JPH0338555B2 - - Google Patents

Info

Publication number
JPH0338555B2
JPH0338555B2 JP55130817A JP13081780A JPH0338555B2 JP H0338555 B2 JPH0338555 B2 JP H0338555B2 JP 55130817 A JP55130817 A JP 55130817A JP 13081780 A JP13081780 A JP 13081780A JP H0338555 B2 JPH0338555 B2 JP H0338555B2
Authority
JP
Japan
Prior art keywords
optical
light
substance
measured
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55130817A
Other languages
Japanese (ja)
Other versions
JPS5756777A (en
Inventor
Kyobumi Mochizuki
Yasuhiko Niino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP13081780A priority Critical patent/JPS5756777A/en
Publication of JPS5756777A publication Critical patent/JPS5756777A/en
Publication of JPH0338555B2 publication Critical patent/JPH0338555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は干渉を用いた光伝搬時間差測定法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical propagation time difference measurement method using interference.

従来、光伝搬時間差を測定するには、第1図に
示すようなレーリーの干渉屈折計が用いられてい
た。図において、スリツト11から入射された光
は先ずコリメータ・レンズ12により平行にされ
る。次に光は複スリツト13,14を通つて再び
レンズ19で合わされ、干渉縞がスクリーン20
上に作られる。光路1a,2a上にはそれぞれ気
体を封入できるようになつた両端面が平行平面の
管15,16が置かれ、そのうちの一方を参照光
が通る。
Conventionally, a Rayleigh interference refractometer as shown in FIG. 1 has been used to measure the optical propagation time difference. In the figure, light incident from a slit 11 is first made parallel by a collimator lens 12. Next, the light passes through the multiple slits 13 and 14 and is combined again by the lens 19, and interference fringes are formed on the screen 20.
made on top. On the optical paths 1a and 2a, there are placed tubes 15 and 16 whose end surfaces are parallel to each other and which are capable of filling gas, and the reference light passes through one of them.

光伝搬時間差の測定にあたつては、はじめに、
両方の管15,16を真空にし平行平面板の傾き
を変えることより光路長を変えるジヤマンの補償
板17,18を調整して、両者による干渉縞の明
暗を最良にしておく。次に一方の管に測ろうとす
る気体を封入する。これによつて生ずる干渉縞の
移動を補償板17または18で補償し、零メソツ
ドによつて光伝搬時間差を測定する。
When measuring the optical propagation time difference, first,
Both tubes 15 and 16 are evacuated and the inclinations of the parallel plane plates are changed to adjust the Ziyaman compensation plates 17 and 18, which change the optical path length, to optimize the brightness and darkness of the interference fringes caused by both. Next, fill one tube with the gas you want to measure. The movement of the interference fringes caused by this is compensated by the compensating plate 17 or 18, and the difference in light propagation time is measured by the zero method.

この方法は気体の屈折率(n1)のようにn1−1
が10-4程度と屈折率のかなり小さな場合には適し
ているが、固体の屈折率(n2)のようにn2−1が
0.5程度の大きなものになると干渉縞の移動数が
数百となり、移動縞数を正確に数えることができ
ず、光伝搬時間差を正確に測定することは困難で
あつた。
This method uses n 1 −1 as the refractive index of gas (n 1 ).
It is suitable for cases where the refractive index is quite small, around 10 -4 , but when n 2 -1 is small, such as the refractive index (n 2 ) of a solid,
When the interference fringes are as large as 0.5, the number of moving interference fringes becomes several hundred, making it impossible to accurately count the number of moving fringes and making it difficult to accurately measure the difference in light propagation time.

本発明の目的は、異方性を有する物質の光の伝
搬時間差を正確に測定すること、および光伝搬時
間差から正確な屈折率を測定することにある。
An object of the present invention is to accurately measure the difference in light propagation time of a substance having anisotropy, and to accurately measure the refractive index from the difference in light propagation time.

本発明はコヒーレント光を使用し、受光器に入
力する光パワーの変動を測定して可視度のピーク
値を求め、可変光遅延路の移動量、すなわち光路
長差から異方性を有する物質の光伝搬時間差を測
定するようにした点に特徴がある。
The present invention uses coherent light to determine the peak visibility by measuring fluctuations in the optical power input to the photoreceiver, and calculates the amount of movement of the variable optical delay path, that is, the optical path length difference, by measuring the fluctuation of the optical power input to the photoreceiver. It is unique in that it measures the difference in light propagation time.

以下図面を用いて光伝搬時間差の測定、屈折率
の測定について詳細に説明することにする。
The measurement of the optical propagation time difference and the measurement of the refractive index will be explained in detail below using the drawings.

光の性質を表わすものにコヒーレンスという言
葉がある。これは、干渉性の度合を表わすもの
で、時間的コヒーレンスと空間的コヒーレンスと
がある。時間的コヒーレンスというのは、光がど
の程度の時間、同一周波数で、位相のゆらぎがな
く発振しているのかを示すもので、この時間に光
速cを掛けたものを普通コヒーレンス長と呼んで
時間的コヒーレンスの度合を表わしている。
There is a word called coherence that describes the property of light. This expresses the degree of coherence, and includes temporal coherence and spatial coherence. Temporal coherence indicates how long light oscillates at the same frequency with no phase fluctuation.This time multiplied by the speed of light c is commonly called the coherence length and is the length of time. It represents the degree of coherence.

第2図に示すように、光源21から出た光をビ
ームスプリツタ22で2分し、片方は固定したミ
ラー23でおり返し、もう一方は、可変光遅延路
25にのせられたミラー24でおり返す。これら
2つの光線が受光器26で重なり合うように調整
しておくと、2つの光線の光路長がコヒーレンス
長以内では、2つの光線の干渉により可変光遅延
路25の微妙な動きに対してレベル変動をおこ
す。このレベル変動の最大値Imax、最小値Imin
は、ビームスプリツタ22で二分岐された2つの
光パワーをそれぞれI1、I2とすると Imax=I1+I2+2γ1212 Imin=I1+I2−2γ1212 となる。また可視度(visbility)Vは V=Imax−Imin/Imax+Imin であり、I1=I2のときはV=γ12となる。ここで
γ12は光源の可干渉性を表わすコヒーレンス度と
呼ばれるもので光源の種類及び2つの光線の光路
長差に関係する係数である。
As shown in FIG. 2, the light emitted from the light source 21 is split into two by a beam splitter 22, one of which is reflected by a fixed mirror 23, and the other by a mirror 24 placed on a variable optical delay path 25. Return. If these two beams are adjusted so that they overlap at the receiver 26, if the optical path lengths of the two beams are within the coherence length, the interference between the two beams will cause the level to fluctuate due to subtle movements of the variable optical delay path 25. cause The maximum value Imax and minimum value Imin of this level fluctuation
If the two optical powers split into two by the beam splitter 22 are I 1 and I 2 respectively, then Imax=I 1 +I 2 +2γ 1212 Imin=I 1 +I 2 −2γ 1212 Become. Further, the visibility (visibility) V is V=Imax−Imin/Imax+Imin, and when I 1 =I 2 , V=γ 12 . Here, γ 12 is called the degree of coherence, which indicates the coherence of the light source, and is a coefficient related to the type of light source and the difference in optical path length between two light beams.

第3図は、コヒーレンス長をパラメータとして
可視度と光路長差との関係を表わしたものであ
り、曲線aから曲線b、cに向かうに従つて、コ
ヒーレンス長が短かくなつている。もし、光源と
してコヒーレンス長の短かいものを使用すれば第
3図に示すように干渉を示す可変光遅延路の範囲
がせまくなる。換言すれば、コヒーレンス長の短
かい光源を用いれば、それだけ第3図に示す可視
度曲線のピーク値をとる点Aを正確に求めること
ができ、時間的に高精度に光路2aを通る光と光
路2bを通る光とを受光面上26で一致させるこ
とができるということになる。
FIG. 3 shows the relationship between visibility and optical path length difference using coherence length as a parameter, and the coherence length becomes shorter from curve a to curves b and c. If a light source with a short coherence length is used, the range of the variable optical delay path exhibiting interference becomes narrower, as shown in FIG. In other words, if a light source with a short coherence length is used, the point A at which the visibility curve shown in FIG. This means that the light passing through the optical path 2b can be made to coincide with the light passing through the light receiving surface 26.

このようにして第4図の光路4aと光路4bと
の長さを一致させておき、次に屈折率を測定した
い被測定物質46を干渉計の1つの光路に挿入す
ると被測定物質46の挿入された光路は、この被
測定物質46の屈折率をn、長さをLとすると
2L(n−1)だけ等価的に伸びたことになる。な
お、ここで干渉計は光源からの光を分離してから
また合成するまでの光路で形成されるものであ
る。したがつて、光路4aと光路4bとを通る光
によつて得られる最高可視度の位置は、初期の位
置からずれる。
In this way, the lengths of the optical paths 4a and 4b in FIG. If the refractive index of the substance 46 to be measured is n and the length is L, then
This means that it has grown equivalently by 2L (n-1). Note that the interferometer is formed by an optical path from separating light from a light source to recombining it. Therefore, the position of maximum visibility obtained by the light passing through the optical paths 4a and 4b is shifted from the initial position.

ここで可変光遅延路44を動かして可視度を求
めると第5図のようになる。第5図から、被測定
物質46が光路4bに入る前の最高可視度を与え
る光路4bの光路長l1と、被測定物質46の入つ
た後の最高可視度を与える光路4bの光路長I2
の差(l1−l2)が求められる。この光路長差(l1
−l2)を光速Cで割れば、光伝搬時間差(l1
l2)/Cが求まる。また、光路長差(l1−l2)が
被測定物質46を入れたために生じた光路の等価
的伸びと等しいことから、この被測定物質46の
屈折率nはn=1+l1−l2/2Lとなり、被測定物質4 6の屈折率を求めることができる。l1、l2は/μ
mの精度で測定可能なため被測定物質の長さを10
cmとした場合、屈折率は10-5の精度で測定できる
ことになる。なお、本実施例においては基準とな
る参照物質として真空を選んで光路長l1を求めた
が、基準となる参照物質は真空に限定されるもの
ではない。
If the visibility is determined by moving the variable optical delay path 44, the result will be as shown in FIG. From FIG. 5, the optical path length l 1 of the optical path 4b that provides the maximum visibility before the substance to be measured 46 enters the optical path 4b, and the optical path length I of the optical path 4b that provides the maximum visibility after the substance to be measured 46 enters the optical path 4b. 2 (l 1 − l 2 ) is calculated. This optical path length difference (l 1
-l 2 ) divided by the speed of light C, the light propagation time difference (l 1 -
l 2 )/C is found. Furthermore, since the optical path length difference (l 1 −l 2 ) is equal to the equivalent elongation of the optical path caused by introducing the substance to be measured 46, the refractive index n of the substance to be measured 46 is n=1+l 1 −l 2 /2L, and the refractive index of the substance to be measured 46 can be determined. l 1 and l 2 are /μ
The length of the material to be measured can be measured with an accuracy of 10 m.
In cm, the refractive index can be measured with an accuracy of 10 -5 . In this example, the optical path length l 1 was determined by selecting a vacuum as the reference material that serves as a standard, but the reference material that serves as a standard is not limited to vacuum.

第6図は本発明の一実施例の概略構成図であ
る。本実施例は第6図に示されているように干渉
計を構成する光路に偏光子63,68、干渉計の
出力に検光子67を挿入した点に特徴があり、前
記と同様の方法により異方性を有する物質である
被測定物質64の偏波方向による光伝搬時間差お
よび屈折率を測定することができる。なお、図に
おいて、61は光源、62,66はビームスプリ
ツタ、63,68偏光子、65,69ミラー、6
7は検光子、610は可変光遅延路、611は受
光器、612はプリズムを示す。
FIG. 6 is a schematic diagram of an embodiment of the present invention. This embodiment is characterized in that polarizers 63 and 68 are inserted into the optical path constituting the interferometer, and an analyzer 67 is inserted into the output of the interferometer, as shown in FIG. It is possible to measure the optical propagation time difference and refractive index depending on the polarization direction of the substance to be measured 64, which is an anisotropic substance. In the figure, 61 is a light source, 62 and 66 are beam splitters, 63 and 68 are polarizers, 65 and 69 are mirrors, and 6 are
7 is an analyzer, 610 is a variable optical delay path, 611 is a light receiver, and 612 is a prism.

本発明の他の実施例を第7図に示す。光フアイ
バのような偏波方向によつて異方性を示す光ガイ
ドラインの偏波方向による光の伝搬時間差の測定
および伝搬速度差の測定は、第7図のように行な
うことができる。すなわち、先ず干渉計の光路に
偏光子71,73を入れ、これらの偏波面を互い
に直交させる。次にその出力を、光フアイバ79
の偏光軸に合うようにλ/2板77を調整して光フ
アイバ79に入射させる。続いて該光フアイバ7
9の出力側に検光子711をおいて、直交する2
つの成分が同一偏波で受光器712に入るように
調整する。
Another embodiment of the invention is shown in FIG. Measurement of the difference in propagation time and the difference in propagation velocity of light depending on the direction of polarization of an optical guideline such as an optical fiber that exhibits anisotropy depending on the direction of polarization can be performed as shown in FIG. That is, first, polarizers 71 and 73 are placed in the optical path of the interferometer, and their planes of polarization are made orthogonal to each other. Next, the output is transferred to the optical fiber 79.
The λ/2 plate 77 is adjusted so as to match the polarization axis of the light beam, and the light beam enters the optical fiber 79. Then the optical fiber 7
An analyzer 711 is placed on the output side of 9, and 2 orthogonal
The two components are adjusted so that they enter the light receiver 712 with the same polarization.

このように調整した後、可変光遅延路76を操
作して最高可視度を与える光路7bの光路長l1
求める。次に、前記光フアイバの一部を切断して
光フアイバの長さを短かくし、前記と同様に可変
遅延路76を操作して最高可視度を与える光路7
bの光路長l2を求める。光路長l1とl2が求まると、
第1実施例で説明したように光路長差(l1−l2
を光速Cで割ることにより、長い光フアイバと短
かい光フアイバの偏波方向による光の伝搬時間差
を求めることができる。次に、この光の伝搬時間
差で、切り取つた光フアイバの長さを割ることに
より、光フアイバの偏波方向による光の伝搬速度
差を求めることができる。
After adjusting in this manner, the variable optical delay path 76 is operated to determine the optical path length l 1 of the optical path 7b that provides the highest visibility. Next, a portion of the optical fiber is cut to shorten the length of the optical fiber, and the variable delay path 76 is operated in the same manner as described above to provide the optical path 7 for maximum visibility.
Find the optical path length l 2 of b. Once the optical path lengths l 1 and l 2 are found,
As explained in the first embodiment, the optical path length difference (l 1 −l 2 )
By dividing C by the speed of light, the difference in propagation time of light depending on the polarization direction of a long optical fiber and a short optical fiber can be obtained. Next, by dividing the length of the cut optical fiber by this light propagation time difference, the light propagation speed difference depending on the polarization direction of the optical fiber can be determined.

なお、第7図において、72,74はミラー、
75はビームスプリツタ、76は可変光遅延路、
78,710はレンズ、713は光源である。ま
た、714は可変光遅延路であり、可変光遅延路
は76と714の両方を設けてもよいし、どちら
か一方だけを設けてもよい。
In addition, in FIG. 7, 72 and 74 are mirrors,
75 is a beam splitter, 76 is a variable optical delay path,
78 and 710 are lenses, and 713 is a light source. Further, 714 is a variable optical delay path, and both 76 and 714 may be provided as the variable optical delay path, or only one of them may be provided.

第8図は本発明のさらに他の実施例を示す。図
において、81は光源、82,86はビームスプ
リツタ、83,88は偏光子、84は被測定物
質、85,89はミラー、87は参照用物質、8
10はプリズム、811は検光子、812は受光
器、813は可変光遅延路である。本実施例は図
示されているように、干渉計の2光路にそれぞれ
参照用物質87、被測定物質84を置き、この被
測定物質84を加熱あるいは冷却、引つ張りある
いは圧縮したり、被測定物質84に電気あるいは
磁気等を与えることにより、被測定物質84の温
度変化、引つ張り、圧縮、電気的影響および磁気
的影響等による光伝搬時間差、伸びおよび屈折率
の変化を測定することができる。
FIG. 8 shows yet another embodiment of the invention. In the figure, 81 is a light source, 82 and 86 are beam splitters, 83 and 88 are polarizers, 84 is a measured substance, 85 and 89 are mirrors, 87 is a reference substance, and 8
10 is a prism, 811 is an analyzer, 812 is a light receiver, and 813 is a variable optical delay path. As shown in the figure, in this embodiment, a reference substance 87 and a substance to be measured 84 are respectively placed in two optical paths of an interferometer, and the substance to be measured 84 is heated, cooled, stretched or compressed, By applying electricity, magnetism, etc. to the substance 84, it is possible to measure differences in light propagation time, elongation, and changes in refractive index due to temperature changes, tension, compression, electrical influence, magnetic influence, etc. of the substance 84 to be measured. can.

なお、上記の各実施例において、測定精度を良
くするにはコヒーレンス長の短かい光源を用いる
と良いが、高い測定精度を要求しない場合にはコ
ヒーレンス長が長い光源を用いてもよい。
In each of the above embodiments, it is preferable to use a light source with a short coherence length to improve measurement accuracy, but if high measurement accuracy is not required, a light source with a long coherence length may be used.

以上のように、本発明によれば、異方性を有す
る被測定物質の微少な光伝搬時間差および微少光
伝搬速度差を高時間分解能で測定することができ
る。また、被測定物質の屈折率を高精度に測定す
ることができる。
As described above, according to the present invention, it is possible to measure minute differences in light propagation time and minute differences in light propagation speed in a substance to be measured that has anisotropy with high temporal resolution. Furthermore, the refractive index of the substance to be measured can be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーリーの干渉屈折計の概略図、第2
図は本発明に用いる光伝搬時間差測定装置の原理
図、第3図はコヒーレンス長をパラメータとした
時の可視度と光路長差との関係を示す図、第4図
および第6〜8図は本発明の実施例に使用される
装置の概略図、第5図は可視度と光路長との関係
を示す図である。 21,41,61,713,81……光源、2
2,43,62,75,82……ビームスプリツ
タ、25,44,610,72,76,813…
…可変光遅延路、46,64,84……被測定物
質、79……光フアイバ、87……参照用物質、
26,47,611,712,812……受光
器、2a,2b,4a,4b,7a,7b……光
路。
Figure 1 is a schematic diagram of Rayleigh's interference refractometer, Figure 2
The figure is a principle diagram of the optical propagation time difference measurement device used in the present invention, Figure 3 is a diagram showing the relationship between visibility and optical path length difference when coherence length is used as a parameter, and Figures 4 and 6 to 8 are FIG. 5, a schematic diagram of an apparatus used in an embodiment of the present invention, is a diagram showing the relationship between visibility and optical path length. 21, 41, 61, 713, 81... light source, 2
2, 43, 62, 75, 82...beam splitter, 25, 44, 610, 72, 76, 813...
...Variable optical delay path, 46, 64, 84...Measurement substance, 79...Optical fiber, 87...Reference material,
26, 47, 611, 712, 812... Light receiver, 2a, 2b, 4a, 4b, 7a, 7b... Optical path.

Claims (1)

【特許請求の範囲】 1 光源から出射されるコヒーレンス長の短い出
力光を2つの光路に分け、該光路の少なくとも一
方に可変光遅延路を配し、それぞれの光路に偏波
面を制御できる偏光子を配し、これを再び合波し
て検光子に導くようにした干渉計と、該検光子を
通つた光が導かれる受光器とからなる光学系を有
し、 該光学系の偏光子から検光子までの間の一方の
光路中に偏波方向によつて異方性を有する被測定
物質を挿入し、該偏光子によつて被測定物質の偏
光軸に光の偏波面を合わせ、該可変光遅延路の動
きに対して前記受光器から出力された電気信号の
変動量から前記被測定物質を含む光学系の可視度
を求め、 該被測定物質を挿入した場合と挿入しない場合
との両者の最高可視度を与える光路長差を前記可
変光遅延路の移動量から読取り、その光路長差か
ら絶対値の光伝搬時間差を求めるようにしたこと
を特徴とする光伝搬時間差測定法。 2 光源から出射されるコヒーレンス長の短い出
力光を2つの光路に分け、該光路の少なくとも一
方に可変光遅延路を配し、それぞれの光路に配置
された偏光子により互いに直交する偏光面にし、
これを再び合波して偏光面を調節するλ/2板に
導き、次いでその出力光を同一偏波面にする検光
子に導くようにした干渉計と、該検光子を通つた
光が導かれる受光器とからなる光学系を有し、 前記λ/2板と前記検光子との間の光路中に、
偏波方向によつて異方性を有する被測定物質を挿
入し、前記可変光遅延路を操作して最高可視度を
与える光路長を求め、 次に長さだけ異なる前記被測定物質を前記λ/
2板と前記検光子との間の光路中に挿入し、前記
可変光遅延路を操作して最高可視度を与える光路
長を求め、その光路長差から絶対値の光伝搬時間
差を求めるようにしたことを特徴とする光伝搬時
間差測定法。
[Claims] 1. A polarizer that divides output light with a short coherence length emitted from a light source into two optical paths, arranges a variable optical delay path in at least one of the optical paths, and controls the plane of polarization in each optical path. It has an optical system consisting of an interferometer which combines the light and guides it to an analyzer, and a light receiver to which the light that has passed through the analyzer is guided, and from the polarizer of the optical system. A substance to be measured that has anisotropy depending on the polarization direction is inserted into one of the optical paths up to the analyzer, and the plane of polarization of the light is aligned with the polarization axis of the substance to be measured using the polarizer. The visibility of the optical system including the substance to be measured is determined from the amount of variation in the electrical signal output from the light receiver with respect to the movement of the variable optical delay path, and the visibility of the optical system including the substance to be measured is determined when the substance to be measured is inserted and when the substance to be measured is not inserted. An optical propagation time difference measuring method, characterized in that the optical path length difference that provides the highest visibility between the two is read from the amount of movement of the variable optical delay path, and the absolute value of the optical propagation time difference is determined from the optical path length difference. 2. Divide the output light with a short coherence length emitted from the light source into two optical paths, arrange a variable optical delay path in at least one of the optical paths, and make the polarization planes perpendicular to each other by polarizers arranged in each optical path,
The light is guided to a λ/2 plate that combines the light again and adjusts the plane of polarization, and then leads to an analyzer that makes the output light the same plane of polarization, and the light that passes through the analyzer is guided. an optical system consisting of a light receiver, and in the optical path between the λ/2 plate and the analyzer,
Insert a substance to be measured that has anisotropy depending on the polarization direction, operate the variable optical delay path to find the optical path length that gives the highest visibility, and then insert the substance to be measured that has anisotropy depending on the polarization direction. /
Insert into the optical path between the two plates and the analyzer, operate the variable optical delay path to determine the optical path length that provides the highest visibility, and calculate the absolute value of the optical propagation time difference from the optical path length difference. A light propagation time difference measurement method characterized by:
JP13081780A 1980-09-22 1980-09-22 Method for measuring time difference of light propagation Granted JPS5756777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13081780A JPS5756777A (en) 1980-09-22 1980-09-22 Method for measuring time difference of light propagation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13081780A JPS5756777A (en) 1980-09-22 1980-09-22 Method for measuring time difference of light propagation

