JP3336276B2 - Fiber orientation measurement device and orientation measurement method - Google Patents

Fiber orientation measurement device and orientation measurement method

Info

Publication number
JP3336276B2
JP3336276B2 JP32035698A JP32035698A JP3336276B2 JP 3336276 B2 JP3336276 B2 JP 3336276B2 JP 32035698 A JP32035698 A JP 32035698A JP 32035698 A JP32035698 A JP 32035698A JP 3336276 B2 JP3336276 B2 JP 3336276B2
Authority
JP
Japan
Prior art keywords
fiber
optical path
path difference
light
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32035698A
Other languages
Japanese (ja)
Other versions
JP2000146829A (en
Inventor
旦 浦上
Original Assignee
カネボウ株式会社
カネボウエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社, カネボウエンジニアリング株式会社 filed Critical カネボウ株式会社
Priority to JP32035698A priority Critical patent/JP3336276B2/en
Priority to TW88119053A priority patent/TW414814B/en
Publication of JP2000146829A publication Critical patent/JP2000146829A/en
Application granted granted Critical
Publication of JP3336276B2 publication Critical patent/JP3336276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維の分子配向度
測定装置およびその測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring the degree of molecular orientation of a fiber.

【0002】[0002]

【従来の技術】繊維の分子配向度を測定する方法として
は、従来よりX線回折法、赤外2色法、磁気異方性法等
があるが、いずれも装置が複雑なため高価であり、また
測定方法も難しく実用的なものではない。比較的実用的
な方法として、光学的手段を用いた複屈折率測定法があ
る。その複屈折率測定法には、干渉縞計数法、平行ニコ
ル回転法、ステップコンペンセーター法等がある。干渉
縞計数法は、繊維を予め斜めに切断しておき、基準波長
の単色光を照射し、切断面に発現する干渉縞の数を計数
し、配向度を求める方法である。平行ニコル回転法は、
特開平10−82697号公報に開示されているよう
に、単色光を照射し、光路に波長板を出し入れして透過
光の強度を測定して、均一な厚さの試料の配向度を求め
る方法である。ステップコンペンセーター法は、特開平
10−78389号公報に開示されているように、干渉
色を観察しながら段階的に光路差を補償し黒い干渉縞を
発現せしめ、干渉縞の間隔を測定することにより配向度
を求める方法である。
2. Description of the Related Art Conventional methods for measuring the degree of molecular orientation of fibers include an X-ray diffraction method, an infrared two-color method, a magnetic anisotropy method, etc., all of which are complicated and expensive. The measuring method is also difficult and not practical. As a relatively practical method, there is a birefringence index measuring method using optical means. The birefringence measurement method includes an interference fringe counting method, a parallel Nicol rotation method, a step compensator method, and the like. The interference fringe counting method is a method in which a fiber is cut obliquely in advance, irradiated with monochromatic light of a reference wavelength, the number of interference fringes appearing on the cut surface is counted, and the degree of orientation is obtained. The parallel Nicol rotation method is
As disclosed in Japanese Patent Application Laid-Open No. 10-82697, a method of irradiating monochromatic light, taking a wave plate into and out of an optical path, measuring the intensity of transmitted light, and obtaining the degree of orientation of a sample having a uniform thickness. It is. As disclosed in Japanese Patent Application Laid-Open No. 10-78389, the step compensator method compensates for the optical path difference stepwise while observing interference colors, develops black interference fringes, and measures the intervals between the interference fringes. Is a method for obtaining the degree of orientation by

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述し
た干渉縞計数法では、極めて細い繊維(通常はミクロン
オーダー)を予め斜めに直線的に切断することが必要で
あり、準備作業が極めて困難である。さらに、上方から
の観察のため切断面を上にする必要があるが、顕微鏡に
繊維を載置する際に繊維が傾くことが多く載置が難し
い。さらに、繊維の光路差が大きい場合は、干渉縞の数
も多く、高次の干渉縞は淡くなり、計数を誤る可能性も
ある。測定の補助措置としてセナルモンコンペンセータ
ー、ベレックコンペンセーター等もあるが、光路差の補
償範囲が小さいため光路差の大きい繊維の測定には適さ
ない。また、他の測定の補助措置として、バビネコンペ
ンセーター等もあるが光路差を概測する程度のものであ
るため、高精度が要求される繊維の配向度測定には適さ
ない。平行ニコル回転法は、シート状の均一な厚さを有
する試料の配向度を求める方法であり、円形断面または
任意断面を有する繊維の配向度測定には適さない。さら
に、偏光子と検光子を一体的に光軸の回りに回転する機
構と、単色光の波長を逐次変更するためのフィルターの
着脱機構と、波長板を光路に出し入れする波長板位置制
御機構とを必要とするため構造が複雑となる。ステップ
コンペンセーター法は、光路差の異なる複数の波長板
(例えば、1/4λ、1/2λ、1λ、3λ、5λ)を
用いて段階的に光路差を補償する方法であるため、微少
な光路差(1/4λ未満)の補償には適さない。任意断
面の繊維の場合は一対の黒い干渉縞が発現しないため、
任意断面の繊維の配向度測定には適さない。さらに未延
伸糸、極細糸等は、光路差が極めて小さい(1/100
λ以下)のため、波長板で測定するには微少な光路差を
有する波長板を多数準備する必要があり、非効率的なも
のである。従って、ステップコンペンセーター法では、
測定対象となる繊維が円形断面の繊維であり、かつ光路
差もある程度大きい(1/4λ以上)繊維に限定される
こととなる。よって、本発明は上述した事情に鑑みてな
されたもので、繊維の配向度の測定に好適な測定装置お
よび測定方法を提供することを目的とする。
However, in the above-described interference fringe counting method, it is necessary to cut an extremely fine fiber (usually on the order of microns) obliquely and linearly in advance, which makes the preparation work extremely difficult. . Further, it is necessary to make the cut surface upward for observation from above, but when the fiber is placed on the microscope, the fiber is often inclined and it is difficult to place the fiber. Furthermore, when the optical path difference between the fibers is large, the number of interference fringes is large, and the higher-order interference fringes are lightened, which may cause erroneous counting. Although there are a Senarmon compensator and a Berek compensator as auxiliary measures for measurement, they are not suitable for measurement of a fiber having a large optical path difference due to a small compensation range of the optical path difference. As another auxiliary measure for the measurement, there is a babinet compensator or the like, but it is only for roughly measuring the optical path difference, and thus is not suitable for measuring the degree of orientation of the fiber, which requires high accuracy. The parallel Nicol rotation method is a method for determining the degree of orientation of a sample having a sheet-like uniform thickness, and is not suitable for measuring the degree of orientation of a fiber having a circular cross section or an arbitrary cross section. In addition, a mechanism for integrally rotating the polarizer and the analyzer around the optical axis, a filter attachment / detachment mechanism for sequentially changing the wavelength of monochromatic light, and a wavelength plate position control mechanism for moving the wavelength plate into and out of the optical path. Requires a complicated structure. The step compensator method is a method of compensating for the optical path difference stepwise using a plurality of wavelength plates (for example, 4λ, λλ, 1λ, 3λ, 5λ) having different optical path differences. It is not suitable for compensating for differences (less than 1 / 4λ). In the case of fibers with an arbitrary cross section, a pair of black interference fringes does not appear,
It is not suitable for measuring the degree of orientation of fibers having an arbitrary cross section. Further, undrawn yarn, ultrafine yarn and the like have an extremely small optical path difference (1/100
λ or less), it is necessary to prepare a large number of wave plates having a small optical path difference for measurement with a wave plate, which is inefficient. Therefore, in the step compensator method,
The fiber to be measured is a fiber having a circular cross-section, and the optical path difference is limited to a somewhat large (1 / λ or more) fiber. Therefore, the present invention has been made in view of the above-described circumstances, and has as its object to provide a measuring apparatus and a measuring method suitable for measuring the degree of orientation of a fiber.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
に、本発明にかかる配向度測定装置は、測定対象である
繊維に白色光を照射する光源機構と、前記照射光を観察
する観察機構と、前記光源機構と繊維の間に配設された
段階補償機構と、前記観察機構と繊維の間に配設された
連続補償機構の4機構とからなり、前記段階補償機構
が、固定偏光板と、光路差補償値の異なる複数の波長板
と、波長板を90度方向を変えて載置可能な加減算切欠
部とからなり、前記連続補償機構が、楕円偏光を直線偏
光に変換する変換機構と、正逆回転自在な回転偏光板と
からなることを特徴とするものである。
In order to achieve this object, an orientation measuring device according to the present invention comprises a light source mechanism for irradiating a fiber to be measured with white light, and an observation mechanism for observing the illuminated light. And a step compensation mechanism disposed between the light source mechanism and the fiber, and a continuous compensation mechanism disposed between the observation mechanism and the fiber, wherein the step compensation mechanism is a fixed polarizing plate. And a plurality of wave plates having different optical path difference compensation values, and an addition / subtraction cutout portion in which the wave plate can be mounted by changing the direction by 90 degrees, wherein the continuous compensation mechanism converts elliptically polarized light into linearly polarized light. And a rotating polarizer that is rotatable in forward and reverse directions.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施形態につい
て、添付図面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0006】図1および図3に示すように、本発明にか
かる配向度測定装置(1)は、測定対象である合成繊維
フィラメント(F)に向けて白色光を照射する光源機構
(2)と、合成繊維フィラメント(F)の透過光を観察
する観察機構(3)と、光源機構(2)と合成繊維フィ
ラメント(F)の間に配設された段階補償機構(4)
と、観察機構(3)と合成繊維フィラメント(F)の間
に配設された連続補償機構(5)の4機構からなり、段
階補償機構(4)が、固定偏光板(41)と、光路差補
償値の異なる複数の波長板(42)と、波長板を90度
方向を変えて載置可能な加減算切欠部(43)とからな
り、連続補償機構(5)が、楕円偏光を直線偏光に変換
する変換機構(51)と、正逆回転自在な回転偏光板
(52)とからなる。
As shown in FIGS. 1 and 3, an orientation measuring apparatus (1) according to the present invention comprises a light source mechanism (2) for irradiating a synthetic fiber filament (F) to be measured with white light. An observation mechanism (3) for observing transmitted light of the synthetic fiber filament (F), and a step compensation mechanism (4) disposed between the light source mechanism (2) and the synthetic fiber filament (F).
And a continuous compensating mechanism (5) disposed between the observation mechanism (3) and the synthetic fiber filament (F). The step compensating mechanism (4) comprises a fixed polarizing plate (41) and an optical path. It comprises a plurality of wave plates (42) having different difference compensation values, and an addition / subtraction notch (43) on which the wave plate can be mounted by changing its direction by 90 degrees. And a rotating polarizer (52) rotatable in forward and reverse directions.

