JP5223081B2 - Online retardation measuring device for polarizing plate - Google Patents

Online retardation measuring device for polarizing plate Download PDF

Info

Publication number
JP5223081B2
JP5223081B2 JP2009158613A JP2009158613A JP5223081B2 JP 5223081 B2 JP5223081 B2 JP 5223081B2 JP 2009158613 A JP2009158613 A JP 2009158613A JP 2009158613 A JP2009158613 A JP 2009158613A JP 5223081 B2 JP5223081 B2 JP 5223081B2
Authority
JP
Japan
Prior art keywords
phase difference
measured
wavelength
measuring
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009158613A
Other languages
Japanese (ja)
Other versions
JP2011013140A (en
Inventor
清和 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2009158613A priority Critical patent/JP5223081B2/en
Publication of JP2011013140A publication Critical patent/JP2011013140A/en
Application granted granted Critical
Publication of JP5223081B2 publication Critical patent/JP5223081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は偏光板の位相差をオンラインで測定する位相差測定装置に関する。   The present invention relates to a retardation measuring apparatus that measures the retardation of a polarizing plate online.

透明フィルムの位相差を測定する方法としては、偏光子と検光子それぞれの透過軸を平行に配置し、偏光子と検光子との間に透明フィルムを置き、偏光子と検光子とを平行ニコル状態に保って1回転し、そのときの透過光強度変化から被測定物の位相差と配向角とを求める方法(平行ニコル回転法)がある。   As a method for measuring the phase difference of the transparent film, the transmission axes of the polarizer and the analyzer are arranged in parallel, a transparent film is placed between the polarizer and the analyzer, and the polarizer and the analyzer are parallel Nicols. There is a method (parallel Nicol rotation method) in which the phase difference and the orientation angle of the object to be measured are determined from the change in transmitted light intensity at that time, while rotating in one state.

平行ニコル回転法をオンライン測定に適用し、単一波長の測定光を用いて透明フィルム・シートの位相差と配向角とをオンラインで測定可能にしたものがあり(特許文献1,2参照)、実際に液晶表示装置用の位相差フィルム製造工程で使用されている。   The parallel Nicol rotation method is applied to on-line measurement, and the phase difference and orientation angle of a transparent film / sheet can be measured on-line using a single wavelength measurement light (see Patent Documents 1 and 2). It is actually used in the manufacturing process of retardation films for liquid crystal display devices.

また、オンライン測定ではないが平行ニコル回転法を用いて可視域の複数の波長で位相差を測定し、その結果から位相差の波長分散特性を求めることもできる(特許文献3)。そのような装置としては、例えば王子計測機器製の位相差測定装置KOBRA−WRがあり、特に光学フィルム分野で利用されている。   Further, although not on-line measurement, the phase difference can be measured at a plurality of wavelengths in the visible range using the parallel Nicol rotation method, and the wavelength dispersion characteristic of the phase difference can be obtained from the result (Patent Document 3). As such an apparatus, for example, there is a phase difference measuring apparatus KOBRA-WR manufactured by Oji Scientific Instruments, which is used particularly in the field of optical films.

さらに、近赤外域の複数の波長を用いて平行ニコル回転法により偏光板の位相差の波長分散特性を測定する装置も王子計測機器より製品化され、偏光板用位相差測定装置KOBRA-WX/IRとして市販されており、オフラインでの検査装置として利用されている。   Furthermore, a device for measuring the wavelength dispersion characteristic of the retardation of the polarizing plate using a parallel Nicol rotation method using a plurality of wavelengths in the near infrared region is also commercialized by Oji Scientific Instruments, and a retardation measuring device for polarizing plates KOBRA-WX / It is commercially available as IR and is used as an off-line inspection apparatus.

平行ニコル回転法で位相差の波長分散特性を測定するための基本的な測定系は図2のようになる。そこでは、偏光子54と検光子55それぞれの透過軸を平行に配置し、偏光子54と検光子55との間に試料57を置き、偏光子54と検光子55を平行ニコル状態に保ってモータ56により1回転させる。前述の偏光板用の位相差測定装置KOBRA−WX/IRは、光源にハロゲンランプを用い、光源からの光束を横切るようにフィルタホルダ60を配置し、フィルタホルダ60に配置した近赤外域の複数、例えば6つのバンドパスフィルタ61−1〜61−6を、フィルタホルダ60の回転により切り替えて、異なる6つの波長に対する位相差測定値から波長分散式を得ている。図2の装置はオフライン用に開発されたものであり、1点あたり30秒前後の測定時間を要しオンライン測定には適さない。   A basic measurement system for measuring the wavelength dispersion characteristic of the phase difference by the parallel Nicol rotation method is as shown in FIG. There, the transmission axes of the polarizer 54 and the analyzer 55 are arranged in parallel, a sample 57 is placed between the polarizer 54 and the analyzer 55, and the polarizer 54 and the analyzer 55 are kept in a parallel Nicol state. The motor 56 makes one rotation. The above-mentioned retardation measuring device KOBRA-WX / IR for polarizing plates uses a halogen lamp as a light source, disposes a filter holder 60 so as to cross a light beam from the light source, and a plurality of near-infrared regions disposed on the filter holder 60. For example, the six band pass filters 61-1 to 61-6 are switched by the rotation of the filter holder 60, and the chromatic dispersion formula is obtained from the phase difference measurement values for six different wavelengths. The apparatus shown in FIG. 2 was developed for off-line use, and requires a measurement time of about 30 seconds per point, and is not suitable for online measurement.

上述の装置はいずれも平行ニコル回転法を測定原理にしている。図1はその平行ニコル回転法の測定原理を説明するための図で、測定波長λと位相差Rとによって表されるC(=cos2πR/λ)(縦軸)を位相差R(横軸)に対して示したものである。その下に示した図形は、それぞれの位相差をもつ被測定物に対して偏光子と検光子とを平行ニコル状態に保って1回転したときの透過光の検出強度図形である。   All of the above-mentioned apparatuses use the parallel Nicol rotation method as a measurement principle. FIG. 1 is a diagram for explaining the measurement principle of the parallel Nicol rotation method. C (= cos 2πR / λ) (vertical axis) represented by a measurement wavelength λ and a phase difference R is a phase difference R (horizontal axis). Is shown. The figure shown below is a detected intensity figure of transmitted light when the object to be measured having each phase difference is rotated once while the polarizer and the analyzer are kept in a parallel Nicol state.

特許第2791506号公報Japanese Patent No. 2791506 特許第2927145号公報Japanese Patent No. 2927145 特許第2791480号公報Japanese Patent No. 2791480

図1の波長λと位相差Rとの関係図からも分かるように、Rがλ/2の整数倍近傍の値をとるときには、Cは1又は−1なり、コサインカーブの山又は谷の位置になるために位相差Rの測定誤差が大きくなる。したがって、バンドパスフィルタを用いるときのように固定した6つの異なる波長で測定した場合、いずれかの波長の測定値が|C|=1.0又はそれに近くなって誤差の大きい範囲内に入ると、その波長での位相差Rの誤差が大きくなり、波長分散式の誤差も大きくなる。図3によりそのことを具体的に説明する。図3は波長850nmから1100nmの範囲で約50nmごとに異なる6つの波長を用いて偏光板の位相差を測定し(グラフ中の黒丸の点)、波長分散式を計算して分散曲線をグラフにした例である。グラフの中の網掛け部は|C|≧0.92の範囲を示している。|C|≧0.92は測定誤差が大きくなる範囲の一例として示したもので、厳密なものではない。誤差の許容範囲を広くすることができるのであれば、例えば|C|≧0.95とすればよく、その場合には図3中の網掛け部が狭くなってデータとして使用できる有効な範囲が広くなる。図3のように|C|≧0.92を誤差の大きい範囲として扱えば、波長950nmと1000nmの2つの波長に対する測定値の誤差が大きいものとなる。そのため、波長分散式を求めようとすると、6つの波長で測定しているにもかかわらずその内の4つの波長の測定値から求めなければならなくなる。   As can be seen from the relationship between the wavelength λ and the phase difference R in FIG. 1, when R takes a value in the vicinity of an integer multiple of λ / 2, C becomes 1 or −1, and the position of the crest or valley of the cosine curve Therefore, the measurement error of the phase difference R becomes large. Therefore, when measuring at six different fixed wavelengths as in the case of using a band-pass filter, if the measured value of any wavelength falls within a large error range when | C | = 1.0 or close to it. The error of the phase difference R at that wavelength increases, and the error of the wavelength dispersion formula also increases. This will be specifically described with reference to FIG. FIG. 3 shows the phase difference of a polarizing plate using six different wavelengths every about 50 nm in the wavelength range from 850 nm to 1100 nm (black dots in the graph), and calculates the wavelength dispersion formula to show the dispersion curve in the graph. This is an example. The shaded portion in the graph indicates a range of | C | ≧ 0.92. | C | ≧ 0.92 is shown as an example of a range in which the measurement error increases, and is not exact. If the allowable range of error can be increased, for example, | C | ≧ 0.95 may be set. In this case, the shaded portion in FIG. Become wider. If | C | ≧ 0.92 is handled as a large error range as shown in FIG. 3, the error in the measured values for the two wavelengths of 950 nm and 1000 nm becomes large. Therefore, when trying to obtain the chromatic dispersion formula, it is necessary to obtain from the measured values of the four wavelengths among them even though the measurement is performed at the six wavelengths.

本発明は、偏光板製造ラインに設置して、位相差Rの値によらず精度よく位相差を測定することができて、正確な位相差の波長分散特性Rp(λ)を得ることのできるオンライン測定装置を提供することを目的とするものである。 The present invention can be installed in a polarizing plate production line, can accurately measure the phase difference regardless of the value of the phase difference R, and can obtain a wavelength dispersion characteristic R p (λ) of an accurate phase difference. An object of the present invention is to provide an on-line measuring device that can be used.

本発明の偏光板用オンライン位相差測定装置は、偏光板からなる移動中の被測定物に偏光子を通して近赤外域の多波長成分を含む測定光が照射され、被測定物を透過した測定光が検光子を通して分光器(分散素子及び検出器を含む。)に入射して波長λiごとの検出光強度Ii(θ)(iは波長がλiであることを示し、θは後述の偏光方位である。)が測定される位相差測定部と、被測定物に対して直交重ねになる方位に配置された位相差板と、位相差測定部で測定された波長λiごとの検出光強度Ii(θ)から前記被測定物の位相差を少なくとも算出する演算処理部を備えている。   The on-line phase difference measuring apparatus for a polarizing plate of the present invention is a measurement light that is irradiated with measurement light containing multi-wavelength components in the near-infrared region through a polarizer onto a moving measurement object consisting of a polarizing plate, and transmitted through the measurement object. Is incident on a spectroscope (including a dispersive element and a detector) through an analyzer and is detected light intensity Ii (θ) for each wavelength λi (i indicates that the wavelength is λi, and θ is a polarization azimuth described later. A phase difference measuring unit to be measured, a phase difference plate arranged in a direction perpendicular to the object to be measured, and a detected light intensity Ii (for each wavelength λi measured by the phase difference measuring unit). An arithmetic processing unit is provided for calculating at least the phase difference of the device under test from θ).

被測定物に対して直交重ねになる方位に配置されたその位相差板は、その位相差板と被測定物との直交重ね状態での位相差値が測定光の波長λの範囲においてλ/2以下となり、かつ|C|<K(C=cos2πR/λ、Kは0.90〜0.95の範囲の数値をとる定数である。)となるように位相差値が設定されている。   The retardation plate arranged in an orientation that is orthogonally overlapped with the object to be measured has a retardation value of λ / in the range of the wavelength λ of the measurement light when the retardation plate and the object to be measured are orthogonally stacked. The phase difference value is set so as to be 2 or less and | C | <K (C = cos 2πR / λ, K is a constant having a numerical value in the range of 0.90 to 0.95).

|C|<Kは測定誤差の大きい範囲を避けるための条件である。KはCを表すコサインカーブの山又は谷、すなわち次数の境界の前後いくらの範囲を誤差が大きいとして扱い切り捨てるかという範囲を示す定数である。Kを1に近い大きな数値に設定すればコサインカーブの山又は谷に近いところまで有効なデータとして扱うことになるので、扱うことのできるデータの範囲が広くなるが、誤差が大きくなる。逆に、Kに1から離れた小さい数値を設定すればコサインカーブの山又は谷から離れたところだけを有効なデータとして扱うことになるので、誤差は小さくなるが、扱うことのできるデータの範囲が狭くなる。例えば、測定波長λを1000nmとすると、R=(λ・cos-1C)/2πとして逆算すると、K=0.95の設定であれば位相差50nmに相当するので次数境界前後はその2倍の100nmを誤差が大きいと見なすことになり、K=0.92の設定であれば位相差64nmに相当するので次数境界前後はその2倍の128nmを誤差が大きいと見なすことになり、K=0.90の設定であれば位相差72nmに相当するので次数境界前後はその2倍の144nmを誤差が大きいと見なすことになる。可視域での測定の結果から、波長によらずK=0.90〜0.95の範囲が適当である。より誤差の少ないことを重視するならKの値を小さく設定すればよい。本発明の好ましい形態では、多くの波長に対する位相差値を利用して最終的には最小二乗法によって式の係数a、bを決定するので、K=0.95に設定してもよい。 | C | <K is a condition for avoiding a large measurement error range. K is a constant indicating a cosine curve peak or valley representing C, that is, a range of how much before and after the order boundary is treated as being large and discarded. If K is set to a large numerical value close to 1, it will be treated as valid data up to the crest or valley of the cosine curve, so that the range of data that can be handled becomes wide, but the error becomes large. Conversely, if you set a small value apart from 1 for K, only the part away from the crest or valley of the cosine curve will be treated as valid data, so the error will be small, but the range of data that can be handled Becomes narrower. For example, assuming that the measurement wavelength λ is 1000 nm, when calculated backward as R = (λ · cos −1 C) / 2π, if K = 0.95 is set, the phase difference is equivalent to 50 nm, so the order boundary is about twice that. 100 nm is considered to have a large error, and if K = 0.92, it corresponds to a phase difference of 64 nm. Therefore, before and after the order boundary, 128 nm that is twice that is regarded as a large error, and K = If it is set to 0.90, it corresponds to a phase difference of 72 nm, and therefore, 144 nm, which is twice that of the order boundary, is regarded as having a large error. From the result of measurement in the visible range, a range of K = 0.90 to 0.95 is appropriate regardless of the wavelength. If importance is attached to less error, the value of K may be set small. In the preferred embodiment of the present invention, the coefficients a and b of the equation are finally determined by the least square method using the phase difference values for many wavelengths, so K = 0.95 may be set.

直交重ねとは、被測定物の偏光板の遅相軸(MD方向(被測定物の移動方向))と位相差板の遅相軸とが互いに直交している状態をいう。   The term “overlapping” refers to a state in which the slow axis of the polarizing plate of the object to be measured (MD direction (moving direction of the object to be measured)) and the slow axis of the phase difference plate are orthogonal to each other.

位相差測定部では、偏光子、検光子及び分光器は被測定物の移動方向に沿って配置された第1、第2、第3の3組を含み、各組の偏光子と検光子は平行ニコルの状態に配置され、かつ各組の偏光子と検光子は基準方位に対する偏光方位θ(透過軸方位)がそれぞれ0°,45°,90°に設定されている。   In the phase difference measuring unit, the polarizer, the analyzer, and the spectroscope include first, second, and third sets arranged along the moving direction of the object to be measured. Each set of polarizer and analyzer includes The polarizers and analyzers of the pair of polarizers and analyzers are arranged in the parallel Nicols state, and the polarization directions θ (transmission axis directions) with respect to the reference direction are set to 0 °, 45 °, and 90 °, respectively.

平行ニコル配置の場合、一般的に検出光強度は下記の式で表現される。
ここで、θは偏光子・検光子の透過軸方位、I0(θ)は被測定物がないときの検出光強度、αは直交する2つの光学主軸方向に直線偏光が透過するときの振幅透過率比、φは被測定物の配向角(被測定物の2つの光学主軸のうちの屈折率が大きい方向すなわち遅相軸の方向)、Rは被測定物の位相差、λは測定波長である。θとφは基準方位に選んだMD方向を基準にしたときの角度である。
In the case of the parallel Nicol arrangement, the detection light intensity is generally expressed by the following equation.
Where θ is the transmission axis orientation of the polarizer / analyzer, I 0 (θ) is the detected light intensity when there is no object to be measured, and α is the amplitude when linearly polarized light is transmitted in the two optical principal axis directions orthogonal to each other. The transmittance ratio, φ is the orientation angle of the object to be measured (the direction in which the refractive index of the two optical main axes of the object to be measured is large, that is, the direction of the slow axis), R is the phase difference of the object to be measured, and λ is the measurement wavelength It is. θ and φ are angles based on the MD direction selected as the reference orientation.

(1)式において、I0(θ)及びRは測定波長λに依存する。また、透明フィルムの場合αはほぼ1であるが、被測定物が偏光板のときはヨウ素の二色性のために近赤外域の短波長側では2つの光学主軸方向の直線偏光の透過率に差が生じて、αは1より小さくなる。実際に、単体透過率が約36%から約44%の異なる5種の偏光板について、波長850nmから1100nmまでの約50nmごとの波長における、振幅透過率比αを測定すると図4のようになり、波長850nmと900nmではαの値が1よりかなり小さくなっていることがわかる。 In the equation (1), I 0 (θ) and R depend on the measurement wavelength λ. In the case of a transparent film, α is approximately 1, but when the object to be measured is a polarizing plate, the transmittance of linearly polarized light in two optical principal axis directions on the short wavelength side in the near infrared region due to dichroism of iodine. And α is smaller than 1. Actually, when five types of polarizing plates having different single transmittances of about 36% to about 44% are measured for the amplitude transmittance ratio α at wavelengths of about 50 nm from 850 nm to 1100 nm, the result is as shown in FIG. It can be seen that the value of α is considerably smaller than 1 at wavelengths of 850 nm and 900 nm.

一般的に偏光板の製造方法は、まずポリビニルアルコールフィルム(以下PVAフィルムという。)をMD方向に5倍前後の延伸倍率で一軸延伸し、それにヨウ素を吸着させて偏光フィルムを作り、その偏光フィルムの両面に保護フィルムのトリアセチルセルロースフィルム(以下TACフィルムという。)を貼り合わせる。したがって、(1)式の中の配向角φについて考えると、PVAフィルムではφ=0°、さらにヨウ素もPVA分子によってMD向に配向しているのでφ=0°になっている。また、TACフィルムの配向角はTD方向(MD方向に直交する方向)になっている場合が多いのでφ=90°である。2つ以上の位相差層が重なる場合、全体として測定される位相差は各層の遅相軸が平行であれば位相差は相加状態になり、各層の遅相軸が直交であれば位相差は相減状態になる。したがって偏光板の場合、測定される位相差は(PVAフィルムの位相差+ヨウ素の位相差−TACフィルムの位相差)となる。しかし、TACフィルムは殆ど等方性であるので位相差は数nmしかなく、本発明で測定波長としている近赤外域では無視できる値である。   In general, a polarizing plate is produced by first uniaxially stretching a polyvinyl alcohol film (hereinafter referred to as a PVA film) in the MD direction at a stretching ratio of about 5 times, and adsorbing iodine to the polarizing film to form a polarizing film. A triacetyl cellulose film (hereinafter referred to as TAC film) as a protective film is bonded to both sides. Therefore, considering the orientation angle φ in the equation (1), φ = 0 ° in the PVA film, and iodine is also oriented in the MD direction by the PVA molecules, so φ = 0 °. Further, since the orientation angle of the TAC film is often in the TD direction (direction orthogonal to the MD direction), φ = 90 °. When two or more retardation layers overlap, the phase difference measured as a whole is an additive state if the slow axes of each layer are parallel, and the phase difference if the slow axes of each layer are orthogonal. Is in a declining state. Therefore, in the case of a polarizing plate, the measured phase difference is (PVA film phase difference + iodine phase difference-TAC film phase difference). However, since the TAC film is almost isotropic, the phase difference is only a few nm, which is a negligible value in the near-infrared region which is the measurement wavelength in the present invention.

偏光板用位相差測定装置KOBRA−WX/IRを用いて、図4で測定した単体透過率の異なる5種の偏光板について近赤外域で6つの波長に対する位相差を測定し、その結果を次の波長分散式(3)で表してグラフにすると図5の(a)のようになる。
ここで、a,b,cは被測定物ごとに決まる定数であるが、吸収端波長と呼ばれるcについてはヨウ素系偏光板の場合、c=600nmとすると単体透過率が異なる偏光板であっても(3)式でよく近似できることが経験的にわかっている。
Using the retardation measuring device KOBRA-WX / IR for polarizing plates, the phase difference for six wavelengths in the near infrared region was measured for the five types of polarizing plates having different single transmittances measured in FIG. When the graph is expressed by the wavelength dispersion formula (3), the result is as shown in FIG.
Here, a, b, and c are constants determined for each object to be measured. For c called the absorption edge wavelength, in the case of an iodine-based polarizing plate, if c = 600 nm, the single transmittance is different. It is empirically known that can be well approximated by equation (3).

PVAフィルムの位相差は、可視域の波長に対して殆ど変化しないフラットな波長分散特性を示すことはよく知られており、さらに波長を近赤外域まで広げても変化しないことも経験的にわかっている。そこで、偏光板の位相差の波長分散特性を(3)式で表したときの定数aがPVAフィルムの位相差に相当すると考えることができるので、図5(a)の5本の曲線をそれぞれ(3)式で表した後、(3)式の右辺第二項の値を波長に対してグラフにすると図5(b)が得られる。さらに、図5(b)の縦軸を波長1000nmの位相差を基準にした比率グラフに描き直すと図5(c)のグラフになる。図5(c)より、(3)式の右辺第二項の値の比率グラフは、単体透過率が異なる偏光板を測定した場合でも、殆ど1つの曲線として表されることが分かる。すなわち、この比率グラフがヨウ素自体の波長分散特性に相当すると考えて差し支えない。したがって、近赤外域で偏光板の位相差の波長分散特性を測定し、(3)式を用いて波長分散式を表したとき、図6のようにPVAフィルムの位相差とヨウ素の位相差の和が観測されることを意味している。   It is well known that the retardation of the PVA film exhibits a flat wavelength dispersion characteristic that hardly changes with respect to the wavelength in the visible range, and it has also been empirically found that it does not change even when the wavelength is extended to the near infrared range. ing. Therefore, since it can be considered that the constant a when the wavelength dispersion characteristic of the retardation of the polarizing plate is expressed by the equation (3) corresponds to the retardation of the PVA film, the five curves in FIG. FIG. 5B is obtained by expressing the value of the second term on the right side of the equation (3) with respect to the wavelength after the equation (3). Furthermore, when the vertical axis of FIG. 5B is redrawn into a ratio graph based on the phase difference of the wavelength of 1000 nm, the graph of FIG. 5C is obtained. From FIG. 5 (c), it can be seen that the ratio graph of the value of the second term on the right side of the equation (3) is expressed as almost one curve even when polarizing plates having different single transmittances are measured. That is, it can be considered that this ratio graph corresponds to the wavelength dispersion characteristic of iodine itself. Therefore, when measuring the wavelength dispersion characteristic of the retardation of the polarizing plate in the near infrared region and expressing the wavelength dispersion using the equation (3), the retardation of the PVA film and the retardation of iodine as shown in FIG. It means that the sum is observed.

偏光板を測定する場合、MD方向を角度の基準にした配向角φはほぼ0°であり、広幅の製造ラインであっても配向角が0°からずれないように精度よく生産されている。したがって、(1)式でφ=0°とおくとθ=0°,45°,90°の3つの検出光強度I(0)、I(45)、I(90)から次式によってCの値が求まる。
Cの値が求まると、次式によって位相差Rが計算できる。
ここで、mは次数で自然数1、2、3、・・・であり、図1に示すようにλ/2ごとに増加するので具体的には[2×R/λ]の整数部に1加えた数値になる。一般的な偏光板の位相差が図5(a)の程度であるとすると、波長850nmから1100nmの波長に対して次数mは2から4の値をとることになる。
When measuring a polarizing plate, the orientation angle φ with respect to the MD direction as an angle reference is approximately 0 °, and even a wide production line is accurately produced so that the orientation angle does not deviate from 0 °. Therefore, if φ = 0 ° in the equation (1), the three detection light intensities I (0), I (45), and I (90) at θ = 0 °, 45 °, and 90 ° The value is obtained.
When the value of C is obtained, the phase difference R can be calculated by the following equation.
Here, m is a natural number, 1, 2, 3,..., And increases every λ / 2 as shown in FIG. 1, and specifically, 1 in the integer part of [2 × R / λ]. It becomes the added number. Assuming that the phase difference of a general polarizing plate is in the order of FIG. 5A, the order m takes a value of 2 to 4 with respect to a wavelength of 850 nm to 1100 nm.

本発明の測定法で実際に測定に使用できる波長範囲を考えると、光源については近赤外域の多波長を含み、かつ照度安定性、寿命および価格を考慮するとハロゲンランプが適しており、さらに分光器の波長検出範囲等を考慮すると、測定波長は850nmから1050nmの範囲が望ましい。したがって、本発明の方法で位相差を算出するために必要な3つの検出光強度I(0),I(45),I(90)を、例えば分光器で波長0.5nm刻みで検出すると仮定すると、波長に対して(1050−850)/0.5=400組の値を取り込むことができる。しかし、(6)式を用いて次数mを2から4の範囲で適当に変えて、400個の位相差を算出して分散曲線を描いたとしても、図3と同じように次数の境界近傍では測定誤差が大きくなる問題を有しており、400個すべての値を利用できない場合が多い。   Considering the wavelength range that can be actually used for measurement by the measurement method of the present invention, the light source includes multiple wavelengths in the near-infrared region, and a halogen lamp is suitable in consideration of illuminance stability, lifetime, and price. Considering the wavelength detection range of the instrument, the measurement wavelength is preferably in the range of 850 nm to 1050 nm. Accordingly, it is assumed that the three detection light intensities I (0), I (45), and I (90) necessary for calculating the phase difference by the method of the present invention are detected at a wavelength of 0.5 nm with a spectroscope, for example. Then, (1050−850) /0.5=400 values can be captured with respect to the wavelength. However, even if the degree m is appropriately changed in the range of 2 to 4 using the equation (6) and 400 phase differences are calculated and a dispersion curve is drawn, the vicinity of the order boundary as in FIG. However, there is a problem that the measurement error becomes large, and all 400 values cannot be used in many cases.

そこで、2つの位相差層を直交重ねしたときの相減現象を利用して、TD方向に遅相軸を持つ位相差R0が既知の位相差板を被測定物の偏光板と重ねて測定するようにする。例えば、図5(a)の偏光板B_38とC_38について考えたとき、それぞれの偏光板に対してR0が900nmと800nmの殆ど波長依存性のない材料を用いて作製した位相差板を偏光板に対して直交重ねになるようにして測定した場合、図7のような波長分散特性が得られる。この曲線は850nmから1050nmの範囲のすべての波長に対してm=1の値になっており、例えば400個の位相差値を得た場合すべての値を利用して分散曲線の係数a,bを決定することができる。このとき、重ね合わせに用いる位相差板の位相差をいくらにするかは、測定したい偏光板について図5(a)のような波長分散特性を調べれば容易に判断できる。 Therefore, by utilizing the phase down phenomenon when the overlapped orthogonal two retardation layers, measured overlapping the polarizing plate of the object to be measured phase difference R 0 having the slow axis in TD direction is a known phase difference plate To do. For example, when considering the polarizing plates B_38 and C_38 in FIG. 5A, a retardation plate manufactured by using a material having almost no wavelength dependency with R 0 of 900 nm and 800 nm is used for each polarizing plate. When the measurement is performed so as to be orthogonally stacked, the wavelength dispersion characteristic as shown in FIG. 7 is obtained. This curve has a value of m = 1 for all wavelengths in the range of 850 nm to 1050 nm. For example, when 400 phase difference values are obtained, the coefficients a and b of the dispersion curve are obtained using all the values. Can be determined. At this time, how much the phase difference of the phase difference plate used for superposition is to be determined can be easily determined by examining the wavelength dispersion characteristics as shown in FIG.

波長分散特性を持つ材料を使用して位相差板を作製したときは、あらかじめその位相差の波長分散特性R0(λ)を近赤外域で測定し、その特性を(3)式と同じ形で表し、その係数a0,b0,c0を定数として、偏光板と位相差板の直交重ね合わせ状態で測定できる位相差R'(λ)を次式で表わす。
(7)式においてa0,b0,c0はすべて既知であるので、400個の位相差から最小二乗法で係数a、bを決定できる。このとき、PVAフィルムのように波長分散のない材料で作製した位相差板を使用すれば、位相差板の位相差は一定値R0となり(7)式の代わりに次のようになる。
いずれの式で表した場合も係数a、bが求まれば、前述の説明の通りPVAフィルムの位相差とヨウ素の位相差とを同時に得ることができる。
When a phase difference plate is manufactured using a material having wavelength dispersion characteristics, the wavelength dispersion characteristic R 0 (λ) of the retardation is measured in the near infrared region in advance, and the characteristics are the same as the formula (3). Where the coefficients a 0 , b 0 , and c 0 are constants, and the phase difference R ′ (λ) that can be measured in a state where the polarizing plate and the phase difference plate are orthogonally overlapped is expressed by the following equation.
Since a 0 , b 0 and c 0 are all known in the equation (7), the coefficients a and b can be determined from the 400 phase differences by the least square method. At this time, if a phase difference plate made of a material having no wavelength dispersion such as a PVA film is used, the phase difference of the phase difference plate becomes a constant value R 0 as follows instead of the equation (7).
In any case, if the coefficients a and b are obtained, the phase difference of the PVA film and the phase difference of iodine can be obtained simultaneously as described above.

被測定物および位相差板がない状態での3組の偏光子と検光子による分光器検出光強度I0i(0),I0i(45),I0i(90)は、本来同じ波長では同じ値になるはずである。しかし、実際には各偏光子・検光子の透過率の僅かな違い、あるいは3台の分光器の検出感度の違い等により、同じ値にはならない。そこで、それらのすべての値が適当な一定値(例えば、光量検出のAD変換が16ビット=65536の場合区切りよく70000とする。)になるように、分光器の検出波長λiごとに係数βi(0),βi(45),βi(90)を作る。
被測定物と位相差板が重ね合わさった状態での、3組の偏光子と検光子による波長ごとの検出光強度Ii(0),Ii(45),Ii(90)に対して各係数を掛けた値を算出する。
分光器の検出波長ごとに(4)式、(5)式のI(0),I(45),I(90)の代わりに、(10)式で計算したI'i(0),I'i(45),I'i(90)を用いてCを計算し、検出波長ごとの位相差をm=1として(6)式から求める。その値が、(7)式あるいは(8)式のR'(λ)に相当する。
The spectroscope-detected light intensities I 0i (0), I 0i (45), and I 0i (90) by the three sets of polarizers and analyzers in the absence of the object to be measured and the retardation plate are essentially the same at the same wavelength. Should be a value. However, in reality, the same value is not obtained due to a slight difference in the transmittance of each polarizer / analyzer or a difference in detection sensitivity between the three spectrometers. Therefore, the coefficient β is set for each detection wavelength λ i of the spectroscope so that all of these values become appropriate constant values (for example, when the AD conversion for light quantity detection is 16 bits = 65536, it is often set to 70000). i (0), β i (45), β i (90) are created.
With respect to the detected light intensities I i (0), I i (45), and I i (90) for each wavelength by the three sets of polarizers and analyzers in a state where the object to be measured and the retardation plate are overlapped The value multiplied by each coefficient is calculated.
Instead of I (0), I (45), and I (90) in equations (4) and (5) for each detection wavelength of the spectroscope, I ′ i (0), I calculated in equation (10) C is calculated using ' i (45), I' i (90), and the phase difference for each detection wavelength is set to m = 1 and obtained from equation (6). The value corresponds to R ′ (λ) in the equation (7) or (8).

本発明によれば、被測定物および位相差板がない状態での3組の偏光子と検光子による分光器の波長ごとの検出光強度と、被測定物と位相差板が重ね合わさった状態での3組の偏光子と検光子による分光器の波長ごとの検出光強度とから、検出波長ごとにC[=cos(2πR/λ)]を計算し、さらに検出波長ごとの位相差を算出して、位相差の波長分散式の係数を求め、その結果偏光板を構成するPVAフィルムの位相差およびヨウ素の位相差を同時に、精度よく、しかも短時間に測定可能なオンライン測定装置を実現することができる。   According to the present invention, the detected light intensity for each wavelength of the spectroscope by the three sets of polarizers and the analyzer without the measured object and the retardation plate, and the measured object and the retardation plate are superimposed. C [= cos (2πR / λ)] is calculated for each detected wavelength from the three sets of polarizers and the analyzer's detected light intensity for each wavelength, and the phase difference for each detected wavelength is calculated. Thus, an on-line measuring apparatus capable of measuring the retardation of the PVA film and the retardation of iodine constituting the polarizing plate simultaneously and accurately in a short time is obtained. be able to.

平行ニコル回転法の基本的原理を説明するための図である。It is a figure for demonstrating the basic principle of a parallel Nicol rotation method. 平行ニコル回転法によってオフラインで位相差の波長分散特性を測定する場合の測定系の図である。It is a figure of the measurement system in the case of measuring the wavelength dispersion characteristic of a phase difference offline by the parallel Nicol rotation method. 偏光板の波長分散曲線の一例と平行ニコル回転法のときの誤差領域を説明する図である。It is a figure explaining the error area | region at the time of an example of the wavelength dispersion curve of a polarizing plate, and a parallel Nicol rotation method. 各種偏光板の波長ごとの振幅透過率比αの測定例である。It is a measurement example of the amplitude transmittance ratio α for each wavelength of various polarizing plates. (a)各種偏光板の波長分散曲線の測定例である。(b)(a)の測定結果を波長分散式で表し、その第二項の値をグラフにした図である。(c)(b)のグラフの縦軸を比率にして描き直した図である。(A) It is an example of a measurement of the wavelength dispersion curve of various polarizing plates. (B) It is the figure which represented the measurement result of (a) with the wavelength dispersion type, and made the value of the 2nd term into a graph. (C) It is the figure redrawn by making the vertical axis | shaft of the graph of (b) into the ratio. 偏光板におけるPVAフィルムの位相差とヨウ素の位相差を説明する図である。It is a figure explaining the phase difference of the PVA film in a polarizing plate, and the phase difference of an iodine. 本発明の方法の偏光板と位相差板とを直交重ね合わせで測定したときに得られる波長分散曲線の図である。It is a figure of the wavelength dispersion curve obtained when the polarizing plate and phase difference plate of the method of this invention are measured by orthogonal superimposition. 一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example. 実施例における演算処理部を示すブロック図である。It is a block diagram which shows the arithmetic processing part in an Example.

図8は、本発明の偏光板用オンライン位相差測定装置の一実施例の概略構成図であり、位相差測定部と、位相差測定部で測定された波長ごとの検出光強度から被測定物の偏光板の位相差を算出する演算処理部11を備えている。演算処理部11と被測定物7を除く部分が位相差測定部を構成している。   FIG. 8 is a schematic configuration diagram of an embodiment of an on-line phase difference measuring apparatus for polarizing plates according to the present invention. From the phase difference measuring unit and the detected light intensity for each wavelength measured by the phase difference measuring unit, an object to be measured An arithmetic processing unit 11 is provided for calculating the phase difference of the polarizing plate. The portion excluding the arithmetic processing unit 11 and the DUT 7 constitutes a phase difference measuring unit.

位相差測定部において、光源1は例えばハロゲンランプの光をライトガイドで導いた発光源であり、近赤外域の多波長成分を含む測定光として白色光を供給するものである。   In the phase difference measuring unit, the light source 1 is, for example, a light source that guides light from a halogen lamp with a light guide, and supplies white light as measurement light including multi-wavelength components in the near infrared region.

移動する被測定物7に直線偏光の測定光を照射するために被測定物7の一方の面に対向し被測定物7の移動方向に沿って3つの偏光子4a,4b,4cが配置されている。被測定物7の他方の面側には被測定物7を挟んで偏光子4a,4b,4cにそれぞれ対向するように3つの検光子5a,5b,5cが配置されている。偏光子4aと検光子5aは平行ニコルの状態に配置され、偏光子4bと検光子5b、偏光子4cと検光子5cもそれぞれ平行ニコルの状態に配置されている。基準方位をMD方向にして、第1の組の偏光子4aと検光子5aは基準方位に対する偏光方位が0°に設定され、第2の組の偏光子4bと検光子5bは基準方位に対する偏光方位が45°に、第3の組の偏光子4cと検光子5cは基準方位に対する偏光方位が90°に設定されている。さらに、偏光子4a,4b,4cと被測定物7との間には位相差既知の位相差板6が、その遅相軸がTD方向(被測定物7の移動方向と直角)になるように配置されている   In order to irradiate the measurement object 7 with linear polarization to the moving object 7 to be measured, three polarizers 4a, 4b, 4c are arranged along the moving direction of the object 7 to be measured, facing one surface of the object 7 to be measured. ing. Three analyzers 5a, 5b, and 5c are arranged on the other surface side of the object to be measured 7 so as to face the polarizers 4a, 4b, and 4c with the object to be measured 7 interposed therebetween. The polarizer 4a and the analyzer 5a are arranged in a parallel Nicol state, and the polarizer 4b and the analyzer 5b, and the polarizer 4c and the analyzer 5c are also arranged in a parallel Nicol state, respectively. With the reference azimuth as the MD direction, the first set of polarizers 4a and 5a is set to 0 ° with respect to the reference azimuth, and the second set of polarizers 4b and 5b is polarized with respect to the reference azimuth. The azimuth is 45 °, and the third set of polarizers 4c and analyzer 5c is set to have a polarization azimuth of 90 ° with respect to the reference azimuth. Further, a retardation plate 6 having a known phase difference is provided between the polarizers 4a, 4b, 4c and the device under test 7 so that its slow axis is in the TD direction (perpendicular to the moving direction of the device under test 7). Is located in

光源1からの測定光はライトガイド2によって導かれ、集光レンズ3a,3b,3cを経て偏光子4a,4b,4cに照射されている。偏光子4a,4b,4cから位相差板6、被測定物7及び検光子5a,5b,5cを透過した測定光は、それぞれの集光レンズ8a,8b,8cによって集められ、ライトガイド9a,9b,9cを経てそれぞれの分光器10a,10b,10cに導かれる。分光器10a,10b,10cはそれぞれグレーティングなどの分散素子とCCDカメラなどの検出器を含んでいる。   The measuring light from the light source 1 is guided by the light guide 2 and irradiated to the polarizers 4a, 4b, and 4c through the condenser lenses 3a, 3b, and 3c. The measurement light transmitted from the polarizers 4a, 4b, and 4c through the phase difference plate 6, the object to be measured 7, and the analyzers 5a, 5b, and 5c is collected by the respective condensing lenses 8a, 8b, and 8c, and the light guides 9a, The light is guided to the spectroscopes 10a, 10b and 10c through 9b and 9c. Each of the spectrometers 10a, 10b, and 10c includes a dispersion element such as a grating and a detector such as a CCD camera.

分光器10a,10b,10cによって分光され検出されたそれぞれの検出光強度は演算処理部11に取り込まれて、上に述べたように、位相差板6と被測定物7とを直交に重ね合わせたときの位相差R'(λ)が算出され、続いて(7)式又は(8)式に基づいてPVAフィルムの位相差とヨウ素の位相差が求められる。
演算処理部11は専用のコンピュータ又は汎用のパーソナルコンピュータにより実現される。
The detected light intensities detected by the spectroscopy by the spectroscopes 10a, 10b, and 10c are taken into the arithmetic processing unit 11, and as described above, the phase difference plate 6 and the object to be measured 7 are superimposed orthogonally. Then, the phase difference R ′ (λ) is calculated, and then the phase difference of the PVA film and the phase difference of iodine are obtained based on the equation (7) or (8).
The arithmetic processing unit 11 is realized by a dedicated computer or a general-purpose personal computer.

図8の投光部、受光部の3対を例えばフィルム幅方向に対して、両端の位置と中央の位置の3箇所に固定して測定すれば、それぞれの位置におけるMD方向の変化を細かく監視できる。また、図8の投光部、受光部の1対を自動テーブルに載せてTD方向に移動しながら測定すれば、幅方向プロファイルを監視できる。   If three pairs of the light projecting part and the light receiving part in FIG. 8 are fixed and measured at, for example, three positions at both ends and the center with respect to the film width direction, changes in the MD direction at each position are closely monitored. it can. Further, if a pair of the light projecting unit and the light receiving unit in FIG. 8 is placed on an automatic table and measured while moving in the TD direction, the width direction profile can be monitored.

1 光源
4a,4b,4c 偏光子
5a,5b,5c 検光子
6 位相差板
10a,10b,10c 分光器
11 演算処理部
110 光量補正係数算出部
112 位相差算出部
114 分散曲線算出部
DESCRIPTION OF SYMBOLS 1 Light source 4a, 4b, 4c Polarizer 5a, 5b, 5c Analyzer 6 Phase difference plate 10a, 10b, 10c Spectrometer 11 Arithmetic processing part 110 Light quantity correction coefficient calculation part 112 Phase difference calculation part 114 Dispersion curve calculation part

Claims (5)

偏光板からなる移動中の被測定物に偏光子を通して近赤外域の多波長成分を含む測定光が照射され、前記被測定物を透過した測定光が検光子を通して分光器に入射して波長λiごとの検出光強度Ii(θ)(iは波長がλiであることを示し、θは後述の偏光方位である。)が測定される位相差測定部であって、前記偏光子、検光子及び分光器は被測定物の移動方向に沿って配置された第1、第2、第3の3組を含み、各組の偏光子と検光子は平行ニコルの状態に配置され、かつそれぞれの組の偏光子と検光子は基準方位に対する偏光方位θが0°、45°、90°に設定されている位相差測定部と、
前記被測定物に対して直交重ねになる方位に配置された位相差板であって、該位相差板の位相差値は被測定物と該位相差板の直交重ね状態での位相差値Rが測定光の波長λの範囲においてλ/2以下となり、かつ|C|<K(C=cos2πR/λ、Kは0.90〜0.95の範囲の数値をとる定数である。)となるように設定されたものである位相差板と、
前記位相差測定部で測定された波長λiごとの検出光強度Ii(θ)から前記被測定物の位相差を少なくとも算出する演算処理部と、を備え、
前記演算処理部は、3つの偏光方位θに対する波長λiごとの検出光強度Ii(θ)から平行ニコル回転法の原理に基づいて複数波長における位相差を算出し、前記被測定物の位相差の波長分散特性R(λ)を得るオンライン位相差測定装置。
A measuring object including a polarizing plate is irradiated with measuring light including a multi-wavelength component in the near-infrared region through a polarizer, and the measuring light transmitted through the measuring object is incident on a spectroscope through the analyzer and has a wavelength λi. A phase difference measuring unit for measuring the detected light intensity Ii (θ) (where i indicates that the wavelength is λi, and θ is the polarization orientation described later), the polarizer, the analyzer, The spectroscope includes first, second, and third sets arranged along the moving direction of the object to be measured, and each set of polarizer and analyzer is arranged in a parallel Nicol state, and each set The polarizer and analyzer of the phase difference measuring unit in which the polarization direction θ with respect to the reference direction is set to 0 °, 45 °, 90 °,
A phase difference plate arranged in an orientation that is orthogonally stacked with respect to the object to be measured, wherein the phase difference value of the phase difference plate is a phase difference value R when the object to be measured and the phase difference plate are orthogonally stacked. Becomes λ / 2 or less in the range of the wavelength λ of the measurement light, and | C | <K (C = cos 2πR / λ, K is a constant taking a numerical value in the range of 0.90 to 0.95). A retardation plate that is set as follows:
An arithmetic processing unit that calculates at least the phase difference of the object to be measured from the detected light intensity Ii (θ) for each wavelength λi measured by the phase difference measuring unit,
The arithmetic processing unit calculates a phase difference at a plurality of wavelengths from the detected light intensity Ii (θ) for each wavelength λi with respect to three polarization directions θ based on the principle of the parallel Nicol rotation method, and calculates the phase difference of the object to be measured. An on-line phase difference measuring device that obtains chromatic dispersion characteristics R (λ).
被測定物は基材フィルムにヨウ素が吸着配向している偏光板であり、
前記演算処理部は被測定物の位相差の波長分散特性Rp(λ)を以下の波長分散式で表し、
右辺第一項のaを被測定物の基材フィルムの位相差とし、さらにある基準波長λ0における右辺第二項のb/(λ0 2−c2)(cは吸収端波長と呼ばれる定数)の値をヨウ素の位相差とする請求項1に記載のオンライン位相差測定装置。
The object to be measured is a polarizing plate in which iodine is adsorbed and oriented on the base film,
The arithmetic processing unit represents the wavelength dispersion characteristic R p (λ) of the phase difference of the object to be measured by the following wavelength dispersion formula:
The first term on the right side is a retardation of the substrate film of the object to be measured, and b / (λ 0 2 -c 2 ) (c is a constant called the absorption edge wavelength) in the second term on the right side at a certain reference wavelength λ 0 . The on-line phase difference measuring apparatus according to claim 1, wherein the value of) is the phase difference of iodine.
前記位相差板は波長分散特性をもつ材料からなり、近赤外域で測定したときの位相差の波長分散特性R0(λ)が既知の定数a0,b0,c0により(3)式と同じ形で表されるものであり、
前記演算処理部は被測定物と前記位相差板との直交重ね合わせ状態で測定できる位相差R'(λ)を次式で表わし、
複数波長における位相差算出値を用いて最小二乗法により係数a、bを決定するものである請求項2に記載のオンライン位相差測定装置。
The retardation plate is made of a material having wavelength dispersion characteristics, and the wavelength dispersion characteristics R 0 (λ) of the phase difference when measured in the near infrared region is expressed by the equation (3) according to known constants a 0 , b 0 , c 0. Is represented in the same form as
The arithmetic processing unit represents a phase difference R ′ (λ) that can be measured in an orthogonal superposition state of the object to be measured and the phase difference plate by the following equation:
The on-line phase difference measuring apparatus according to claim 2, wherein the coefficients a and b are determined by a least square method using phase difference calculated values at a plurality of wavelengths.
前記位相差板は波長分散特性をもたず、その位相差は一定値R0となっているものであり、
前記演算処理部は被測定物と前記位相差板との直交重ね合わせ状態で測定できる位相差R'(λ)を次式で表わし、
複数波長における位相差算出値を用いて最小二乗法により係数a、bを決定するものである請求項2に記載のオンライン位相差測定装置。
The retardation plate does not have wavelength dispersion characteristics, and the retardation is a constant value R 0 .
The arithmetic processing unit represents a phase difference R ′ (λ) that can be measured in an orthogonal superposition state of the object to be measured and the phase difference plate by the following equation:
The on-line phase difference measuring apparatus according to claim 2, wherein the coefficients a and b are determined by a least square method using phase difference calculated values at a plurality of wavelengths.
前記演算処理部は検出波長λiごとの光量の補正係数βi(θ)として[一定値/(被測定物がないときの分光器検出光強度I0i(θ))]を計算する補正係数算出部をさらに備え、
前記演算処理部は被測定物と前記位相差板との重ね合わせ状態での分光器検出光強度Ii(θ)に替えてβi(θ)で補正された波長ごとの検出光強度βi(θ)×Ii(θ)を用いて位相差を算出する請求項1から4のいずれかに記載のオンライン位相差測定装置。
The arithmetic processing unit calculates [constant value / (spectrometer detection light intensity I 0i (θ))] when there is no object to be measured as a correction coefficient β i (θ) of the light amount for each detection wavelength λ i. A calculation unit;
The arithmetic processing section replaces the spectroscope detection light intensity I i (θ) with the object to be measured and the phase difference plate in place of each other, and detects light intensity β i for each wavelength corrected with β i (θ). The online phase difference measuring apparatus according to claim 1, wherein the phase difference is calculated using (θ) × I i (θ).
JP2009158613A 2009-07-03 2009-07-03 Online retardation measuring device for polarizing plate Expired - Fee Related JP5223081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158613A JP5223081B2 (en) 2009-07-03 2009-07-03 Online retardation measuring device for polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158613A JP5223081B2 (en) 2009-07-03 2009-07-03 Online retardation measuring device for polarizing plate

Publications (2)

Publication Number Publication Date
JP2011013140A JP2011013140A (en) 2011-01-20
JP5223081B2 true JP5223081B2 (en) 2013-06-26

Family

ID=43592189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158613A Expired - Fee Related JP5223081B2 (en) 2009-07-03 2009-07-03 Online retardation measuring device for polarizing plate

Country Status (1)

Country Link
JP (1) JP5223081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945037B2 (en) * 2014-09-29 2016-07-05 住友化学株式会社 Polarizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789575B2 (en) * 1990-07-31 1998-08-20 王子製紙株式会社 Birefringence measurement device
JPH08145878A (en) * 1994-11-21 1996-06-07 Sekisui Chem Co Ltd Double refraction measuring device
JP3414156B2 (en) * 1996-09-06 2003-06-09 王子製紙株式会社 Birefringence measurement device
JP2005031577A (en) * 2003-07-11 2005-02-03 Fuji Photo Film Co Ltd Polarizing film, polarizing plate and liquid crystal display
JP5116345B2 (en) * 2007-04-06 2013-01-09 富士フイルム株式会社 Phase difference measuring method and apparatus

Also Published As

Publication number Publication date
JP2011013140A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
TWI331672B (en) Focused-beam ellipsometer
JP2011141288A5 (en)
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP4779124B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
KR20080090994A (en) Method and apparatus for measuring phase difference
JP5254323B2 (en) Optical strain measurement device
KR20080091002A (en) Apparatus for measuring phase difference using spectrometer
TWI485382B (en) And a measuring device for measuring the inclination angle of the reflective liquid crystal cell
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP5223081B2 (en) Online retardation measuring device for polarizing plate
WO2016001173A1 (en) A broadband linear polarization scrambler
JP5115928B2 (en) Phase difference distribution measuring device
KR20100048907A (en) Method and apparatus for measuring tilt angle of liquid crystal cell
JP5446644B2 (en) Bonding angle measuring device for elliptical polarizing plate
JP6239336B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP5041508B2 (en) Optical characteristic measuring apparatus and method
JP5991230B2 (en) Phase difference measuring method and apparatus
Yang et al. Optical, mechanical, and photoelastic anisotropy of biaxially stretched polyethylene terephthalate films studied using transmission ellipsometer equipped with strain camera and stress gauge
JP2011117792A (en) Device for measuring lamination angle of elliptically polarized light plate
JP2008151559A (en) Infrared thickness/orientation meter, and infrared thickness/orientation measuring method
JP3936712B2 (en) Parameter detection method and detection apparatus for detection object
JP6239335B2 (en) Circular dichroism measuring method and circular dichroic measuring device
Otsuki et al. Mueller matrix microscopic ellipsometer
JP3813834B2 (en) Liquid crystal panel parameter detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5223081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees