JP2011117792A - Device for measuring lamination angle of elliptically polarized light plate - Google Patents

Device for measuring lamination angle of elliptically polarized light plate Download PDF

Info

Publication number
JP2011117792A
JP2011117792A JP2009274456A JP2009274456A JP2011117792A JP 2011117792 A JP2011117792 A JP 2011117792A JP 2009274456 A JP2009274456 A JP 2009274456A JP 2009274456 A JP2009274456 A JP 2009274456A JP 2011117792 A JP2011117792 A JP 2011117792A
Authority
JP
Japan
Prior art keywords
polarizing plate
measured
polarizer
analyzer
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009274456A
Other languages
Japanese (ja)
Inventor
Kiyokazu Sakai
清和 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OJI KEISOKU KIKI KK
New Oji Paper Co Ltd
Original Assignee
OJI KEISOKU KIKI KK
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OJI KEISOKU KIKI KK, Oji Paper Co Ltd filed Critical OJI KEISOKU KIKI KK
Priority to JP2009274456A priority Critical patent/JP2011117792A/en
Publication of JP2011117792A publication Critical patent/JP2011117792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a lamination angle between the transmission axis of a polarized light plate, in a short time, and a phase delaying axis or a phase advancing axis of a retardation plate, in an elliptically polarized light plate. <P>SOLUTION: A polarizer 3 and an analyzer 6 are disposed on a measuring optical path, along which measuring light obtained by making light from a light source 1 be of a single wavelength via a band-pass filter 2 reaches a photodetector 8. The elliptically polarized light plate 5 is disposed as a measuring object sample, on the measuring optical path between the polarizer 3 and the analyzer 6, and the changes in the transmitted light intensity in a circular portion inside the polarizer and the analyzer and an annular portion outside them, when the polarizer 3 and the analyzer 6 rotated by a single rotation, respectively, are separated by a light guide 7 and are led to the photodetector 8 separately, so that the lamination angle of the polarized light plate and the retardation plate of the elliptically polarized light plate is measured, from the difference in the direction of maximum transmitted light intensity of two figures of the changes of the transmitted light intensity in the portions. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液晶表示装置に用いられる偏光板と位相差板とが貼合された楕円偏光板の貼合角を測定する装置に関するものである。   The present invention relates to an apparatus for measuring a bonding angle of an elliptically polarizing plate in which a polarizing plate and a retardation plate used in a liquid crystal display device are bonded.

一般的に、図7(a)のように偏光板5aと位相差板5bとが貼合された積層体5は、偏光板5aから位相差板5bを透過した光が楕円偏光になることから、楕円偏光板と呼ばれる。そのような透過光の偏光解析法の1つに、楕円偏光板の位相差板側に配置した偏光板(検光子又は偏光子)を回転したときの全体の透過光の強度変化から楕円率と楕円方位角とを測定する回転検光子法又は回転偏光子法がある。その方法は、STN(Super Twisted Nematic)型液晶セルの補償用楕円偏光板に代表されるような、位相差板の位相差が100nm以上あり、かつ偏光板と位相差板との貼合角(偏光板の透過軸と位相差板の遅相軸又は進相軸とのなす角)が約20°〜約70°の範囲であるような楕円偏光板であれば、位相差板の位相差と楕円偏光板の貼合角をともに精度よく測定できる(特許文献1参照。)。   In general, in the laminate 5 in which the polarizing plate 5a and the retardation plate 5b are bonded as shown in FIG. 7A, light transmitted from the polarizing plate 5a through the retardation plate 5b becomes elliptically polarized light. , Called an elliptically polarizing plate. One of the polarization analysis methods of such transmitted light is the ellipticity from the intensity change of the entire transmitted light when the polarizing plate (analyzer or polarizer) disposed on the phase difference plate side of the elliptical polarizing plate is rotated. There is a rotating analyzer method or a rotating polarizer method for measuring an elliptical azimuth angle. The method is such that the retardation of the retardation plate is 100 nm or more, as represented by an elliptical polarizing plate for compensation of STN (Super Twisted Nematic) type liquid crystal cells, and the bonding angle between the polarizing plate and the retardation plate ( If the elliptically polarizing plate has an angle between the transmission axis of the polarizing plate and the slow axis or fast axis of the retardation plate in the range of about 20 ° to about 70 °, the retardation of the retardation plate Both the bonding angles of the elliptically polarizing plates can be measured with high accuracy (see Patent Document 1).

しかし、最近の液晶表示装置にはVA(Vertical Alignment)型液晶セルやIPS(In-Plane Switching)型液晶セルが多く利用されており、それらに用いられる楕円偏光板では、偏光板と位相差板は貼合角が概ね約0°又は概ね90°になるように加工される場合がある。ここで「概ね」と表現したのは、正確に0°又は90°に設定されるだけでなく、仕様上0°又は90°から数度ずれた角度を目標に設計された場合もあるためである。いずれにしても、その目標とされた貼合角に対してどの程度のズレ角があるかを測定するには、回転検光子と回転偏光子及び波長板からなる構成の測定装置で測定する方法がある(特許文献2参照。)。   However, VA (Vertical Alignment) type liquid crystal cells and IPS (In-Plane Switching) type liquid crystal cells are widely used in recent liquid crystal display devices, and elliptical polarizing plates used for them are polarizing plates and retardation plates. May be processed so that the bonding angle is approximately 0 ° or approximately 90 °. The term “substantially” is used here because it is not only set to exactly 0 ° or 90 °, but also may have been designed with an angle of several degrees from 0 ° or 90 ° in the specification. is there. In any case, in order to measure the degree of deviation angle with respect to the target bonding angle, a method of measuring with a measuring device having a configuration including a rotating analyzer, a rotating polarizer, and a wave plate. (See Patent Document 2).

貼合角を測定する測定系としては、図9に示すような測定系を使用する。その測定系では、光源装置1からの光がバンドパスフィルタ2を通して単一波長の測定光とされ、その測定光が光検出器8に至る測定光路上に偏光子3と検光子6が配置される。偏光子3と検光子6の間の測定光路上に位相差板5bが光源側となるように偏光板5aと位相差板5bが貼合された楕円偏光板5が被測定物として配置される。偏光子3と被測定物の間の測定光路上に波長板4が配置される。偏光子3、波長板4及び検光子6は測定光路の光軸を回転中心として回転することができる。また、偏光子3と波長板4は測定光路上の位置と測定光路から外れた位置の間で移動可能に配置されている。   As a measurement system for measuring the bonding angle, a measurement system as shown in FIG. 9 is used. In the measurement system, light from the light source device 1 is converted into single-wavelength measurement light through the band-pass filter 2, and the polarizer 3 and the analyzer 6 are arranged on the measurement optical path where the measurement light reaches the photodetector 8. The On the measurement optical path between the polarizer 3 and the analyzer 6, the elliptically polarizing plate 5 in which the polarizing plate 5a and the retardation plate 5b are bonded is arranged as a measurement object so that the retardation plate 5b is on the light source side. . A wave plate 4 is disposed on the measurement optical path between the polarizer 3 and the object to be measured. The polarizer 3, the wave plate 4 and the analyzer 6 can rotate around the optical axis of the measurement optical path. Further, the polarizer 3 and the wave plate 4 are arranged so as to be movable between a position on the measurement optical path and a position off the measurement optical path.

まず、STN型液晶セル補償用の楕円偏光板を測定する場合について説明する。この場合は図9に示す測定系において、波長板4を備える必要はない。先ず図10(a)のように偏光子3と波長板4が測定系にない状態で検光子6のみを1回転すると図8(a)のような透過光強度変化が得られる。その光強度変化は(1)式で表されるので、カーブフィッティングの演算処理によって被測定物5の偏光板5aの透過軸方位φpを求める。

Figure 2011117792
ここで、I01は被測定物がないときの透過光強度、θaは検光子6の回転角、Tpy,Tpxは検光子6の透過軸方向と吸収軸方向のそれぞれの透過率、Tsy,Tsxは被測定物の楕円偏光板5の偏光板の透過軸方向と吸収軸方向のそれぞれの透過率、φpは被測定物の楕円偏光板5の偏光板の透過軸方位である。 First, a case where an elliptically polarizing plate for STN type liquid crystal cell compensation is measured will be described. In this case, it is not necessary to provide the wave plate 4 in the measurement system shown in FIG. First, when only the analyzer 6 is rotated once in a state where the polarizer 3 and the wave plate 4 are not in the measurement system as shown in FIG. 10A, a change in transmitted light intensity as shown in FIG. 8A is obtained. Since the change in the light intensity is expressed by equation (1), the transmission axis azimuth φp of the polarizing plate 5a of the object to be measured 5 is obtained by curve fitting calculation processing.
Figure 2011117792
Here, I 01 is the transmitted light intensity when there is no object to be measured, θa is the rotation angle of the analyzer 6, Tpy, Tpx are the respective transmittances in the transmission axis direction and the absorption axis direction of the analyzer 6, Tsy, Tsx Is the transmittance in the transmission axis direction and the absorption axis direction of the polarizing plate of the elliptically polarizing plate 5 of the object to be measured, and φp is the transmission axis direction of the polarizing plate of the elliptically polarizing plate 5 of the object to be measured.

φpを求めた後、図10(b)のように検光子6の透過軸方位が被測定物の偏光板の透過軸方位φpになるように検光子6を回転して固定する。次に偏光子3を測定系に入れて、偏光子3を1回転すると図8(b)のような透過光強度変化が得られる。その光強度変化は(2)式で表されるので、カーブフィッティングの演算処理によって被測定物5の偏光板と位相差板の貼合角ψを求める。

Figure 2011117792
ここで、I02は被測定物がないときの透過光強度、θpは偏光子3の回転角、ψは楕円偏光板5の偏光板と位相差板の貼合角、λは測定波長、Reは位相差板の位相差である。 After obtaining φp, the analyzer 6 is rotated and fixed so that the transmission axis direction of the analyzer 6 becomes the transmission axis direction φp of the polarizing plate of the object to be measured as shown in FIG. Next, when the polarizer 3 is put into the measurement system and the polarizer 3 is rotated once, a change in transmitted light intensity as shown in FIG. 8B is obtained. Since the change in the light intensity is expressed by equation (2), the bonding angle ψ between the polarizing plate of the object to be measured 5 and the retardation film is obtained by curve fitting calculation processing.
Figure 2011117792
Here, I 02 is the transmitted light intensity when there is no object to be measured, θp is the rotation angle of the polarizer 3, ψ is the bonding angle between the polarizing plate of the elliptically polarizing plate 5 and the retardation plate, λ is the measurement wavelength, Re Is the phase difference of the phase difference plate.

一方、偏光板の透過軸と位相差板の遅相軸又は進相軸が概ね0°又は概ね90°で貼合された楕円偏光板ではその透過光はほぼ直線偏光であるために、この場合の楕円偏光板を複合偏光板又は積層偏光板と呼ぶことがある。複合偏光板を測定する場合、図10(b)の状態で偏光子3を1回転したときの透過光強度図形は、図8(b)のようにはならずに、図8(a)と殆ど同じ図形になる。そのような場合には、(2)式のカーブフィッティングでは正確な貼合角ψを得ることはできない。そこで、特許文献2に記載の方法では、0°もしくは90°で貼合された楕円偏光板の貼合ズレ角、又は0°もしくは90°からわずかにずれた角度で貼合された楕円偏光板の貼合角を測定するために、図10(a)の測定の次に図10(b)の測定で透過光の楕円率と楕円方位角を求めた後に、図10(c)のように波長板4を測定系に入れ、その波長板4の遅相軸又は進相軸がφp+45°になるように回転して固定した後、さらに偏光子3を1回転して透過光の楕円率と楕円方位角を求める。一般的に、透過光の楕円率と楕円方位角は透過光強度図形I(θ)から比較的容易に得られる。I(θ)の最小値Imin、最大値Imax及びI(θ)の最大値を与える偏光子3の方位Ψが得られると、楕円率は(Imin/Imax)1/2、楕円方位角はΨと表される。したがって、φp基準で表した楕円方位角をΨ'とすると、Ψ'=Ψ−φpとなる。特許文献2に記載の方法は、楕円偏光板のみのときの透過光の楕円率と楕円方位角が波長板を重ね合わせることによって変化する現象を利用し、波長板を重ね合わせた後の楕円率と楕円方位角の測定値を、シミュレーション結果と比較することによって、複合偏光板の貼合ズレ角又は貼合角を測定することを可能にしている。 On the other hand, in the elliptically polarizing plate bonded with the transmission axis of the polarizing plate and the slow axis or the fast axis of the retardation plate at approximately 0 ° or approximately 90 °, the transmitted light is almost linearly polarized. The elliptically polarizing plate may be referred to as a composite polarizing plate or a laminated polarizing plate. When measuring a composite polarizing plate, the transmitted light intensity diagram when the polarizer 3 is rotated once in the state of FIG. 10B does not become as shown in FIG. It becomes almost the same figure. In such a case, an accurate bonding angle ψ cannot be obtained by the curve fitting of equation (2). Therefore, in the method described in Patent Document 2, an elliptical polarizing plate bonded at an angle slightly shifted from 0 ° or 90 °, or an elliptical polarizing plate bonded at 0 ° or 90 °. In order to measure the laminating angle, the ellipticity and elliptical azimuth of the transmitted light are obtained by the measurement of FIG. 10B after the measurement of FIG. 10A, and then as shown in FIG. After placing the wave plate 4 in the measurement system and rotating and fixing it so that the slow axis or the fast axis of the wave plate 4 is φp + 45 °, the polarizer 3 is further rotated once to obtain the ellipticity of the transmitted light. Obtain the ellipse azimuth. In general, the ellipticity and elliptical azimuth angle of transmitted light can be obtained relatively easily from the transmitted light intensity diagram I (θ). When the azimuth Ψ of the polarizer 3 giving the minimum value Imin, the maximum value Imax and the maximum value of I (θ) of I (θ) is obtained, the ellipticity is (Imin / Imax) 1/2 and the elliptical azimuth is Ψ. It is expressed. Therefore, assuming that the elliptical azimuth angle expressed on the basis of φp is ψ ′, ψ ′ = ψ−φp. The method described in Patent Document 2 uses a phenomenon in which the ellipticity of transmitted light and the elliptical azimuth change when only an elliptically polarizing plate is used, and the ellipticity after overlapping the wavelength plates. By comparing the measured values of the elliptical azimuth angle with the simulation result, it is possible to measure the bonding deviation angle or the bonding angle of the composite polarizing plate.

