.07-0.69440Lr + 0.00101Lr 2 (2 ) In addition, R1, R2 birefringence value, Lr denotes the light intensity ratio of the measurement light / reference light.

【0018】かくして、未知の複屈折フィルムAをライ
ンに流しながら、演算装置80により、測定光/参照光
の光量比を算出すると、上式(1)および(2)によっ
て複屈折フィルムAの複屈折値R1 、R2 を得ることが
できる。そして、これら複屈折値R1 、R2 の平均値
(R1 +R2 )/2を最終の複屈折値として出力し、複
屈折フィルムAの複屈折値が得られる。
Thus, while the unknown birefringent film A is flown in the line, the light quantity ratio of the measurement light / reference light is calculated by the arithmetic unit 80, and the birefringent film A birefringence is calculated by the above equations (1) and (2). Refractive values R1 and R2 can be obtained. Then, the average value (R1 + R2) / 2 of these birefringence values R1 and R2 is output as the final birefringence value, and the birefringence value of the birefringence film A is obtained.

【0019】このように本実施例によれば、測定光/参
照光の光量比と既知の複屈折値との関係を予め測定して
高次関数で近似し、基準式として設定しておき、未知の
複屈折フィルムAに対する測定光/参照光の光量比から
平行および垂直ニコル状態の複屈折値をそれぞれ算出
し、その平均値を計算して複屈折値を得るので、測定が
高速化され、オンライン測定ができるようになる。
As described above, according to the present embodiment, the relationship between the light quantity ratio of the measurement light / reference light and the known birefringence value is measured in advance, approximated by a higher-order function, and set as a reference expression, Since the birefringence values in the parallel and vertical Nicols states are calculated from the light quantity ratio of the measurement light / reference light to the unknown birefringence film A, and the birefringence value is obtained by calculating the average value thereof, the measurement is speeded up. Online measurement becomes possible.

【0020】さらに、常に参照光との比を計算基準とし
ているので、ハロゲン照明装置10が長期的に劣化して
光量が低下した場合や外乱などにより短期的に光量が変
動しても測定に悪影響を与えることがない。従って、安
定した測定が可能となる。以上、本発明者によってなさ
れた発明を、実施例に基づき具体的に説明したが、本発
明は、前記実施例に限定されるものではなく、その要旨
を逸脱しない範囲で、種々変更可能であることは、言う
までもない。
Further, since the ratio with respect to the reference light is always used as a calculation reference, even if the halogen lighting device 10 deteriorates for a long period of time and the light amount decreases, or if the light amount fluctuates in the short term due to disturbance or the like, the measurement is adversely affected. Never give. Therefore, stable measurement is possible. Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Needless to say.

【0021】[0021]

【発明の効果】本願によって開示される発明によって得
られる効果を簡単に説明すれば、以下のとおりである。
本発明によれば、複屈折測定装置に、照明手段から照射
される光を直接受光する第1の受光素子、偏光方向を平
行および垂直ニコル状態にした第1、第2の偏光子、第
1、第2の偏光子を透過する光を受光する第2の受光素
子および第1、第2の受光素子を透過した光量を演算す
る演算手段を設けたので、測定が高速化され、複屈折値
のオンライン測定を行なうことができると共に、照明手
段の光量変化の影響による誤差を排除しつつ正確に測定
を行なうことができるので、照明手段が長期的に劣化し
て光量が低下した場合でも、また外乱などにより短期的
に光量が変動した場合でも測定に悪影響を与えることが
なく、複屈折値を安定的に測定することができる。
The effects obtained by the invention disclosed in the present application will be briefly described as follows.
According to the present invention, in the birefringence measuring device, the first light receiving element for directly receiving the light emitted from the illuminating means, the first and second polarizers whose polarization directions are parallel and vertical Nicols, and the first polarizer are provided. , The second light receiving element for receiving the light transmitted through the second polarizer and the calculation means for calculating the amount of light transmitted through the first and second light receiving elements are provided, so that the measurement is accelerated and the birefringence value is increased. Since it is possible to perform the on-line measurement, and to accurately perform the measurement while eliminating the error due to the influence of the change in the light amount of the illumination means, even when the illumination means is deteriorated for a long period of time and the light amount is reduced, The birefringence value can be stably measured without adversely affecting the measurement even when the light amount fluctuates in the short term due to disturbance or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である複屈折測定装置の概略
構成図。
FIG. 1 is a schematic configuration diagram of a birefringence measuring apparatus that is an embodiment of the present invention.

【図2】本発明の一実施例である複屈折測定装置の平行
ニコル状態および垂直ニコル状態における複屈折値と透
過光強度との特性図。
FIG. 2 is a characteristic diagram of a birefringence value and a transmitted light intensity in a parallel Nicol state and a vertical Nicol state of a birefringence measuring apparatus that is an embodiment of the present invention.

【図3】本発明の一実施例である平行ニコル状態におけ
る測定光/参照光の光量比と既知の複屈折値との特性
図。
FIG. 3 is a characteristic diagram of a light amount ratio of measurement light / reference light and a known birefringence value in a parallel Nicol state that is an embodiment of the present invention.