Publications (2)

Publication Number Publication Date
JPS5756777A JPS5756777A (en) 1982-04-05
JPH0338555B2 true JPH0338555B2 (en) 1991-06-11

Family

ID=15043400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13081780A Granted JPS5756777A (en) 1980-09-22 1980-09-22 Method for measuring time difference of light propagation

Country Status (1)

Country Link
JP (1) JPS5756777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114206A (en) * 2006-11-30 2007-05-10 National Institute Of Advanced Industrial & Technology Method for precision measurement of group refractive index of optical material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235189B2 (en) * 2009-12-18 2013-07-10 日本電信電話株式会社 Optical fiber refractive index measuring device and optical fiber refractive index measuring method
CN103776801B (en) * 2012-10-17 2016-12-21 成都光明光电股份有限公司 The detection method of optical element refractive index and detection device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827717A (en) * 1971-06-18 1973-04-12
JPS5010509A (en) * 1973-05-24 1975-02-03
JPS5225117A (en) * 1975-08-18 1977-02-24 Kanebo Ltd Prepapation of flame retardant polyamide
JPS5231750A (en) * 1975-04-07 1977-03-10 Toray Ind Inc Print device
JPS553407U (en) * 1978-06-20 1980-01-10

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827717A (en) * 1971-06-18 1973-04-12
JPS5010509A (en) * 1973-05-24 1975-02-03
JPS5231750A (en) * 1975-04-07 1977-03-10 Toray Ind Inc Print device
JPS5225117A (en) * 1975-08-18 1977-02-24 Kanebo Ltd Prepapation of flame retardant polyamide
JPS553407U (en) * 1978-06-20 1980-01-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114206A (en) * 2006-11-30 2007-05-10 National Institute Of Advanced Industrial & Technology Method for precision measurement of group refractive index of optical material

Also Published As

Publication number Publication date
JPS5756777A (en) 1982-04-05

Similar Documents

Publication Publication Date Title
CN108592800B (en) A kind of laser heterodyne interference measuring device and method based on plane mirror reflection
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
CA1316367C (en) Interferometer for measuring optical phase differences
CN102933944B (en) System and method for polarization measurement
JP4316691B2 (en) Device for measuring excursion
JPH08240792A (en) Beam outputting device and beam outputting method
CN109724648B (en) Device and method for synchronously measuring temperature and strain based on orthogonal polarization dual-wavelength laser multi-longitudinal-mode self-mixing effect
JPH07101166B2 (en) Interferometer
US6947137B2 (en) System and method for measuring birefringence in an optical material
US4798468A (en) Interference apparatus for detecting state of wave surface
US5517022A (en) Apparatus for measuring an ambient isotropic parameter applied to a highly birefringent sensing fiber using interference pattern detection
JPS6159224A (en) Method and device for measuring state of polarization of quasi-monochromatic light for actual time
KR100200453B1 (en) Method and apparatus for detecting optical type pressure
JPS61219803A (en) Apparatus for measuring physical quantity
CN110030921B (en) Shearing-quantity-adjustable transmission-type dual-frequency laser differential interference measuring device and method
JPH0338555B2 (en)
GB2117132A (en) Interferometer
CN111562002B (en) High-flux high-resolution high-contrast polarization interference spectrum imaging device and method
CA1308573C (en) Method of and apparatus for measuring polarization beat length in highly birefringent single mode optical fibres
JPH0118371B2 (en)
Kotani et al. Long-baseline optical fiber interferometer instruments and science
US3039298A (en) Comparison system for photoelastic measurements
JPH0755571A (en) Plarization dispersion measuring instrument
CN113804315B (en) Laser scanning frequency bandwidth calibration device and calibration method
CN213843029U (en) Refractive index measuring device based on light coherent image