特許第3539006号公報Japanese Patent No. 3539006 特開2009−122152号公報JP 2009-122152 A

偏光板と位相差板との目標貼合角が概ね0°又は概ね90°のときには、仮に貼合角に数度のズレがあったとしても、図7(b)のように楕円偏光板の透過光は楕円偏光板を構成する偏光板通過後の直線偏光とほとんど同じである。上記の従来法(特許文献2に記載の方法)は、図9のような測定装置を用い、1点の測定において先ず波長板4と偏光子3が測定系にない状態で検光子6を1回転して複合偏光板5の偏光板の透過軸方位φpを測定し、次に偏光子3を測定系へ入れて1回転し、さらに波長板4を測定系に入れて波長板4の遅相軸又は進相軸がφp+45°になるように回転して固定したのち、さらに偏光子3を1回転するという手順を必要とする。その方法は、複合偏光板の貼合ズレ角を測定する確実な方法として定着しているものの、1点あたりの測定時間が長くなる。   When the target bonding angle between the polarizing plate and the retardation plate is approximately 0 ° or approximately 90 °, even if there is a deviation of several degrees in the bonding angle, the elliptical polarizing plate as shown in FIG. The transmitted light is almost the same as the linearly polarized light after passing through the polarizing plate constituting the elliptically polarizing plate. The above-described conventional method (the method described in Patent Document 2) uses a measuring device as shown in FIG. 9 and first measures the analyzer 6 with the wave plate 4 and the polarizer 3 not in the measuring system in one point measurement. Rotate to measure the transmission axis azimuth φp of the polarizing plate of the composite polarizing plate 5, and then put the polarizer 3 into the measuring system and rotate it once, and further put the wave plate 4 into the measuring system to delay the wave plate 4. After rotating and fixing so that the axis or the fast axis is φp + 45 °, a procedure of further rotating the polarizer 3 is required. The method is fixed as a reliable method for measuring the bonding misalignment angle of the composite polarizing plate, but the measurement time per point becomes long.

貼合角が約20°〜約70°の範囲であるような楕円偏光板であっても、図9のような測定装置を用いる従来の方法(特許文献1に記載の方法)は、まず偏光子3と波長板4が測定系にない状態で検光子6のみを1回転して被測定物の偏光板5aの透過軸方位φpを求め、その後、検光子6の透過軸方位を被測定物の偏光板の透過軸方位φpに合わせて固定した状態で偏光子3を測定系に入れて偏光子3を1回転することによって被測定物5の偏光板と位相差板の貼合角ψを求めるので、この方法も楕円偏光板の貼合角を精度よく測定できる方法として定着しているものの、やはり1点あたりの測定時間が長くなる。   Even in the case of an elliptically polarizing plate whose bonding angle is in the range of about 20 ° to about 70 °, the conventional method using the measuring device as shown in FIG. 9 (the method described in Patent Document 1) is first polarized. With the probe 3 and the wave plate 4 not in the measurement system, only the analyzer 6 is rotated once to determine the transmission axis azimuth φp of the polarizing plate 5a of the object to be measured. In a state where the polarizer 3 is fixed in accordance with the transmission axis azimuth φp of the polarizing plate, the polarizer 3 is put into the measuring system and the polarizer 3 is rotated once to thereby obtain the bonding angle ψ between the polarizing plate of the object to be measured 5 and the retardation plate. Therefore, although this method is also established as a method that can accurately measure the bonding angle of the elliptically polarizing plate, the measurement time per point is also long.

本発明は、楕円偏光板における偏光板の透過軸と位相差板の遅相軸又は進相軸との間の貼合角を短時間で測定できるようにすることを目的とするものである。   An object of the present invention is to make it possible to measure a bonding angle between a transmission axis of a polarizing plate and a slow axis or a fast axis of a retardation plate in an elliptical polarizing plate in a short time.

本発明の貼合角測定装置は、一実施例を示す図1を参照して説明すると、偏光板5aと位相差板5bとからなり偏光板5aの透過軸と位相差板5bの遅相軸又は進相軸とが貼合角ψをもって貼合された楕円偏光板からなる被測定物5に対し、位相差板側5bから単一波長の測定光を照射する光源光学系1,2と、光源光学系1,2と被測定物5との間に配置された偏光子3と、被測定物5に対し偏光子3とは反対側に配置された検光子6と、測定光を検出する光検出器8−1,8−2と、光検出器8−1,8−2の検出信号を取り込み被測定物5の貼合角ψを算出する演算処理部9を備えている。   The laminating angle measuring apparatus of the present invention will be described with reference to FIG. 1 showing an embodiment. The apparatus includes a polarizing plate 5a and a retardation plate 5b, and a transmission axis of the polarizing plate 5a and a slow axis of the retardation plate 5b. Or the light source optical systems 1 and 2 that irradiate the measurement light of the single wavelength from the retardation plate side 5b to the object to be measured 5 composed of the elliptically polarizing plate with the fast axis bonded with the bonding angle ψ, A polarizer 3 disposed between the light source optical systems 1 and 2 and the object to be measured 5, an analyzer 6 disposed on the opposite side of the polarizer 3 with respect to the object to be measured 5, and measurement light are detected. Photodetectors 8-1 and 8-2 and an arithmetic processing unit 9 that takes in the detection signals of the photo detectors 8-1 and 8-2 and calculates a bonding angle ψ of the DUT 5.

そして、偏光子3は第1回転円板からなり、第1回転円板の表面の一部であって第1回転円板の内側の円内部分(又は外側の円環状部分)にのみ偏光板が配置され、偏光板配置領域以外の領域が光透過領域となっている。   And the polarizer 3 consists of a 1st rotation disc, and it is a polarizing plate only to a part of surface of a 1st rotation disc, and the inner circular part (or outer annular part) inside a 1st rotation disc. Are arranged, and a region other than the polarizing plate arrangement region is a light transmission region.

検光子6は第1回転円板の回転軸と同軸上に回転中心をもつ第2回転円板からなり、第2回転円板の表面の円周に沿った領域で第1回転円板の偏光板配置領域と重ならない領域にのみ偏光板が配置され、偏光板配置領域以外の領域が光透過領域となっている。   The analyzer 6 is composed of a second rotating disk having a rotation center coaxially with the rotation axis of the first rotating disk, and the polarization of the first rotating disk in a region along the circumference of the surface of the second rotating disk. A polarizing plate is disposed only in a region that does not overlap the plate placement region, and a region other than the polarizing plate placement region is a light transmission region.

光検出器8−1,8−2は、検光子6の偏光板配置領域のみを透過してきた測定光を検出する第1光検出器8−1と、偏光子3の偏光板配置領域のみを透過してきた測定光を検出する第2光検出器8−2とからなる。   The photodetectors 8-1 and 8-2 include only the first photodetector 8-1 that detects the measurement light transmitted through only the polarizing plate arrangement region of the analyzer 6 and the polarizing plate arrangement region of the polarizer 3. It comprises a second photodetector 8-2 that detects the transmitted measurement light.

演算処理部9は、第1光検出器8−1と第2光検出器8−2の検出信号を取り込み、第1光検出器8−1の検出信号から被測定物の偏光板の透過軸方位φpを求め、求めた透過軸方位φpと被測定物の位相差板の既知の位相差Reを用い、第2光検出器8−2の検出信号を用いて被測定物の貼合角ψを算出するものである。   The arithmetic processing unit 9 takes in the detection signals of the first photodetector 8-1 and the second photodetector 8-2, and the transmission axis of the polarizing plate of the object to be measured from the detection signal of the first photodetector 8-1. The azimuth φp is obtained, the obtained transmission axis azimuth φp and the known phase difference Re of the retardation plate of the object to be measured are used, and the bonding angle ψ of the object to be measured using the detection signal of the second photodetector 8-2. Is calculated.

測定の対象とする楕円偏光板は、概ね0°又は概ね90°で貼合された複合偏光板と称される楕円偏光板に限らず、STN型液晶セル補償用の楕円偏光板のように貼合角が約20°〜約70°の範囲であるような楕円偏光板も含んでいる。   The elliptically polarizing plate to be measured is not limited to an elliptically polarizing plate called a composite polarizing plate bonded at approximately 0 ° or approximately 90 °, but is bonded like an elliptically polarizing plate for STN type liquid crystal cell compensation. Also included is an elliptically polarizing plate with an alignment angle in the range of about 20 ° to about 70 °.

本発明の第1の形態は、貼合角が概ね0°又は概ね90°を目標に貼合された楕円偏光板を被測定物とする貼合角測定装置である。この場合の演算処理部9は、図2に示されるように、透過軸方位φp算出手段22、楕円方位角Ψ算出手段24、楕円方位角Ψ'算出手段26、ψ対Ψ',Re関係保持部28及び貼合角ψ算出手段32を備えている。   The 1st form of this invention is a bonding angle measuring apparatus which makes the to-be-measured object the elliptically polarizing plate bonded with the bonding angle of about 0 degree or about 90 degrees as a target. As shown in FIG. 2, the arithmetic processing unit 9 in this case has a transmission axis azimuth φp calculation means 22, an elliptical azimuth angle Ψ calculation means 24, an elliptical azimuth angle Ψ ′ calculation means 26, and ψ vs Ψ ′, Re relationship retention. A unit 28 and a bonding angle ψ calculating means 32 are provided.

透過軸方位φp算出手段22は、検光子を一回転したときの第1光検出器8−1の検出信号による透過光強度図形の最大透過光強度方位から被測定物の偏光板の透過軸方位φpを求める。   The transmission axis azimuth φp calculation means 22 transmits the transmission axis azimuth of the polarizing plate of the object to be measured from the maximum transmission light intensity azimuth of the transmitted light intensity figure by the detection signal of the first photodetector 8-1 when the analyzer is rotated once. Find φp.

楕円方位角Ψ算出手段24は、偏光子を一回転したときの第2光検出器8−2の検出信号による透過光強度図形の最大透過光強度方位から被測定物の楕円方位角Ψを求める。   The ellipse azimuth angle Ψ calculating means 24 obtains the ellipse azimuth angle Ψ of the object to be measured from the maximum transmitted light intensity azimuth of the transmitted light intensity diagram based on the detection signal of the second photodetector 8-2 when the polarizer is rotated once. .

楕円方位角Ψ'算出手段26は、楕円方位角Ψ算出手段24で求められた楕円方位角Ψと透過軸方位φp算出手段で求められた透過軸方位φpとの差としてφp基準の楕円方位角Ψ'(= Ψ−φp)を算出する。   The ellipse azimuth angle ψ ′ calculating means 26 is a φp-based ellipse azimuth angle as a difference between the ellipse azimuth angle Ψ obtained by the ellipse azimuth angle Ψ calculating means 24 and the transmission axis azimuth φp obtained by the transmission axis azimuth φp calculating means. Ψ ′ (= Ψ−φp) is calculated.

ψ対Ψ',Re関係保持部28は、楕円偏光板の貼合角ψと楕円方位角Ψ'及び位相差板の位相差Reの関係を保持している。   The ψ pair ψ ′, Re relationship holding unit 28 holds the relationship between the bonding angle ψ of the elliptically polarizing plate, the elliptic azimuth angle ψ ′, and the phase difference Re of the retardation plate.

そして、貼合角ψ算出手段32は、ψ対Ψ',Re関係保持部28に保持されたψ対Ψ',Re関係に楕円方位角Ψ'算出手段26で求められた楕円方位角Ψ'と被測定物の位相差板の既知の位相差Reを適用して被測定物の貼合角ψを算出するものである。   Then, the bonding angle ψ calculating means 32 has an elliptical azimuth angle ψ ′ determined by the elliptical azimuth angle ψ ′ calculating means 26 in the ψ pair ψ ′, Re relationship held in the ψ pair ψ ′, Re relationship holding unit 28. And the known phase difference Re of the retardation plate of the object to be measured is applied to calculate the bonding angle ψ of the object to be measured.

この形態では、図1の2つの光検出器8−1,8−2で得られる透過光強度図形はいずれも、ほぼ図8(a)のような図形である。検光子6の偏光板配置領域の透過光強度図形から得られる最大強度の方位がφpであり、偏光子3の偏光板配置領域の透過光強度図形から得られる最大強度の方位がΨとなる。φpとΨとの差すなわちΨ'は僅かであり、大きくても1°以下である。   In this embodiment, the transmitted light intensity figures obtained by the two photodetectors 8-1 and 8-2 in FIG. 1 are almost as shown in FIG. The azimuth of the maximum intensity obtained from the transmitted light intensity diagram of the polarizing plate arrangement region of the analyzer 6 is φp, and the azimuth of the maximum intensity obtained from the transmitted light intensity diagram of the polarizing plate arrangement region of the polarizer 3 is Ψ. The difference between φp and Ψ, that is, Ψ ′ is slight and at most 1 ° or less.

また、図8(a)のような図形は(1)式で表現されるが、(1)式中にはI01、Tsy,Tsxおよびφpの4つの未知数が含まれる。本発明では被測定物の偏光板の透過率Tsy,Tsxを求める必要はないので、ここでは、図1の2つの光検出器8−1,8−2で得られる透過光強度図形をいずれも(1)式の代わりに次式で現すことにする。

Figure 2011117792
ここで、Imax、Iminは透過光強度の最大値、最小値、θは偏光子又は検光子の回転角、φは最大透過光強度の方位であってφp又はΨに相当する。(4)式は未知数3つで簡潔なため、(1)式で表すよりもカーブフィッティングの精度が良くなり、求めるφpとΨの値も安定する。φpとΨが求まればそれらの差Ψ'も求まる。 Further, the figure as shown in FIG. 8A is expressed by the equation (1), but the equation (1) includes four unknowns I 01 , Tsy, Tsx, and φp. In the present invention, since it is not necessary to determine the transmittances Tsy and Tsx of the polarizing plate of the object to be measured, here, the transmitted light intensity diagrams obtained by the two photodetectors 8-1 and 8-2 in FIG. Instead of equation (1), the following equation is used.
Figure 2011117792
Here, Imax and Imin are the maximum and minimum values of transmitted light intensity, θ is the rotation angle of the polarizer or analyzer, φ is the direction of the maximum transmitted light intensity, and corresponds to φp or Ψ. Since the equation (4) is simple with three unknowns, the accuracy of curve fitting is better than that represented by the equation (1), and the obtained values of φp and Ψ are also stable. If φp and Ψ are obtained, the difference Ψ ′ between them is also obtained.