【図4】本発明の一実施例であるは複屈折測定装置の垂
直ニコル状態における測定光/参照光の光量比と既知の
複屈折値との特性図。
FIG. 4 is a characteristic diagram of a light amount ratio of measurement light / reference light and a known birefringence value in a vertical Nicol state of a birefringence measuring apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…ハロゲン照明装置 20…光ファイバー 30…中継レンズ 40…波長フィルター 50…多分岐光ファイバー 51〜54…分岐光ファイバー部 60…第1の受光素子 70…第1のアンプ 80…演算装置 91〜93…集光レンズ 101〜103…第1の偏光子 111〜113…第2の偏光子 111a〜113a…平行部 111b〜113b…垂直部 121a〜123a…第2の受光素子 121b〜123b…第3の受光素子 131a〜133a…第2のアンプ 131b〜133b…第3のアンプ A…複屈折フィルム B…測定範囲 10 ... Halogen illumination device 20 ... Optical fiber 30 ... Relay lens 40 ... Wavelength filter 50 ... Multi-branched optical fiber 51-54 ... Branch optical fiber part 60 ... First light receiving element 70 ... First amplifier 80 ... Arithmetic device 91-93 ... Collection Optical lens 101-103 ... 1st polarizer 111-113 ... 2nd polarizer 111a-113a ... Parallel part 111b-113b ... Vertical part 121a-123a ... 2nd light receiving element 121b-123b ... 3rd light receiving element 131a-133a ... 2nd amplifier 131b-133b ... 3rd amplifier A ... Birefringent film B ... Measuring range

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光を照射する照明手段と、前記照明手段
より照射される光を分割する光分岐手段と、分割された
分光を直接受光する第1の受光素子と、分割された他の
分光を偏光する第1の偏光子および第2の偏光子と、前
記第1の偏光子および前記第2の偏光子を透過する前記
他の分光を受光する第2の受光素子と、前記第1の受光
素子および前記第2の受光素子を透過した光量を演算す
る演算手段とを備え、前記第1の偏光子と前記第2の偏
光子とは、平行ニコルおよび垂直ニコルの偏光方向関係
を有することを特徴とする複屈折測定装置。
1. An illuminating means for irradiating light, a light branching means for dividing the light emitted from the illuminating means, a first light receiving element for directly receiving the divided spectrum, and another divided spectrum. A first polarizer and a second polarizer that polarize the light; a second light receiving element that receives the other spectroscopic light that passes through the first polarizer and the second polarizer; A light receiving element and a calculation means for calculating the amount of light transmitted through the second light receiving element, wherein the first polarizer and the second polarizer have a parallel Nicol and a vertical Nicol polarization direction relationship. A birefringence measuring device.
JP03229395A 1995-02-21 1995-02-21 Birefringence measurement device Expired - Fee Related JP3474021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03229395A JP3474021B2 (en) 1995-02-21 1995-02-21 Birefringence measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03229395A JP3474021B2 (en) 1995-02-21 1995-02-21 Birefringence measurement device

Publications (2)

Publication Number Publication Date
JPH08226892A true JPH08226892A (en) 1996-09-03
JP3474021B2 JP3474021B2 (en) 2003-12-08

Family

ID=12354917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03229395A Expired - Fee Related JP3474021B2 (en) 1995-02-21 1995-02-21 Birefringence measurement device

Country Status (1)

Country Link
JP (1) JP3474021B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276079A (en) * 2008-05-12 2009-11-26 Oji Keisoku Kiki Kk On-line phase difference measuring device
JP2014052317A (en) * 2012-09-07 2014-03-20 Oji Holdings Corp Method and device for measuring birefringence of uniaxially oriented article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276079A (en) * 2008-05-12 2009-11-26 Oji Keisoku Kiki Kk On-line phase difference measuring device
JP2014052317A (en) * 2012-09-07 2014-03-20 Oji Holdings Corp Method and device for measuring birefringence of uniaxially oriented article

Also Published As

Publication number Publication date
JP3474021B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
US7239388B2 (en) Retardance measurement system and method
EP1120637A2 (en) Method and means for calibrating a grating monochromator
JPH08226892A (en) Measuring equipment of birefringence
JPH10511468A (en) Optical correlation gas analyzer
JP3442179B2 (en) Phase difference measurement device
EP0735350B1 (en) Spectroscope comprising an optical fibre branching
JPH0354292B2 (en)
EP0557090A2 (en) Optical magnetic field sensor
KR100332422B1 (en) Apparatus for measuring residual stress and refractive index of an optical fiber preform
JPS62211522A (en) Measuring method for wavelength dispersion of single mode optical fiber
JPS60214235A (en) Measuring method of temperature characteristic of optical fiber
KR100424476B1 (en) Apparatus for measuring residual stress of optical fiber preform
KR100231106B1 (en) Apparatus for measuring birefringence
SU1216751A2 (en) Method of determining bandwidth and maximum transmission wavelength of interference light filter
JPS633236A (en) Wavelength dispersion measuring instrument for optical fiber
JPH08145878A (en) Double refraction measuring device
JPH01113626A (en) Measuring method for optical wavelength
JPH0338555B2 (en)
CN117825333A (en) High-reflectivity calibration method for cavity enhancement spectrum system
JPH0614008B2 (en) Particle analyzer
Nikolova et al. Polarimeter-photometer for quasi-monochromatic light
JPH0235928B2 (en) HIKARIFUAIBANOKOZOPARAMEETASOKUTEIHOHO
SU1530961A1 (en) Apparatus for calibrating device for measuring frequency-time characteristics of light conduits
CN116661141A (en) Double Gaussian double light path structure
Jirgensons et al. Polarimeters and Spectropolarimeters. The Measurement of Optical Activity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees