JP2007057443A - Method and device for evaluating orientation film - Google Patents

Method and device for evaluating orientation film Download PDF

Info

Publication number
JP2007057443A
JP2007057443A JP2005245054A JP2005245054A JP2007057443A JP 2007057443 A JP2007057443 A JP 2007057443A JP 2005245054 A JP2005245054 A JP 2005245054A JP 2005245054 A JP2005245054 A JP 2005245054A JP 2007057443 A JP2007057443 A JP 2007057443A
Authority
JP
Japan
Prior art keywords
alignment film
substrate
reflected light
light intensity
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005245054A
Other languages
Japanese (ja)
Inventor
Masashi Akaha
正志 赤羽
Munehiro Kimura
宗弘 木村
Takeshi Hasegawa
岳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2005245054A priority Critical patent/JP2007057443A/en
Publication of JP2007057443A publication Critical patent/JP2007057443A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for evaluating an orientation film which evaluates the uniformity in the face of the orientation film accurately in a short period of time. <P>SOLUTION: The method and device for evaluating the orientation film comprise processes of: scanning liquid crystal orientation film with linearly polarized conical light while keeping the incident angle to a substrate constant and detecting the reflected light intensity from the orientation film surface occurring in that time; measuring location dependency in the substrate face of the reflected light intensity; and evaluating the uniformity in the face of the orientation film, based on the location dependency of the reflected light intensity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば液晶配向膜検査方法および検査装置に関し、特に液晶表示素子において液晶分子の配向を制御する薄膜の分子配向を評価する方法および評価装置に関するものである。   The present invention relates to a liquid crystal alignment film inspection method and inspection apparatus, for example, and more particularly to a method and an evaluation apparatus for evaluating the molecular alignment of a thin film for controlling the alignment of liquid crystal molecules in a liquid crystal display element.

液晶素子は、液晶の持っている光の偏光特性を利用した表示素子である。液晶素子では、一対の基板間に液晶を介在させ、基板上で発生させた電界を液晶層に印加することによって透過光および反射光を制御している。基板上には、液晶層の初期配列を決定させるための配向膜が形成され、また上記基板と上記配向膜の間には透明電極が形成されている。配向膜の膜中分子の配向状態は液晶素子に与える影響が大きい。このため、配向膜の分子配向の定量的測定は大変重要である。   A liquid crystal element is a display element that utilizes the polarization characteristics of light possessed by a liquid crystal. In a liquid crystal element, liquid crystal is interposed between a pair of substrates, and transmitted light and reflected light are controlled by applying an electric field generated on the substrate to a liquid crystal layer. An alignment film for determining the initial alignment of the liquid crystal layer is formed on the substrate, and a transparent electrode is formed between the substrate and the alignment film. The alignment state of the molecules in the alignment film has a great influence on the liquid crystal element. For this reason, quantitative measurement of the molecular orientation of the alignment film is very important.

従来からある配向膜の評価方法としては、赤外線吸収分光法やラマン散乱分光法など、分子振動から分子の状態を観測する方法がある。これらは主に研究用途に用いられ、分子レベルの配向解析に用いられている(例えば非特許文献:有機分子・バイオエレクトロニクス分科会誌〔M&BE〕“偏光赤外吸収分光法によるラビングされたポリイミド膜の配向解析”荒船竜一,坂本謙二,潮田資勝 第9巻,第4号 1998年 186ページ)。   Conventional methods for evaluating alignment films include methods for observing molecular states from molecular vibrations, such as infrared absorption spectroscopy and Raman scattering spectroscopy. These are mainly used for research purposes and are used for molecular-level orientation analysis (for example, non-patent literature: Journal of Organic Molecules and Bioelectronics [M & BE] “Rubbed polyimide films by polarized infrared absorption spectroscopy”). Orientation analysis "Ryuichi Arafune, Kenji Sakamoto, Shigekatsu Shioda, Vol. 9, No. 4, 1998, page 186).

上記赤外線吸収等による振動分光法以外にも、例えば試料を透過した光の複屈折位相差を評価することが行われている(例えば特開平6−102512号公報参照)。   In addition to vibrational spectroscopy using infrared absorption or the like, for example, the birefringence phase difference of light transmitted through a sample is evaluated (see, for example, JP-A-6-102512).

また、偏光方向が膜表面に水平またはそれと直交する直線偏光を入射し、その反射光強度の差や反射光の偏光度から、分子配向によって生じる膜の面内の異方性を観測する方法も提案されている(例えば特開平4−95845号公報、特開平9−90368号公報参照)。   There is also a method in which linearly polarized light whose polarization direction is horizontal or perpendicular to the film surface is incident and the in-plane anisotropy caused by molecular orientation is observed from the difference in reflected light intensity and the degree of polarization of the reflected light. It has been proposed (see, for example, Japanese Patent Laid-Open Nos. 4-95845 and 9-90368).

特開平6−102512号公報JP-A-6-102512 特開平4−95845号公報Japanese Patent Laid-Open No. 4-95845 特開平9−90368号公報JP-A-9-90368 有機分子・バイオエレクトロニクス分科会誌〔M&BE〕“偏光赤外吸収分光法によるラビングされたポリイミド膜の配向解析”荒船竜一,坂本謙二,潮田資勝 第9巻,第4号 1998年 186ページJournal of Organic Molecules and Bioelectronics [M & BE] “Orientation Analysis of Rubbed Polyimide Films by Polarized Infrared Absorption Spectroscopy” Ryuichi Arafune, Kenji Sakamoto, Motokashi Ushioda Vol. 9, No. 4, 1998, page 186 廣沢一郎“液晶配向膜の表面異方性”日本液晶学会誌「液晶」2003年 第7巻 第2号Ichiro Serizawa “Surface Anisotropy of Liquid Crystal Alignment Films” Journal of Liquid Crystal Society of Japan “Liquid Crystal” 2003 Vol.

赤外線吸収分光法等の光を用いた振動分光による方法は、シリコン基板上に形成された配向膜の解析には向いている。しかし、ガラス基板上に透明電極膜を作製し、その上に液晶配向膜が設けられてなる液晶素子を測定する際には、ガラス基板や透明電極膜が赤外線を吸収してしまう等の問題があるために、液晶素子の評価には向かない。   A method using vibrational spectroscopy using light, such as infrared absorption spectroscopy, is suitable for analysis of an alignment film formed on a silicon substrate. However, when measuring a liquid crystal element in which a transparent electrode film is formed on a glass substrate and a liquid crystal alignment film is provided thereon, there are problems such as the glass substrate and the transparent electrode film absorbing infrared rays. Therefore, it is not suitable for evaluating liquid crystal elements.

配向膜の複屈折率測定を透過光の解析により行う場合、ガラス基板自身の歪による複屈折率異方性を有することから、配向膜自身の複屈折率測定に大きな影響がある。   When the birefringence measurement of the alignment film is performed by analyzing the transmitted light, since the birefringence anisotropy is caused by the strain of the glass substrate itself, the measurement of the birefringence of the alignment film itself is greatly affected.

この点、光を配向膜表面に対して傾けて入射したときに生じる反射光は、基板歪の影響が小さいため、膜の分子配向状態を評価するのに適している(例えば特開平4−95845号公報、特開平9−90368号公報参照)。   In this respect, the reflected light generated when the light is incident on the surface of the alignment film is small in the influence of the substrate distortion, and is therefore suitable for evaluating the molecular alignment state of the film (for example, Japanese Patent Laid-Open No. 4-95845). No., and JP-A-9-90368).

反射光の偏光状態は、検光子を通過する光の強度の検光子角度依存性により求める回転検光子法が広く用いられている。しかし、この方法では検光子の360°回転における光の強度を測定するために、試料面上の1点の測定時間が長く、広い面積の分子配向の一様性の評価を行うのに莫大な時間が必要とされるという問題がある。また、偏光変調方式を用いたにせよ、特開平9−90368号公報の方法で配向膜を評価する場合、入射角を一定に保ちながら配向膜を360°回転させる必要がある(廣沢一郎“液晶配向膜の表面異方性”日本液晶学会誌「液晶」2003年第7巻第2号)。よって、測定には長い時間を要してしまう。また、回転機構の精度も要求される。   A rotation analyzer method is widely used in which the polarization state of the reflected light is obtained from the dependence of the intensity of light passing through the analyzer on the analyzer angle. However, in this method, in order to measure the light intensity at 360 ° rotation of the analyzer, the measurement time for one point on the sample surface is long, and it is enormous for evaluating the uniformity of molecular orientation over a wide area. There is a problem that time is required. In addition, even when the polarization modulation method is used, when the alignment film is evaluated by the method disclosed in JP-A-9-90368, it is necessary to rotate the alignment film 360 ° while keeping the incident angle constant (Ichiro Serizawa “Liquid Crystal”). Surface Anisotropy of Alignment Films, “Liquid Crystal, Journal of Japanese Liquid Crystal Society 2003, Vol. 7, No. 2) Therefore, the measurement takes a long time. Also, the accuracy of the rotation mechanism is required.

従って、本発明の目的は、上記した各種課題を解決し、ガラス基板上に作製された配向膜の評価が可能な方法と装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned various problems and provide a method and an apparatus capable of evaluating an alignment film produced on a glass substrate.

前記目的を達成するために、本発明にかかる配向膜の評価方法は、配向膜に対し、直線偏光した円錐状の光を前記基板への入射角を一定にして走査し、その際に生じる前記配向膜表面からの反射光強度を検出する工程と、前記反射光強度の前記基板面内での場所依存性を測定する工程と、前記の反射光強度場所依存性から前記配向膜の面内均一性を評価することを特徴とする配向膜の評価方法並びに配向膜の評価装置を提供する。   In order to achieve the above object, the alignment film evaluation method according to the present invention scans the alignment film with linearly polarized conical light at a constant incident angle to the substrate, and the above-described alignment film is generated at that time. A step of detecting reflected light intensity from the surface of the alignment film; a step of measuring the location dependence of the reflected light intensity in the substrate surface; and the in-plane uniformity of the orientation film from the reflected light intensity location dependence There are provided an alignment film evaluation method and an alignment film evaluation apparatus characterized by evaluating the property.

本発明にかかる配向膜評価方法および装置によれば、従来法と比べて格段に短時間で配向膜の評価を行うことができる。また、可動部は配向膜全体を走査する為の例えばXYステージだけであるので、精度も高くなる。   According to the alignment film evaluation method and apparatus according to the present invention, the alignment film can be evaluated in a much shorter time than the conventional method. Moreover, since the movable part is only an XY stage for scanning the entire alignment film, for example, the accuracy is also improved.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

発明が解決しようとする課題において述べたとおり、配向膜の良否を判断するには反射光の偏光解析による方法が優れている。だが、基板への入射方位角を360度にわたって振らなければならないことから、測定に時間がかかる。この問題を解決するため、入射方位角を360度にわたって同時に照射すべく円錐状の光を基板へ入射する工程を備え、反射光も、反射方位360度にわたって検出できる工程を備えることによって格段に高速化し、反射光から配向膜分子の配列を解析すること無しに、単に反射光強度の最大値を示す方位とその強度の基板面内における分布を可視化する工程によって更に高速化することが特徴である。   As described in the problem to be solved by the invention, the method based on the polarization analysis of the reflected light is excellent for judging the quality of the alignment film. However, since the incident azimuth angle to the substrate has to be swung over 360 degrees, the measurement takes time. In order to solve this problem, it is provided with a step of incident conical light on the substrate to simultaneously irradiate an incident azimuth angle of 360 degrees, and a step of detecting reflected light over a reflection azimuth of 360 degrees is significantly faster. Without the need to analyze the arrangement of alignment film molecules from the reflected light, and the speed is further increased by simply visualizing the orientation indicating the maximum value of the reflected light intensity and the distribution of the intensity within the substrate surface. .

本発明の原理・作用を以下に説明する。ここで述べる具体的構成はあくまで一例である。   The principle and operation of the present invention will be described below. The specific configuration described here is merely an example.

本評価法の概要図を図1に記載する。ガラス基板13の上には一般的には透明電極12が配置され、さらにその上に配向膜11が塗布されている。配向膜11の表面は、配向処理が施されていることが多い。配向処理としては、ラビング法と呼ばれる、配向膜表面を摩擦する処理を施したり、光配向処理と呼ばれる、紫外光を照射する処理が施されているのが一般的である。   A schematic diagram of this evaluation method is shown in FIG. A transparent electrode 12 is generally disposed on the glass substrate 13, and an alignment film 11 is further coated thereon. The surface of the alignment film 11 is often subjected to alignment treatment. As the alignment treatment, a treatment for rubbing the alignment film surface called a rubbing method or a treatment for irradiating ultraviolet light called a photo-alignment treatment is generally performed.

配向膜からの反射光検出系について説明する。高強度光源17から出た光は干渉フィルター20を通過して単色光にした後円偏光板18によって直線偏光にされる。ここで偏光軸は図1に示すように、偏光板の中心から放射状になっているのが特徴である。円偏光板18を通過した光は、環状スリット19を通過した後、配向膜11の表面に照射される。照射される光は環状であり、光源から配向膜表面に照射される光の角度、すなわち入射角は、環状の照射領域のいたるところでθで一定となる。   A reflected light detection system from the alignment film will be described. The light emitted from the high-intensity light source 17 passes through the interference filter 20 to be monochromatic light, and is then linearly polarized by the circularly polarizing plate 18. Here, as shown in FIG. 1, the polarization axis is characterized by being radial from the center of the polarizing plate. The light that has passed through the circularly polarizing plate 18 is irradiated on the surface of the alignment film 11 after passing through the annular slit 19. The irradiated light is annular, and the angle of the light irradiated from the light source to the alignment film surface, that is, the incident angle is constant at θ throughout the annular irradiation region.

さらに、いたるところで配向膜に照射される光の振動方向は入射面に対して平行になる。この振動方向を一般にp偏光と呼ぶ。環状スリット19のスリット幅を十分細くしておけば、照射領域も狭められるため、光の広がり角が大きくなることによる誤差も小さく出来る。   Furthermore, the vibration direction of the light irradiated to the alignment film is parallel to the incident surface everywhere. This vibration direction is generally called p-polarized light. If the slit width of the annular slit 19 is sufficiently narrowed, the irradiation area can be narrowed, so that the error due to the increase of the light spreading angle can be reduced.

更に、基板13の裏面からの反射光と表面からの反射光は光路が異なる為、裏面からの反射を分離して測定することが可能である。また、光源17と基板との距離を小さく取れば、微小領域の測定も可能である。配向膜からの反射光の反射角、すなわち反射光と基板法線のなす角もθである。   Furthermore, since the reflected light from the back surface of the substrate 13 and the reflected light from the front surface have different optical paths, reflection from the back surface can be measured separately. In addition, if the distance between the light source 17 and the substrate is made small, a minute region can be measured. The reflection angle of the reflected light from the alignment film, that is, the angle formed between the reflected light and the substrate normal is also θ.

よって、配向膜11の表面からの反射光を測定できるよう、検出器16を置く。また、検出器16と配向膜11の間に、直線偏光板15を配置する。偏光板15の直線偏光透過軸を入射面に平行にしておけば、反射光の振動方向が入射面に対して平行な成分だけが偏光板を通過できる。この光を反射p偏光という。配向膜に対する入射角θがブリュースター角θであった場合は、理想的には反射p偏光は零になる。ブリュースター角θは、配向膜の実効的な屈折率がnaであるとき、tanθ=naである。配向膜には配向処理がなされているために、配向膜表面には異方性が生じている。 Therefore, the detector 16 is placed so that the reflected light from the surface of the alignment film 11 can be measured. Further, a linear polarizing plate 15 is disposed between the detector 16 and the alignment film 11. If the linearly polarized light transmission axis of the polarizing plate 15 is parallel to the incident surface, only the component in which the vibration direction of the reflected light is parallel to the incident surface can pass through the polarizing plate. This light is called reflected p-polarized light. If the angle of incidence of the alignment film theta was Brewster angle theta b, it reflected p-polarized light is zero ideally. Brewster angle theta b when the effective refractive index of the alignment layer is n a, a tanθ b = n a. Since the alignment film is subjected to alignment treatment, anisotropy is generated on the surface of the alignment film.

このため、配向膜表面の屈折率も配向処理方向と入射面のなす角をφとした時、反射光強度はφに依存する。反射光強度依存性の一例を図2に示す。入射光の偏光板の軸と反射光側の偏光板の軸が共に入射面に並行であった場合には、図2(a)のような8の字模様になる。   For this reason, the refractive index of the alignment film surface also depends on φ when the angle formed by the alignment processing direction and the incident surface is φ. An example of the reflected light intensity dependency is shown in FIG. When both the axis of the polarizing plate for incident light and the axis of the polarizing plate on the reflected light side are parallel to the incident surface, an 8-shaped pattern as shown in FIG.

また、反射光側の偏光板を垂直にした場合、反射偏光はs偏光になるが、この場合は図2(b)のようなクローバー様の形になる。この8の字模様若しくはクローバー様の形は、配向の良し悪しを表している。特開平9−90368号公報の方法では、配向膜を構成している有機分子が棒状であると仮定した上で、この反射光強度のφ依存性の数値解析によって、配向膜を構成している有機分子の傾斜角を求めている。しかしながら、傾斜角を求めるには数値計算に数時間かかる。その理由は、基板をφ方向に回転させなければならないことと、数値計算はフィッティング計算のために、数時間の繰り返し計算が必要となる。   In addition, when the polarizing plate on the reflected light side is made vertical, the reflected polarized light becomes s-polarized light. In this case, it becomes a clover-like shape as shown in FIG. This figure-eight pattern or clover-like shape represents good or bad orientation. In the method disclosed in Japanese Patent Laid-Open No. 9-90368, the alignment film is formed by numerical analysis of the φ dependence of the reflected light intensity, assuming that the organic molecules forming the alignment film are rod-shaped. The inclination angle of the organic molecule is obtained. However, it takes several hours to calculate the tilt angle. The reason is that the substrate must be rotated in the φ direction, and the numerical calculation requires repeated calculation for several hours for fitting calculation.

図2のような反射光強度のφ依存性を高速に取るためには、図1のように、偏光板と検出器を一定の間隔で複数個配置すればよい。こうすればφ方向に基板を回転させる必要は無い。図1では、図の見易さのために3組しか描かれていないが、多いほどよい。例えば16個配置した場合には、φについて22.5度間隔の情報が得られることになる。16個の検出器からの測定値は、アナログ・デジタル変換機を介してパソコンに送るようにすれば、自動計測も可能である。   In order to obtain the φ dependence of the reflected light intensity as shown in FIG. 2 at high speed, a plurality of polarizing plates and detectors may be arranged at regular intervals as shown in FIG. In this way, there is no need to rotate the substrate in the φ direction. In FIG. 1, only three sets are illustrated for the sake of easy viewing, but it is better as the number increases. For example, when 16 pieces are arranged, information at intervals of 22.5 degrees is obtained for φ. The measurement values from the 16 detectors can be automatically measured by sending them to a personal computer via an analog / digital converter.

また、液晶表示素子の製造業者の要求していることは、配向膜を構成している有機分子の傾斜角が欲しいわけではなく、配向膜全体の均一性の程度を短時間で知りたいのである。このため、配向膜を構成している有機分子の傾斜角を求めることなしに、図2の反射光強度のφ依存性が異方性の程度を表していることに着目し、反射光強度のφ依存性のグラフの特徴から、配向膜全体の均一性の程度を評価する。   In addition, what the liquid crystal display manufacturer demands is that it does not want the inclination angle of the organic molecules constituting the alignment film, but wants to know the degree of uniformity of the entire alignment film in a short time. . Therefore, focusing on the fact that the φ dependence of the reflected light intensity in FIG. 2 represents the degree of anisotropy without obtaining the tilt angle of the organic molecules constituting the alignment film, The degree of uniformity of the entire alignment film is evaluated from the characteristics of the φ dependence graph.

すなわち、図2(a)のような8の字模様は、8の字模様の軸から、配向処理方向が図2(a)の点線の方向であることが分かる。ガラス基板をXY方向に移動できるステージに乗せてやれば、ガラス基板全体の配向状況の測定が容易であることが大きな特徴である。   That is, it can be understood that the orientation process direction of the figure 8 pattern as shown in FIG. 2A is the direction of the dotted line in FIG. 2A from the axis of the figure 8 pattern. If the glass substrate is placed on a stage that can move in the XY directions, it is a great feature that the orientation state of the entire glass substrate can be easily measured.

例えば、特開平9−90368号公報の方法で配向膜を評価する場合は、測定点1点毎に基板を360度回転させねばならないが、本測定法の場合には回転することなく反射光強度のφ依存性を取ることが出来る為に、基板面全面の配向の一様性を見る場合も、単にXY方向に移動するだけでよい。また、図2(a)の反射光の最大値の基板面全面の一様性を見る場合も、単にXY方向に移動するだけでよい。   For example, when the alignment film is evaluated by the method of Japanese Patent Laid-Open No. 9-90368, the substrate must be rotated 360 degrees for each measurement point, but in the case of this measurement method, the reflected light intensity is not rotated. Since it is possible to take the φ dependence, it is only necessary to move in the XY directions when viewing the uniformity of the orientation of the entire substrate surface. Further, when the uniformity of the entire surface of the substrate surface of the maximum value of reflected light in FIG. 2A is observed, it is only necessary to move in the XY directions.

本発明の具体的な実施例1について図面に基づいて説明する。   A first embodiment of the present invention will be described with reference to the drawings.

以上の形態および手順で、配向膜の均一性についての2次元分布を求めることができる。図3は、図2(a)に示した配向処理方向を示す矢印の面内分布を示している。気象に用いられる風向図と同じ見方をすることができる。すなわち、矢印の方向が配向膜分子の配向方向であり、矢印の長さが、反射光強度の最大値を表す。図3の例では、基板中央部に筋状に配向異常が発生している。ここでは、十分に配向処理がなされなかったために、配向方向が他所とはずれており、異法性も小さいことがわかる。また異法性の分布が基板に平行に筋状の異常が出ていることから、基板の洗浄もしくは搬送時の汚損が原因と考えられる。このように、面内の配向異常の検出は、原因究明の手がかりを与える。このような測定が、図1の測定系にXY方向に移動できるステージを付加するだけで実現できる。   With the above-described form and procedure, a two-dimensional distribution regarding the uniformity of the alignment film can be obtained. FIG. 3 shows an in-plane distribution of arrows indicating the orientation treatment direction shown in FIG. It can be viewed in the same way as the wind direction map used for weather. That is, the direction of the arrow is the alignment direction of the alignment film molecules, and the length of the arrow represents the maximum value of the reflected light intensity. In the example of FIG. 3, the alignment abnormality occurs in a streak pattern at the center of the substrate. Here, it can be seen that since the alignment treatment was not sufficiently performed, the alignment direction is out of place and the illegality is small. Further, since the abnormal distribution of streaks appears parallel to the substrate, it may be caused by contamination during cleaning or transportation of the substrate. As described above, the detection of the in-plane orientation abnormality provides a clue for investigating the cause. Such a measurement can be realized simply by adding a stage that can move in the XY directions to the measurement system of FIG.

本発明の具体的な実施例2について図面に基づいて説明する。   A second embodiment of the present invention will be described with reference to the drawings.

更に測定を高速化するために、図1の測定系を1ユニットとして、直線状に8ユニット並べれば、図3のような配向面内分布図を作成するにはX方向移動ステージのみでよい。すなわち、パソコン用画像読み取りスキャナーと同様の動作で、X方向移動ステージのみで、図3のような配向面内分布図を作成できる。   Further, in order to speed up the measurement, if the measurement system of FIG. 1 is set as one unit and eight units are arranged in a straight line, only the X-direction moving stage is required to create an orientation in-plane distribution map as shown in FIG. In other words, an in-plane distribution map as shown in FIG. 3 can be created using only the X-direction moving stage by the same operation as the image reading scanner for personal computers.

尚、本発明は、実施例1,2に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   The present invention is not limited to the first and second embodiments, and the specific configuration of each component can be designed as appropriate.

本発明の測定装置の構成概念図である。It is a composition conceptual diagram of the measuring device of the present invention. 本発明による測定結果である。It is a measurement result by the present invention. 本発明による配向処理方向の面内分布測定結果の例である。It is an example of the in-plane distribution measurement result of the orientation processing direction by this invention.

符号の説明Explanation of symbols

11 配向膜
12 透明電極
13 ガラス板
14 配向膜上の光照射領域
15 直線偏光版
16 検出器
17 光源
18 円偏光板
19 環状スリット
20 干渉フィルター

DESCRIPTION OF SYMBOLS 11 Alignment film 12 Transparent electrode 13 Glass plate 14 Light irradiation area | region on alignment film 15 Linearly polarized light plate 16 Detector 17 Light source 18 Circularly polarizing plate 19 Annular slit 20 Interference filter

Claims (4)

透明基板の一方の面に配向膜が形成された前記基板上の前記配向膜を評価する方法であって、前記基板の前記配向膜に対し、直線偏光した円錐状の光を前記基板への入射角を一定にして走査し、その際に生じる前記配向膜表面からの反射光強度を検出する工程と、前記反射光強度の前記基板面内での場所依存性を測定する工程と、前記の反射光強度場所依存性から前記配向膜の面内均一性を評価することを特徴とする配向膜の評価方法。   A method for evaluating the alignment film on the substrate having an alignment film formed on one surface of a transparent substrate, wherein linearly polarized conical light is incident on the substrate. Scanning with a constant angle, detecting the reflected light intensity from the surface of the alignment film generated at that time, measuring the location dependence of the reflected light intensity in the substrate surface, and the reflection An evaluation method of an alignment film, wherein the in-plane uniformity of the alignment film is evaluated from light intensity location dependency. 前記配向膜を前記光源に対してXY方向に走査移動させる手段を備え、前記配向膜の分子配向状態の面内均一性を測定することを特徴とする請求項1記載の配向膜の評価方法。   2. The alignment film evaluation method according to claim 1, further comprising means for scanning the alignment film in the X and Y directions with respect to the light source, and measuring in-plane uniformity of the molecular alignment state of the alignment film. 透明基板の一方の面に配向膜が形成された前記基板上の前記配向膜を評価する装置であって、前記基板の前記配向膜に対し、直線偏光した円錐状の光を前記基板への入射角を一定にして走査する直線偏光走査機構と、この走査の際に生じる前記配向膜表面からの反射光強度を検出する反射光強度検出機構と、前記反射光強度の前記基板面内での場所依存性を測定する場所依存性測定機構と、前記の反射光強度場所依存性から前記配向膜の面内均一性を評価するように構成したことを特徴とする配向膜の評価装置。   An apparatus for evaluating the alignment film on the substrate having an alignment film formed on one surface of a transparent substrate, wherein linearly polarized conical light is incident on the substrate on the alignment film of the substrate A linearly polarized light scanning mechanism for scanning with a constant angle, a reflected light intensity detecting mechanism for detecting reflected light intensity from the alignment film surface generated during the scanning, and a location of the reflected light intensity in the substrate surface An alignment film evaluation apparatus configured to evaluate the in-plane uniformity of the alignment film from the location dependency measurement mechanism for measuring dependency and the reflected light intensity location dependency. 前記配向膜を前記光源に対してXY方向に走査移動させる手段を備え、前記配向膜の分子配向状態の面内均一性を測定する機能を有するように構成したことを特徴とする請求項3記載の配向膜の評価装置。
4. The apparatus according to claim 3, further comprising means for scanning and moving the alignment film in the X and Y directions with respect to the light source, and having a function of measuring in-plane uniformity of the molecular alignment state of the alignment film. Evaluation apparatus for alignment films.
JP2005245054A 2005-08-25 2005-08-25 Method and device for evaluating orientation film Pending JP2007057443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245054A JP2007057443A (en) 2005-08-25 2005-08-25 Method and device for evaluating orientation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245054A JP2007057443A (en) 2005-08-25 2005-08-25 Method and device for evaluating orientation film

Publications (1)

Publication Number Publication Date
JP2007057443A true JP2007057443A (en) 2007-03-08

Family

ID=37921063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245054A Pending JP2007057443A (en) 2005-08-25 2005-08-25 Method and device for evaluating orientation film

Country Status (1)

Country Link
JP (1) JP2007057443A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226225A (en) * 1992-02-10 1993-09-03 Mitsubishi Electric Corp Projection aligner and polarizer
JPH0682365A (en) * 1992-08-31 1994-03-22 New Oji Paper Co Ltd Double refraction measuring device
JPH09184918A (en) * 1995-09-23 1997-07-15 Carl Zeiss:Fa Radiation polarizing optical structure and microlithography projection exposure device provided with the same
JPH10293011A (en) * 1997-04-17 1998-11-04 Nec Corp Method and device for evaluating anisotropic thin film
JP2000081371A (en) * 1998-09-07 2000-03-21 Nec Corp Method and device for evaluating thin-film molecular orientation and storage medium
JP2000097776A (en) * 1998-09-16 2000-04-07 Nanophotonics Ag Micro polarimeter and elliptic polarimeter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226225A (en) * 1992-02-10 1993-09-03 Mitsubishi Electric Corp Projection aligner and polarizer
JPH0682365A (en) * 1992-08-31 1994-03-22 New Oji Paper Co Ltd Double refraction measuring device
JPH09184918A (en) * 1995-09-23 1997-07-15 Carl Zeiss:Fa Radiation polarizing optical structure and microlithography projection exposure device provided with the same
JPH10293011A (en) * 1997-04-17 1998-11-04 Nec Corp Method and device for evaluating anisotropic thin film
JP2000081371A (en) * 1998-09-07 2000-03-21 Nec Corp Method and device for evaluating thin-film molecular orientation and storage medium
JP2000097776A (en) * 1998-09-16 2000-04-07 Nanophotonics Ag Micro polarimeter and elliptic polarimeter

Similar Documents

Publication Publication Date Title
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
US8009292B2 (en) Single polarizer focused-beam ellipsometer
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP3507319B2 (en) Optical property measurement device
KR0171637B1 (en) Apparatus for evaluating orientation film
Furchner et al. Broadband infrared Mueller-matrix ellipsometry for studies of structured surfaces and thin films
JP2008082811A (en) Optical characteristic measuring method and optical characteristic measuring instrument for thin film
JP3275944B2 (en) Anisotropic thin film inspection method, anisotropic thin film inspection device, liquid crystal alignment film inspection method, liquid crystal alignment film inspection device
Lee et al. A novel technique for optical imaging of liquid crystal alignment layers
JP4158801B2 (en) Method for manufacturing liquid crystal panel and method for manufacturing substrate for liquid crystal panel
JP2007057443A (en) Method and device for evaluating orientation film
JP3813800B2 (en) Liquid crystal cell parameter detector
KR20080061196A (en) Measuring apparatus and method for rubbing angle of liquid crystal alignment film
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP3936712B2 (en) Parameter detection method and detection apparatus for detection object
KR20050095532A (en) Method and device for testing polarizers
KR100974478B1 (en) Apparatus and method for inspecting surface of Liquid Crystal Alignment Layer
JP2677199B2 (en) Alignment film inspection device and inspection method
JP2735053B2 (en) Organic thin film orientation inspection method and inspection device
JP2008046075A (en) Optical system, and thin film evaluation device and evaluating method
JP3338157B2 (en) Alignment film evaluation system
US7307444B2 (en) Testing method and testing apparatus for liquid crystal panel
Fu et al. Removing the influence of the angle of incidence in a dual rotating retarder Mueller matrix polarimeter
JP2018200401A (en) Optical functional element, polarization analyzer, and method for manufacturing optical functional element
JP2001083042A (en) Apparatus and method for measurement of optical anisotropy as well as recording medium with recorded measuring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100902