(2)式と(3)式において、波長λと偏光板の透過軸φpを一定にし、貼合角ψと位相差Reとを変化させて計算すれば透過光強度図形I(θ)を自由に描くことができ、そのときのφpを基準にした最大透過光強度の方位Ψ'も容易に求めることができる。例えばλ=590nmでψを0°から0.5°まで、Reを50nmから160nmまで、それぞれを変化させたときのΨ'を計算し、その結果をグラフにすると図4のようになる。図4よりψとΨ'は直線関係になり、その傾きはReによって変わることが分かる。そこで、図4の各直線の傾きとReとの関係をグラフにすると図5のようになり、指数関数で近似できる。したがって、被測定物の位相差Reが既知であればΨ'を測定することにより次式によって貼合角ψを算出することができる。

Figure 2011117792
In equations (2) and (3), if the wavelength λ and the transmission axis φp of the polarizing plate are kept constant, and the calculation is performed by changing the bonding angle ψ and the phase difference Re, the transmitted light intensity diagram I (θ) can be freely set. The azimuth ψ ′ of the maximum transmitted light intensity based on φp at that time can be easily obtained. For example, ψ ′ when λ is 590 nm and ψ is changed from 0 ° to 0.5 ° and Re is changed from 50 nm to 160 nm is calculated. From FIG. 4, it can be seen that ψ and ψ ′ are in a linear relationship, and the inclination changes depending on Re. Therefore, when the relationship between the slope of each straight line and Re in FIG. 4 is graphed, it is as shown in FIG. Therefore, if the phase difference Re of the object to be measured is known, the bonding angle ψ can be calculated by the following equation by measuring ψ ′.
Figure 2011117792

(5)式の係数は測定波長によって異なる値になるが、固定された波長で測定する限りは装置定数として扱える。   The coefficient of equation (5) varies depending on the measurement wavelength, but can be treated as a device constant as long as measurement is performed at a fixed wavelength.

図2に示された演算処理部9において、ψ対Ψ',Re関係保持部28には(5)式を保持しておく。被測定物の位相差Reは既知の値として入力部から演算処理部9に入力して保持しておけばよい。   In the arithmetic processing unit 9 shown in FIG. 2, the equation (5) is held in the ψ pair ψ ′, Re relationship holding unit 28. The phase difference Re of the object to be measured may be inputted and held as a known value from the input unit to the arithmetic processing unit 9.

図6は図5で得られた近似式を元に位相差ReごとにΨ'と貼合角ψとの関係を示したグラフである。貼合角ψ算出手段32での算出処理は、図6において、位相差ReとΨ'とから貼合角ψを求めることに相当する。   FIG. 6 is a graph showing the relationship between ψ ′ and the bonding angle ψ for each phase difference Re based on the approximate expression obtained in FIG. The calculation process in the bonding angle ψ calculating unit 32 corresponds to obtaining the bonding angle ψ from the phase difference Re and ψ ′ in FIG. 6.

本発明では、位相差Reを既知として扱うが、液晶表示装置に使用される位相差板の位相差Reの変動は非常に小さく、多く見積もっても目標値に対して2nm以下である。仮に(5)式においてRe=50nmと100nmに固定したときに、ψ=0.2°と0.5°である場合、実際の被測定物のReがそれぞれ(目標値+2nm)であったときに、(5)式より得られるψがいくら変わるかを見積もると表1のようになる。   In the present invention, the phase difference Re is treated as known, but the fluctuation of the phase difference Re of the phase difference plate used in the liquid crystal display device is very small, and even if estimated, it is 2 nm or less with respect to the target value. If Re = 50 nm and 100 nm in Equation (5) and ψ = 0.2 ° and 0.5 °, Re of the actual object to be measured was (target value + 2 nm), respectively. Table 1 shows how much the ψ obtained from the equation (5) changes.

Figure 2011117792
Figure 2011117792

表1より、Reが目標値に対して2nmずれた被測定物を、目標値のRe値を利用したままで測定したときに測定される貼合角ψは0.04°程度影響を受けることが分かる。この誤差は、要求されるψの測定精度±0.1°からみて十分使用可能と言える。   From Table 1, the bonding angle ψ measured when measuring an object whose Re deviates by 2 nm from the target value while using the target Re value is affected by about 0.04 °. I understand. This error can be said to be sufficiently usable in view of the required measurement accuracy of ψ ± 0.1 °.

本発明の第2の形態は、貼合角が約20°〜約70°の範囲にある楕円偏光板を被測定物とする貼合角測定装置である。この場合の演算処理部9は、図3に示されるように、透過軸方位φp算出手段22及び貼合角ψ算出手段32aを備えている。   The 2nd form of this invention is a bonding angle measuring apparatus which uses the elliptically polarizing plate in the range whose bonding angle is about 20 degrees-about 70 degrees as a to-be-measured object. As shown in FIG. 3, the arithmetic processing unit 9 in this case includes a transmission axis azimuth φp calculation unit 22 and a bonding angle ψ calculation unit 32a.

透過軸方位φp算出手段22は第1の形態のものと同じであり、検光子を一回転したときの第1光検出器8-1の検出信号による透過光強度図形の最大透過光強度方位から被測定物の偏光板の透過軸方位φpを求める。   The transmission axis azimuth φp calculation means 22 is the same as that of the first embodiment, and the maximum transmission light intensity azimuth of the transmission light intensity figure by the detection signal of the first photodetector 8-1 when the analyzer is rotated once. The transmission axis direction φp of the polarizing plate of the object to be measured is obtained.

貼合角ψ算出手段32aは透過軸方位φp算出手段22で求めた透過軸方位φpと被測定物の位相差板の既知の位相差Reを用い、偏光子を一回転したときの第2光検出器8-2の検出信号による透過光強度図形に(2),(3)式を当てはめるカーブフィッティングにより被測定物の貼合角ψを算出する。   The bonding angle ψ calculating means 32a uses the transmission axis azimuth φp obtained by the transmission axis azimuth φp calculating means 22 and the known phase difference Re of the retardation plate of the object to be measured, and the second light when the polarizer is rotated once. The bonding angle ψ of the object to be measured is calculated by curve fitting in which the expressions (2) and (3) are applied to the transmitted light intensity diagram based on the detection signal of the detector 8-2.

第2の形態は、STN型液晶セル補償用の楕円偏光板などの貼合角を測定する場合に使用されるものであり、(5)式を用いることなく特許文献1と同じ演算手順で(2)式、(3)式から貼合角を求める。   The second mode is used when measuring a bonding angle of an elliptical polarizing plate for STN type liquid crystal cell compensation, and the same calculation procedure as in Patent Document 1 without using the formula (5) ( 2) The bonding angle is obtained from the formula (3).

本発明の貼合角測定装置によれば、楕円偏光板を構成する偏光板と位相差板との貼合角が概ね0°又は概ね90°を目標に貼合加工された場合の貼合角もしくは目標貼合角からのズレ角に限らず、貼合角が約20°〜約70°の範囲にある楕円偏光板の貼合角の測定でも、偏光子と検光子をそれぞれ1回ずつ回転させるだけでよいため、測定時間が短くなる効果がある。   According to the bonding angle measuring device of the present invention, the bonding angle when the bonding angle between the polarizing plate constituting the elliptically polarizing plate and the retardation plate is approximately 0 ° or approximately 90 °. Or not only the deviation angle from the target bonding angle but also the measurement of the bonding angle of elliptical polarizing plates with a bonding angle in the range of about 20 ° to about 70 °, the polarizer and the analyzer are rotated once each. Therefore, the measurement time can be shortened.

本発明の楕円偏光板を測定するための測定系の一実施例の概略構成図である。It is a schematic block diagram of one Example of the measurement system for measuring the elliptically polarizing plate of this invention. 第1の形態における演算処理部を示すブロック図である。It is a block diagram which shows the arithmetic processing part in a 1st form. 第2の形態における演算処理部を示すブロック図である。It is a block diagram which shows the arithmetic processing part in a 2nd form. 計算によって求めた複合偏光板の位相差Reと貼合角ψ及び観測される2つの透過光の偏光方位角の差Ψ'との関係をあらわすグラフである。It is a graph showing the relationship between the phase difference Re of the composite polarizing plate obtained by calculation, the bonding angle ψ, and the difference ψ ′ of the polarization azimuth angles of two transmitted lights observed. 図4のグラフの位相差Reと各直線の傾きとの関係を示すグラフである。It is a graph which shows the relationship between the phase difference Re of the graph of FIG. 4, and the inclination of each straight line. 図5で得られた近似式を元に位相差ReごとにΨ'と貼合角ψとの関係を示したグラフである。It is the graph which showed the relationship between (PSI) 'and the bonding angle (PSI) for every phase difference Re based on the approximate expression obtained in FIG. (a)は楕円偏光板、(b)は複合偏光板と称される楕円偏光板の透過光の偏光状態を説明する概略斜視図である。(A) is an elliptically polarizing plate, (b) is a schematic perspective view explaining the polarization state of the transmitted light of an elliptically polarizing plate called a composite polarizing plate. (a)は図10(a)の測定系で偏光板の透過軸を測定したときの透過光強度図形、(b)は図10(b)の測定系で楕円偏光板を測定したとき透過光強度図形である。(A) is a transmitted light intensity diagram when the transmission axis of the polarizing plate is measured by the measurement system of FIG. 10 (a), and (b) is a transmitted light when the elliptical polarizing plate is measured by the measurement system of FIG. 10 (b). It is an intensity figure. 従来法の複合偏光板を測定するための測定系の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the measurement system for measuring the composite polarizing plate of a conventional method. 従来法の複合偏光板を測定するときの光学系の動きを順に示した概略構成図である。It is the schematic block diagram which showed the motion of the optical system when measuring the composite polarizing plate of the conventional method in order.

図1は、楕円偏光板における貼合角を測定するための貼合角測定装置の一実施例を示す概略構成図である。   Drawing 1 is a schematic structure figure showing one example of a pasting angle measuring device for measuring a pasting angle in an elliptically polarizing plate.

光源1からの光が単一波長光の測定光として被測定物である楕円偏光板5に照射される。光源1としては、例えばハロゲンランプと、ハロゲンランプからの光を導くライトガイドからなるものとすることができる。その場合にはハロゲンランプからの光を単一波長光にするためにバンドパスフィルタ2が光路上に配置される。光源1としてはレーザ光源を使用することもできる。レーザ光源の場合には単一波長光を発振させることによりバンドパスフィルタ2を省略することができる。以下の説明では光源1としてハロゲンランプを使用し、バンドパスフィルタ2が配置されているものとして説明する。   Light from the light source 1 is applied to the elliptically polarizing plate 5 which is an object to be measured as measurement light of single wavelength light. As the light source 1, it can consist of a halogen lamp and the light guide which guides the light from a halogen lamp, for example. In that case, the band pass filter 2 is arranged on the optical path in order to change the light from the halogen lamp to single wavelength light. A laser light source can also be used as the light source 1. In the case of a laser light source, the bandpass filter 2 can be omitted by oscillating single wavelength light. In the following description, a halogen lamp is used as the light source 1 and the band-pass filter 2 is disposed.

さらに、光源1とバンドパスフィルタ2の間に測定光を並行光にするための光学系が配置されていることが好ましい。   Furthermore, it is preferable that an optical system for making the measurement light parallel light is disposed between the light source 1 and the band pass filter 2.

バンドパスフィルタ2と楕円偏光板5が配置される試料台上の位置の間で測定光の光路上には、径の異なる2つの同心円形状であって内側の円内が偏光板になっている偏光子3が配置される。楕円偏光板5を透過した測定光を検出するために2つの光検出器8-1と8-2が配置される。楕円偏光板5と光検出器8-1,8-2の間の測定光路上には偏光子3と同様に径の異なる2つの同心円形状であって外側の円環状部分が偏光板になっている検光子6が配置されている。偏光子3と検光子6は、その偏光軸の方位が変えられるように回転可能に支持され、かつ1つのモータで同期回転する機構になっており、その回転角度はエンコーダで検出できるようになっている。   On the optical path of the measurement light between the position on the sample stage where the bandpass filter 2 and the elliptically polarizing plate 5 are arranged, two concentric circles with different diameters are formed in the inner circle. A polarizer 3 is arranged. In order to detect the measurement light transmitted through the elliptically polarizing plate 5, two photodetectors 8-1 and 8-1 are arranged. On the measurement optical path between the elliptically polarizing plate 5 and the photodetectors 8-1 and 8-2, two concentric circles having different diameters as in the polarizer 3, and the outer annular portion becomes a polarizing plate. An analyzer 6 is arranged. The polarizer 3 and the analyzer 6 are rotatably supported so that the direction of the polarization axis can be changed, and are configured to rotate synchronously with one motor, and the rotation angle can be detected by an encoder. ing.

検光子6と光検出器8-1,8-2の間にはライトガイド7が配置されている。ライトガイド7は多数の光ファイバを一端面が円形の入射面になるように束ねたものである。ライトガイド7の入射端面の円環状部分は偏光子3の透明ガラス領域を通過し検光子6の偏光板配置領域を通過してきた測定光を受光し、第1の光検出器8-1に導く。ライトガイド7の入射端面の中央部の円形部分は偏光子3の偏光板配置領域を通過し検光子6の透明ガラス領域を通過してきた測定光を受光し、第2の光検出器8-2に導く。   A light guide 7 is disposed between the analyzer 6 and the photodetectors 8-1 and 8-2. The light guide 7 is formed by bundling a large number of optical fibers so that one end surface is a circular incident surface. The annular portion of the incident end face of the light guide 7 receives the measurement light passing through the transparent glass region of the polarizer 3 and passing through the polarizing plate arrangement region of the analyzer 6 and guides it to the first photodetector 8-1. . A circular portion at the center of the incident end face of the light guide 7 receives the measurement light that has passed through the polarizing plate arrangement region of the polarizer 3 and has passed through the transparent glass region of the analyzer 6, and receives the second photodetector 8-2. Lead to.

光検出器8-1,8-2の検出信号に基づいて2つの透過光強度図形のそれぞれの最大透過光強度の方位を求め、それらの値から貼合角を算出するための演算処理部9が設けられている。演算処理部9は図2又は図3に示された機能を果たすものであり、専用のコンピュータにより又はこの測定装置の動作を制御するコンピュータにより実現される。   An arithmetic processing unit 9 for obtaining the direction of the maximum transmitted light intensity of each of the two transmitted light intensity diagrams based on the detection signals of the photodetectors 8-1 and 8-2 and calculating the bonding angle from these values. Is provided. The arithmetic processing unit 9 fulfills the functions shown in FIG. 2 or FIG. 3, and is realized by a dedicated computer or a computer that controls the operation of this measuring apparatus.

偏光子3と検光子6は、必ずしも1つのモータで駆動する必要はなく、その回転角度の検出が可能な機構であれば個々の独立回転であってもよい。   The polarizer 3 and the analyzer 6 are not necessarily driven by a single motor, and may be independently rotated as long as the rotation angle can be detected.

1 光源
2 バンドパスフィルタ
3 偏光子
4 波長板
5 複合偏光板
6 検光子
7 ライドガイド
8 光検出器
9 演算処理部
22 透過軸方位φp算出手段
24 楕円方位角Ψ算出手段
26 楕円方位角Ψ'算出手段
28 ψ対Ψ',Re関係保持部
32,32a 貼合角ψ算出手段
DESCRIPTION OF SYMBOLS 1 Light source 2 Band pass filter 3 Polarizer 4 Wave plate 5 Composite polarizing plate 6 Analyzer 7 Ride guide 8 Photo detector 9 Arithmetic processing part 22 Transmission axis direction φp calculation means 24 Ellipse azimuth angle Ψ calculation means 26 Ellipse azimuth angle Ψ ′ Calculation means 28 ψ pair ψ ′, Re relationship holding section 32, 32a Bonding angle ψ calculation means

Claims (5)

偏光板と位相差板とからなり偏光板の透過軸と位相差板の遅相軸又は進相軸とが貼合角ψをもって貼合された楕円偏光板からなる被測定物に対し、前記位相差板側から単一波長の測定光を照射する光源光学系と、
前記光源光学系と前記被測定物との間に配置された第1回転円板からなり、該第1回転円板の表面の一部であって該第1回転円板の内側の円内部分又は外側の円環状部分にのみ偏光板が配置され、偏光板配置領域以外の領域が光透過領域となっている偏光子と、
前記被測定物に対し前記偏光子とは反対側に配置され前記第1回転円板の回転軸と同軸上に回転中心をもつ第2回転円板からなり、該第2回転円板の表面の円周に沿った領域で前記第1回転円板の偏光板配置領域と重ならない領域にのみ偏光板が配置され、偏光板配置領域以外の領域が光透過領域となっている検光子と、
前記検光子の偏光板配置領域のみを透過してきた測定光を検出する第1光検出器と、
前記偏光子の偏光板配置領域のみを透過してきた測定光を検出する第2光検出器と、
前記第1光検出器と第2光検出器の検出信号を取り込み、第1光検出器信号から前記被測定物の偏光板の透過軸方位φpを求め、求めた透過軸方位φpと前記被測定物の位相差板の既知の位相差Re、及び第2光検出器信号を用いて前記被測定物の貼合角ψを算出する演算処理部と、
を備えた貼合角測定装置。
For an object to be measured comprising an elliptically polarizing plate comprising a polarizing plate and a retardation plate, and a transmission axis of the polarizing plate and a slow axis or a fast axis of the retardation plate are bonded with a bonding angle ψ. A light source optical system that emits measurement light of a single wavelength from the phase difference plate side;
A first rotating disk disposed between the light source optical system and the object to be measured, which is a part of the surface of the first rotating disk and is an inner circular part inside the first rotating disk Or a polarizer in which a polarizing plate is arranged only in the outer annular portion, and a region other than the polarizing plate arrangement region is a light transmission region,
A second rotating disk is disposed on the opposite side of the measured object from the polarizer and has a rotation center coaxially with the rotation axis of the first rotating disk, the surface of the second rotating disk being An analyzer in which a polarizing plate is arranged only in a region that does not overlap with a polarizing plate arrangement region of the first rotating disk in a region along the circumference, and a region other than the polarizing plate arrangement region is a light transmission region;
A first photodetector for detecting measurement light transmitted through only the polarizing plate arrangement region of the analyzer;
A second photodetector for detecting measurement light transmitted only through the polarizing plate arrangement region of the polarizer;
The detection signals of the first photodetector and the second photodetector are taken in, the transmission axis direction φp of the polarizing plate of the object to be measured is obtained from the first photodetector signal, the obtained transmission axis direction φp and the measured object An arithmetic processing unit that calculates a bonding angle ψ of the object to be measured using a known phase difference Re of the object phase difference plate and a second photodetector signal;
A bonding angle measuring device comprising:
該貼合角測定装置は貼合角が概ね0°又は概ね90°を目標に貼合された楕円偏光板を被測定物とする貼合角測定装置であり、
前記演算処理部は、
前記検光子を一回転したときの前記第1光検出器信号による透過光強度図形の最大透過光強度方位から前記被測定物の偏光板の透過軸方位φpを求める透過軸方位φp算出手段と、
前記偏光子を一回転したときの前記第2光検出器信号による透過光強度図形の最大透過光強度方位から前記被測定物の楕円方位角Ψを求める楕円方位角Ψ算出手段と、
前記楕円方位角Ψ算出手段で求められた楕円方位角Ψと前記透過軸方位φp算出手段で求められた透過軸方位φpとの差としてφp基準の楕円方位角Ψ'(= Ψ−φp)を算出する楕円方位角Ψ'算出手段と、
楕円偏光板の貼合角ψと楕円方位角Ψ'及び位相差板の位相差Reの関係を保持しているψ対Ψ',Re関係保持部と、
前記ψ対Ψ',Re関係保持部に保持されたψ対Ψ',Re関係に前記楕円方位角Ψ'算出手段で求められた楕円方位角Ψ'と前記被測定物の位相差板の既知の位相差Reを適用して前記被測定物の貼合角ψを算出する貼合角ψ算出手段と
を備えている請求項1に記載の貼合角測定装置。
The bonding angle measuring device is a bonding angle measuring device having an elliptically polarizing plate bonded with a bonding angle of approximately 0 ° or approximately 90 ° as a target,
The arithmetic processing unit
A transmission axis direction φp calculating means for obtaining a transmission axis direction φp of the polarizing plate of the object to be measured from the maximum transmitted light intensity direction of the transmitted light intensity diagram by the first photodetector signal when the analyzer is rotated once;
An elliptical azimuth angle Ψ calculating means for obtaining an elliptical azimuth angle Ψ of the object to be measured from the maximum transmitted light intensity azimuth of the transmitted light intensity pattern by the second photodetector signal when the polarizer is rotated once;
As a difference between the elliptical azimuth angle Ψ obtained by the elliptical azimuth angle Ψ calculating means and the transmission axis azimuth φp obtained by the transmission axis azimuth φp calculating means, the elliptical azimuth angle Ψ ′ (= Ψ−φp) based on φp Ellipse azimuth angle Ψ ′ calculating means for calculating;
Ψ pair Ψ ′, Re relationship holding unit holding the relationship between the bonding angle ψ of the elliptical polarizing plate and the elliptical azimuth angle ψ ′ and the phase difference Re of the phase difference plate;
The elliptical azimuth angle Ψ ′ obtained by the elliptical azimuth angle Ψ ′ calculating means in the ψ pair Ψ ′, Re relation held in the ψ pair Ψ ′, Re relationship holding unit and the known retardation plate of the object to be measured The bonding angle measuring device according to claim 1, further comprising: a bonding angle ψ calculating unit that calculates the bonding angle ψ of the object to be measured by applying the phase difference Re.
該貼合角測定装置は貼合角が約20°〜約70°の範囲にある楕円偏光板を被測定物とする貼合角測定装置であり、
前記演算処理部は、
前記検光子を一回転したときの前記第1光検出器信号による透過光強度図形の最大透過光強度方位から前記被測定物の偏光板の透過軸方位φpを求める透過軸方位φp算出手段と、
前記透過軸方位φp算出手段で求めた透過軸方位φpと前記被測定物の位相差板の既知の位相差Reを用い、前記偏光子を一回転したときの前記第2光検出器信号による透過光強度図形のカーブフィッティングにより前記被測定物の貼合角ψを算出する貼合角ψ算出手段と
を備えている請求項1に記載の貼合角測定装置。
The bonding angle measuring device is a bonding angle measuring device in which an elliptically polarizing plate having a bonding angle in the range of about 20 ° to about 70 ° is used as an object to be measured.
The arithmetic processing unit
A transmission axis direction φp calculating means for obtaining a transmission axis direction φp of the polarizing plate of the object to be measured from the maximum transmitted light intensity direction of the transmitted light intensity diagram by the first photodetector signal when the analyzer is rotated once;
Using the transmission axis direction φp obtained by the transmission axis direction φp calculating means and the known phase difference Re of the retardation plate of the object to be measured, transmission by the second photodetector signal when the polarizer is rotated once The bonding angle measuring device according to claim 1, further comprising a bonding angle ψ calculating unit that calculates a bonding angle ψ of the object to be measured by curve fitting of a light intensity graphic.
前記光源光学系は測定光を平行光束として被測定物に照射する平行光学系を含んでおり、
前記偏光子の偏光板配置領域と前記検光子の偏光板配置領域は同心円形状であり、前記偏光子と検光子の一方は内側の円内部分が偏光板配置領域となり外側の円環状部分が透明ガラス板となっており、他方は内側の円内部分が透明ガラス板となり外側の円環状部分が偏光板配置領域となっているものである請求項1から3のいずれか一項に記載の貼合角測定装置。
The light source optical system includes a parallel optical system that irradiates the object to be measured with measurement light as a parallel light flux,
The polarizing plate arrangement region of the polarizer and the polarizing plate arrangement region of the analyzer are concentric, and one of the polarizer and the analyzer has the inner circular portion as the polarizing plate arrangement region and the outer annular portion is transparent. The paste according to any one of claims 1 to 3, wherein the other is a glass plate, and the other is a transparent glass plate in an inner circle portion and a polarizing plate arrangement region in an outer annular portion. Alignment measuring device.
前記偏光子と検光子を回転させる回転機構は共通のモータにより前記偏光子と検光子を同時に回転させるようになっている請求項1から4のいずれか一項に記載の貼合角測定装置。   The bonding angle measuring device according to any one of claims 1 to 4, wherein a rotation mechanism that rotates the polarizer and the analyzer rotates the polarizer and the analyzer simultaneously by a common motor.
JP2009274456A 2009-12-02 2009-12-02 Device for measuring lamination angle of elliptically polarized light plate Pending JP2011117792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274456A JP2011117792A (en) 2009-12-02 2009-12-02 Device for measuring lamination angle of elliptically polarized light plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274456A JP2011117792A (en) 2009-12-02 2009-12-02 Device for measuring lamination angle of elliptically polarized light plate

Publications (1)

Publication Number Publication Date
JP2011117792A true JP2011117792A (en) 2011-06-16

Family

ID=44283302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274456A Pending JP2011117792A (en) 2009-12-02 2009-12-02 Device for measuring lamination angle of elliptically polarized light plate

Country Status (1)

Country Link
JP (1) JP2011117792A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002019A (en) * 2012-06-18 2014-01-09 Asahi Kasei E-Materials Corp Polarization axis direction measuring instrument and polarization axis direction measuring method
WO2014024866A1 (en) * 2012-08-09 2014-02-13 住友化学株式会社 Optical measuring method for bonded optical member
CN109827758A (en) * 2019-03-20 2019-05-31 北京大盟创业科技有限公司 The polarization extinction ratio test macro of polarization-maintaining passive device
CN110631806A (en) * 2019-09-10 2019-12-31 中国科学院上海技术物理研究所 Device and method for rapidly measuring phase delay amount of broadband wave plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002019A (en) * 2012-06-18 2014-01-09 Asahi Kasei E-Materials Corp Polarization axis direction measuring instrument and polarization axis direction measuring method
WO2014024866A1 (en) * 2012-08-09 2014-02-13 住友化学株式会社 Optical measuring method for bonded optical member
CN109827758A (en) * 2019-03-20 2019-05-31 北京大盟创业科技有限公司 The polarization extinction ratio test macro of polarization-maintaining passive device
CN110631806A (en) * 2019-09-10 2019-12-31 中国科学院上海技术物理研究所 Device and method for rapidly measuring phase delay amount of broadband wave plate

Similar Documents

Publication Publication Date Title
TWI467157B (en) Method and apparatus for measuring optically anisotropic parameters
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP5140451B2 (en) Birefringence measuring method, apparatus and program
JP2011117792A (en) Device for measuring lamination angle of elliptically polarized light plate
CN103424839B (en) Optical axis alignment method of compound wave plates
JP4538344B2 (en) Axial bearing measuring apparatus and method
TWI625510B (en) Light irradiation device
JP2012083311A (en) Polarimeter
JP2012112907A5 (en)
JP5446644B2 (en) Bonding angle measuring device for elliptical polarizing plate
WO2007130990A2 (en) Measurement of linear and circular diattenuation in optical elements
JP5991230B2 (en) Phase difference measuring method and apparatus
JP4926003B2 (en) Polarization analysis method
JP2005227019A (en) Measuring method and measuring instrument for polarization axis
JP2008151559A (en) Infrared thickness/orientation meter, and infrared thickness/orientation measuring method
JP3936712B2 (en) Parameter detection method and detection apparatus for detection object
JPH08201277A (en) Method and apparatus for measuring double refraction
JP2014002019A (en) Polarization axis direction measuring instrument and polarization axis direction measuring method
JP3539006B2 (en) Method and apparatus for measuring retardation of composite layer
JP2004279380A (en) Angle of rotation measuring instrument
JP2009058464A (en) Method and apparatus for measuring optical axis
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
JP5223081B2 (en) Online retardation measuring device for polarizing plate
JP5019110B2 (en) Infrared thickness gauge
JP2007057307A (en) Optical axis misalignment inspection method of composite layer sample, and optical axis misalignment inspection support device of composite layer sample