【0007】ここで、本発明にかかる配向度測定装置
(1)における合成繊維フィラメント(F)を基準とし
た各構成機構の位置関係について説明する。合成繊維フ
ィラメント(F)の太さに平行な方向をX軸方向、長さ
に平行な方向をY軸方向として説明する。まず、固定偏
光板(41)と回転偏光板(52)の基準点の偏光方向
は直交(90度)しており、直交ニコルを形成する。こ
の固定偏光板(41)は、X軸方向に対して45度に配
設される。また、波長板(42)の進相方向はX軸また
はY軸に平行に配設される。この方向は、波長板(4
2)が合成繊維フィラメント(F)の光路差を加減算す
る方位である。変換機構(51)の進相方向は、X軸に
対し45度に配設される。この方向は、変換機構(5
1)が合成繊維フィラメント(F)を透過した楕円偏光
を直線偏光に変換する方位である。
Here, a description will be given of the positional relationship of the respective constituent mechanisms based on the synthetic fiber filament (F) in the orientation measuring device (1) according to the present invention. A direction parallel to the thickness of the synthetic fiber filament (F) will be described as an X-axis direction, and a direction parallel to the length will be described as a Y-axis direction. First, the polarization directions of the reference points of the fixed polarizing plate (41) and the rotating polarizing plate (52) are orthogonal (90 degrees), forming orthogonal Nicols. The fixed polarizing plate (41) is disposed at 45 degrees with respect to the X-axis direction. Further, the fast-moving direction of the wave plate (42) is arranged parallel to the X axis or the Y axis. This direction corresponds to the wave plate (4
2) is a direction in which the optical path difference of the synthetic fiber filament (F) is added or subtracted. The phase advance direction of the conversion mechanism (51) is disposed at 45 degrees with respect to the X axis. This direction is determined by the conversion mechanism (5).
1) is a direction in which elliptically polarized light transmitted through the synthetic fiber filament (F) is converted into linearly polarized light.

【0008】光源機構(2)は、公知のハロゲンランプ
と白色光生成フィルターを内蔵した光源装置であって、
観察機構(3)に合成繊維フィラメント(F)の透過光
が入射するような位置に設置されている。
The light source mechanism (2) is a light source device incorporating a known halogen lamp and a white light generation filter,
It is installed at a position where the transmitted light of the synthetic fiber filament (F) enters the observation mechanism (3).

【0009】観察機構(3)は、光学顕微鏡(31)
と、前記光学顕微鏡(31)に接続された撮像カメラ
(33)と、前記撮像カメラ(33)に接続した画像処
理装置(36)および画像表示装置(37)とから構成
される。
The observation mechanism (3) includes an optical microscope (31)
And an imaging camera (33) connected to the optical microscope (31), and an image processing device (36) and an image display device (37) connected to the imaging camera (33).

【0010】段階補償機構(4)は、偏光方向が一定な
固定偏光板(41)と、光路差補償値の異なる複数の波
長板(42)と、波長板を90度方向を変えて載置可能
な加減算切欠部(43)とからなり、加減算切欠部(4
3)は、固定偏光板(41)の上部に一体的構造として
構成されている。段階補償機構が(4)がかかる一体的
構造を有するため、光学顕微鏡(31)の光源レンズ
(21)等の上に容易に載置して使用することが可能で
ある。さらに、波長板(42a)、(42b)は、図3
に示すように、波長板保持ホルダー(42c)により保
持されている。保持ホルダー(42c)は、偏光板直径
とほぼ等しい直径を有する中空の円柱又は角柱を、矢示
X方向に波長板(42b)の幅で切り欠いた切欠部1
(42c1)と、矢示Y方向に波長板(42a)の幅で
切り欠いた切欠部2(42c2)とからなる。尚、切欠
部1(42c1)と切欠部2(42c2)の切欠部の深
さは異なるように設計されている。また、その深さは、
切欠部1、切欠部2ともに複数枚の波長板が挿入できる
ようにその深さが設計されている。図3に示すように、
波長板(42a)を矢示Y方向に載置した場合には光路
差補償値は加算され、波長板(42b)を矢示X方向に
載置した場合には光路差補償値は減算される。
The step compensation mechanism (4) includes a fixed polarizing plate (41) having a fixed polarization direction, a plurality of wavelength plates (42) having different optical path difference compensation values, and mounting the wavelength plate by changing its direction by 90 degrees. A possible addition / subtraction notch (43).
3) is configured as an integral structure above the fixed polarizing plate (41). Since the step compensation mechanism has such an integral structure of (4), it can be easily mounted and used on the light source lens (21) of the optical microscope (31). Further, the wave plates (42a) and (42b)
As shown in (2), it is held by a wave plate holding holder (42c). The holding holder (42c) has a notch 1 formed by cutting a hollow cylinder or prism having a diameter substantially equal to the polarizing plate diameter in the X direction indicated by the width of the wave plate (42b).
(42c1) and a cutout 2 (42c2) cut out in the Y direction indicated by the width of the wavelength plate (42a). The notches 1 (42c1) and the notches 2 (42c2) are designed to have different depths. Also, its depth is
The depth of each of the notch 1 and the notch 2 is designed so that a plurality of wave plates can be inserted. As shown in FIG.
When the wave plate (42a) is placed in the arrow Y direction, the optical path difference compensation value is added, and when the wave plate (42b) is placed in the arrow X direction, the optical path difference compensation value is subtracted. .

【0011】連続補償機構(5)は、楕円偏光を直線偏
光に変換する変換機構(51)と、正逆自在に回転する
回転偏光板(52)とからなる。連続補償機構(5)
は、前述の段階補償機構(4)では、完全に補償できな
い残存光路差を、連続的かつ完全に補償するものであ
る。残存光路差を有する光は一般的に楕円偏光となるた
め、これを1/4λの光路差を有し、前述した方位に配
設した変換機構(51)により直線偏光に変換する。こ
のように変換された直線偏光の偏光方向は回転偏光板
(52)の基準点からθ度ずれている。そこで、回転偏
光板(52)をθ度回転させることにより偏光方向が直
交し残存光路差が補償されるものである。
The continuous compensating mechanism (5) comprises a conversion mechanism (51) for converting elliptically polarized light into linearly polarized light, and a rotating polarizer (52) which rotates freely in forward and reverse directions. Continuous compensation mechanism (5)
Is to continuously and completely compensate for the residual optical path difference that cannot be completely compensated by the above-mentioned step compensation mechanism (4). Since light having a residual optical path difference is generally elliptically polarized light, it has an optical path difference of λλ, and is converted into linearly polarized light by the conversion mechanism (51) arranged in the above-described direction. The polarization direction of the linearly polarized light thus converted is shifted from the reference point of the rotating polarizer (52) by θ degrees. Therefore, by rotating the rotating polarizing plate (52) by θ degrees, the polarization directions are orthogonal to each other and the residual optical path difference is compensated.

【0012】次に、以上の構成を備える測定装置を用い
た配向度の測定方法について説明する。先に、円形断面
の繊維についてその測定方法を説明し、その後に任意断
面の繊維についての説明をする。
Next, a description will be given of a method of measuring the degree of orientation using the measuring apparatus having the above configuration. First, a measuring method for a fiber having a circular cross section will be described, and then a fiber having an arbitrary cross section will be described.

【0013】まず、合成繊維フィラメントの配向度を繊
維の長さ方向と太さ方向の屈折率の差(以下、複屈折率
という。)として定義した上で、定義した複屈折率を本
測定装置で測定できるような形式に定義式を変形するこ
とについて説明する。
First, the degree of orientation of a synthetic fiber filament is defined as the difference between the refractive index in the length direction and the thickness direction of the fiber (hereinafter, referred to as birefringence). A description will be given of transforming the definition formula into a format that can be measured by the above.

【0014】図4に示すように、合成繊維フィラメント
(F)においては、紡糸・延伸などの操作中に繊維を構
成する高分子鎖(M)に加わった応力によって分子鎖
(M)が選択配向し凍結されたことに基づく配向複屈折
が発生する。発生した複屈折を定量的に測定し、繊維軸
方向(Y軸方向)の屈折率NYと繊維軸に垂直な方向
(X軸方向)の屈折率NXとの差である複屈折率ΔNを
繊維配向度として下記の数式1で定義する。数式1は、
一般的に用いられているものである。
As shown in FIG. 4, in the synthetic fiber filament (F), the molecular chains (M) are selectively oriented by the stress applied to the polymer chains (M) constituting the fibers during operations such as spinning and drawing. Then, the orientation birefringence based on the frozen state occurs. Quantitatively measuring the birefringence occurs, birefringence is the difference between the refractive index N X of the refractive index N Y direction perpendicular to the fiber axis (X-axis direction) of the fiber axis (Y-axis direction) .DELTA.N Is defined as the degree of fiber orientation by the following formula 1. Equation 1 is
It is a commonly used one.

【0015】数式1 ΔN=Ny−Nx ΔN:複屈折率=繊維配向度 Ny:繊維軸方向の屈折率 Nx:繊維軸に垂直方向の屈折率[0015] Equation 1 ΔN = N y -N x ΔN : birefringence = fiber orientation index N y: fiber axis direction of the refractive index N x: refractive index in the direction perpendicular to the fiber axis

【0016】さらに、光速v0を用いることにより、Δ
Nは下記の数式2により表すことができる。
Further, by using the speed of light v 0 , Δ
N can be represented by the following equation (2).

【0017】数式2 ΔN=(v0/vy)−(v0/vx) v0:大気中の光速 vx:物質中のX軸方向の光速 vy:物質中のY軸方向の光速Equation 2 ΔN = (v 0 / v y ) − (v 0 / v x ) v 0 : speed of light in the atmosphere v x : speed of light in the X-axis direction in the material v y : speed of light in the Y-axis direction in the material speed of light

【0018】また、物質の通過距離をt0とすると、Δ
Nは下記の数式3で表すことができる。
If the passing distance of the substance is t 0 , Δ
N can be represented by Equation 3 below.

【0019】数式3 ΔN=(v0/t0)×(t0/vy−t0/vx) t0:物質の通過距離Equation 3 ΔN = (v 0 / t 0 ) × (t 0 / v y −t 0 / v x ) t 0 : the passage distance of the substance

【0020】また、Tx、Tyを物質内の通過時間とする
と、ΔNは下記の数式4で表すことができる。
When T x and T y are transit times in a substance, ΔN can be expressed by the following equation (4).

【0021】数式4 ΔN=(1/t0)×v0(Ty−Tx)=(1/t0)×R Tx:物質内のX方向通過時間 Ty:物質内のY方向通過時間 R=v0(Ty−Tx):透過光の光路差Equation 4 ΔN = (1 / t 0 ) × v 0 (T y −T x ) = (1 / t 0 ) × R T x : X-direction transit time in the material T y : Y direction in the material Transit time R = v 0 (T y −T x ): optical path difference of transmitted light

【0022】通常の繊維はTy>Txであり、繊維の透過
光は図5(a)、(b)に示すようにY方向の光に遅れ
を生じ、この遅れが光路差R(リタデーション)と呼ば
れている。光路差Rを有する合成繊維フィラメント
(F)に白色光を照射すると、合成繊維フィラメント
(F)の透過光の影像には干渉色(多色からなる虹色)
が発現する。干渉色を観察機構(3)で観察しながら、
段階補償機構(4)の波長板(42)と連続補償機構
(5)の回転偏光板(52)を調整し、光路差補償値
R’を増加してゆくと干渉色が次第に低次側(暗黒部の
方向)に移行する。光路差補償値R’は合成繊維フィラ
メント(F)のY軸方向の遅れRをR’進める機能があ
り、R=R’となるように補償すると、図5(c)、
(d)に示すようにX軸方向の光とY軸方向の光が同位
相になる。同位相となった光は回転偏光板(52)を透
過することができないので、この状態の光を観察すると
暗黒となり、一対の黒い干渉縞が発現することとなる。
この状態において、繊維の厚さt0を用いることにより
複屈折率ΔNを求めることができる。
For a normal fiber, Ty > Tx , and the transmitted light of the fiber causes a delay in the light in the Y direction as shown in FIGS. 5 (a) and 5 (b), and this delay is caused by the optical path difference R (the retardation). )is called. When the synthetic fiber filament (F) having the optical path difference R is irradiated with white light, the image of the transmitted light of the synthetic fiber filament (F) has an interference color (rainbow color composed of multiple colors).
Is expressed. While observing the interference color with the observation mechanism (3),
By adjusting the wavelength plate (42) of the step compensation mechanism (4) and the rotating polarizing plate (52) of the continuous compensation mechanism (5) and increasing the optical path difference compensation value R ′, the interference color gradually becomes lower ( (The direction of the dark area). The optical path difference compensation value R ′ has a function of advancing the delay R in the Y-axis direction of the synthetic fiber filament (F) by R ′, and when compensation is made so that R = R ′, FIG.
As shown in (d), the light in the X-axis direction and the light in the Y-axis direction have the same phase. Since the light having the same phase cannot pass through the rotating polarizing plate (52), when the light in this state is observed, the light becomes dark and a pair of black interference fringes appears.
In this state, the birefringence index ΔN can be determined by using the fiber thickness t 0 .

【0023】つまり、合成繊維フィラメントにおいて
は、繊維配向度として定義した複屈折率ΔNは、透過光
の光路差Rを厚みt0で除した値で表されることとな
る。ここで、合成繊維フィラメントは一定の厚みを有す
る平板状のものではく、円形断面で近似されるものであ
るので、測定対象の厚みt0として繊維直径を用いるこ
とができず、これに代わる代表厚みtを求める必要があ
る。
That is, in a synthetic fiber filament, the birefringence index ΔN defined as the degree of fiber orientation is represented by a value obtained by dividing the optical path difference R of transmitted light by the thickness t 0 . Here, since the synthetic fiber filament is not a flat plate having a certain thickness, but is approximated by a circular cross section, the fiber diameter cannot be used as the thickness t 0 of the measurement target, and a representative alternative It is necessary to determine the thickness t.

【0024】よって、断面形状が円形で近似される合成
繊維フィラメントにおいては、代表厚みtと透過光の光
路差Rとの2つの値が算出できれば、配向度として定義
した複屈折率ΔNは求めることができることとなる。
Therefore, in the case of a synthetic fiber filament whose cross-sectional shape is approximated by a circle, if the two values of the representative thickness t and the optical path difference R of the transmitted light can be calculated, the birefringence ΔN defined as the degree of orientation can be obtained. Can be done.

【0025】上述のように、定義式の変形の説明をした
わけであるが、次いで、本願発明の測定装置を用いて、
この数式4から繊維配向度を求める方法について述べ
る。
As described above, the transformation of the definition formula has been described. Next, using the measuring apparatus of the present invention,
A method for obtaining the degree of fiber orientation from Equation 4 will be described.

【0026】測定対象である合成繊維フィラメント
(F)の太さに平行な方向をX軸方向、長さに平行な方
向をY軸方向として、各構成機構をどのような傾きに配
設するかについては前述したが、このような方位に配設
することにより楕円偏光を直線偏光に変換して回転偏光
板に供給する作用が発現する。すなわち、各構成機構を
所定の方位設定とすることにより、合成繊維フィラメン
ト(F)の干渉色を発現せしめ、波長板(42)による
段階的補償と、回転偏光板(52)による連続的補償が
可能となる。この2段階補償を用いて、繊維配向度を求
める。
What is the inclination of each component mechanism with the direction parallel to the thickness of the synthetic fiber filament (F) to be measured as the X-axis direction and the direction parallel to the length as the Y-axis direction? As described above, by arranging in such an orientation, the function of converting elliptically polarized light into linearly polarized light and supplying the linearly polarized light to the rotating polarizing plate is realized. That is, by setting each component mechanism to a predetermined orientation, the interference color of the synthetic fiber filament (F) is developed, and the stepwise compensation by the wave plate (42) and the continuous compensation by the rotating polarizing plate (52) are performed. It becomes possible. Using this two-stage compensation, the fiber orientation degree is determined.

【0027】次に、繊維を顕微鏡に載置する際に、繊維
の太さ方向の屈折率と略等しい屈折率を有する液体で繊
維の周辺を充たす。これにより、繊維が直接大気に接し
ていないため、繊維の端部で光が複雑に屈折することが
避けられ、正確な配向度の測定ができるようになる。ま
た、顕微鏡に対する繊維の載置方向は繊維の長さ方向
(Y軸方向)を顕微鏡の前後方向とするのが好ましい。
このようにすることにより、繊維の対物レンズ下での位
置合わせおよび干渉現象の観察を容易とし、かつ画像処
理装置等での座標軸と方向性を合わせることが容易にな
る。
Next, when the fiber is placed on a microscope, the periphery of the fiber is filled with a liquid having a refractive index substantially equal to the refractive index in the thickness direction of the fiber. Accordingly, since the fiber is not in direct contact with the atmosphere, complicated refraction of light at the end of the fiber is avoided, and accurate measurement of the degree of orientation can be performed. In addition, it is preferable that the direction of placing the fiber with respect to the microscope be the longitudinal direction of the fiber (Y-axis direction) as the longitudinal direction of the microscope.
This facilitates the alignment of the fiber under the objective lens and the observation of the interference phenomenon, and also facilitates the alignment with the coordinate axes in an image processing device or the like.

【0028】つぎに、光源機構(2)により合成繊維フ
ィラメント(F)に白色光を照射する。白色光を用いる
ことにより繊維の影像に虹色の干渉色を発現させること
ができる。虹色の干渉色を発現させることにより、波長
板を用いて光路差を補償する場合、波長板を加算するか
減算するかの判断が明確になる。また、光路差が完全に
補償された位置のみが、唯一暗黒となるため、光路差補
償完了の判断が明確となる。
Next, the synthetic fiber filament (F) is irradiated with white light by the light source mechanism (2). By using white light, a rainbow interference color can be expressed in the image of the fiber. By expressing the rainbow interference color, when compensating for the optical path difference using the wave plate, the determination of whether to add or subtract the wave plate becomes clear. Further, only the position where the optical path difference is completely compensated is darkened only, so that the determination of the completion of the optical path difference compensation becomes clear.

【0029】つぎに、光路差補償値の異なる複数の波長
板を用いて、繊維の光路差を補償する。波長板の光路差
補償値は、例えば、1λ、3λ、9λ・・・等を用い
る。1λは基準波長であり、特に限定されるものではな
いが、光路差により発現する干渉色の周期性および生理
学的な波長感度から546nmを用いるのが好ましい。
波長板は加減算切欠部に、X軸方向またはY軸方向に組
み合わせて載置して使用する。Y軸方向が加算であり、
X軸方向が減算である、例えばY軸方向に3λ、X軸方
向に1λを載置すると、光路差補償値は(3λ−1λ)
となる。1λ、3λ、9λを用いると、1λ〜13λが
1λピッチで実現できる。1λ未満の波長板、例えば、
1/9λ、1/3λを付加すれば、1/9λ〜(13+
4/9λ)が、1/9λピッチで実現できる。
Next, the optical path difference of the fiber is compensated by using a plurality of wave plates having different optical path difference compensation values. As the optical path difference compensation value of the wavelength plate, for example, 1λ, 3λ, 9λ, or the like is used. 1λ is a reference wavelength, and is not particularly limited. However, it is preferable to use 546 nm from the viewpoint of periodicity of an interference color generated due to an optical path difference and physiological wavelength sensitivity.
The wave plate is mounted and used in the addition / subtraction notch in the X-axis direction or the Y-axis direction. Y-axis direction is addition,
When the X-axis direction is a subtraction, for example, when 3λ is placed in the Y-axis direction and 1λ is placed in the X-axis direction, the optical path difference compensation value is (3λ−1λ).
Becomes When 1λ, 3λ, and 9λ are used, 1λ to 13λ can be realized at a 1λ pitch. Wave plate of less than 1λ, for example,
If 1 / 9λ and 1 / 3λ are added, 1 / 9λ ~ (13+
4 / 9λ) can be realized with a 1 / 9λ pitch.

【0030】波長板の組み合わせを最も効率よくするに
は、波長板の光路差補償値=3m×λ(m=0,±1、
±2、・・・)とするのが好ましい。m=−2、−1、
0、1、2の場合、1/9λ、1/3λ、1λ、3λ、
9λの波長板を用意することになる。このことは、波長
板の組み合わせに重複がなく、必要最少限の波長板で広
範囲の補償値を実現することができる。
In order to make the combination of the wave plates most efficient, the optical path difference compensation value of the wave plate = 3 m × λ (m = 0, ± 1,
± 2, ...). m = -2, -1,
In the case of 0, 1, 2, 1 / 9λ, 1 / 3λ, 1λ, 3λ,
A 9λ wavelength plate will be prepared. This means that there is no overlap between combinations of wave plates, and a wide range of compensation values can be realized with the minimum necessary wave plates.

【0031】干渉色を観察機構(3)で観察して、波長
板の光路差補償値を増加していくと、干渉色が次第に低
次側(暗黒部の方向)へ移行する。波長板は、繊維のY
軸方向の光の遅れRをR’進める機能があり、R=R’
となるように調整すると、Y軸方向の光の遅れが補償さ
れ(相殺され)、図5(c)、(d)に示す状態にな
る。この状態の光を観察すると暗黒に見える。円形断面
繊維の場合、図6(b)に示すような一対の黒い干渉縞
(S)が発現する。この影像を画像処理装置(36)で
解析することにより次式から複屈折率を求める。
When the interference color is observed by the observation mechanism (3) and the optical path difference compensation value of the wave plate is increased, the interference color gradually shifts to a lower order side (toward a dark portion). The wave plate is a fiber Y
There is a function to advance the axial light delay R by R ', and R = R'
When the adjustment is made such that, the delay of light in the Y-axis direction is compensated (canceled), and the state shown in FIGS. 5C and 5D is obtained. Observing the light in this state, it looks dark. In the case of a fiber having a circular cross section, a pair of black interference fringes (S) as shown in FIG. The birefringence is determined from the following equation by analyzing this image with the image processing device (36).

【0032】数式5 ΔN=nλ/SQR(D2−W2) ΔN:繊維の複屈折率 n:波長板の値 λ:基準波長 D:円形断面繊維の直径 W:円形断面繊維の一対の黒い干渉縞の間隔Formula 5 ΔN = nλ / SQR (D 2 −W 2 ) ΔN: birefringence of fiber n: value of wave plate λ: reference wavelength D: diameter of fiber of circular cross section W: pair of black of fiber of circular cross section Interference fringe spacing

【0033】このようにすることにより、通常の円形断
面繊維に関しては波長板による調整のみで配向度の測定
が可能である。しかし、波長板は段階的に光路差を補償
するものであるため、波長板の最小補償値に限界があ
る。ある種の繊維(未延伸糸や極細繊維)は、光路差が
きわめて小さいため(1/100λ以下)、波長板で測
定するにはきわめて微少な光路差の波長板を多数準備す
る必要があり、非効率的かつ不経済である。
In this manner, the degree of orientation can be measured for ordinary fibers having a circular cross section only by adjusting the wavelength plate. However, since the wave plate compensates for the optical path difference step by step, there is a limit to the minimum compensation value of the wave plate. Certain fibers (undrawn yarns and ultrafine fibers) have a very small optical path difference (1 / 100λ or less), so that it is necessary to prepare a large number of wavelength plates with an extremely small optical path difference for measurement with a wavelength plate. Inefficient and uneconomical.

【0034】また、任意断面の繊維の場合には一対の黒
い干渉縞が発現しないため、数式4が適用できない。こ
のような場合には、波長板による補償は粗調整にとど
め、次の操作により光路差の補償を行なう。
In the case of a fiber having an arbitrary cross section, a pair of black interference fringes does not appear, so that Equation 4 cannot be applied. In such a case, the compensation by the wave plate is limited to the coarse adjustment, and the optical path difference is compensated by the following operation.

【0035】回転偏光板(52)を正方向または逆方向
に回転させ、光路差を連続的に補償しながら微調整し
て、光路差を完全に補償し暗黒部を発現せしめる。波長
板で完全に補償できず、微少な光路差が残存する光は一
般的に楕円偏光となる。変換機構(51)は1/4λの
光路差を有し、前述の方位に配設することにより楕円偏
光を直線偏光に変換させる作用を有する。この原理は、
偏光に関する文献等に記載されたポアンカレ球によって
説明できるが、ここでは詳細な説明は省略する。変換機
構を透過した光は、直線偏光となっているが偏光方向が
θずれている。
By rotating the rotating polarizing plate (52) in the forward or reverse direction and finely adjusting it while continuously compensating for the optical path difference, the optical path difference is completely compensated and a dark portion is developed. Light that cannot be completely compensated for by a wavelength plate and has a small optical path difference generally becomes elliptically polarized light. The conversion mechanism (51) has an optical path difference of 4λ, and has an action of converting elliptically polarized light to linearly polarized light by being disposed in the above-described direction. This principle is
This can be explained by a Poincare sphere described in a literature or the like relating to polarization, but detailed description is omitted here. The light transmitted through the conversion mechanism is linearly polarized light, but the polarization direction is shifted by θ.

【0036】残存光路差Rと偏光方向θとの関係は、R
=θ/180・λである。そこで、回転偏光板をθ回転
すると、偏光方向が直交することとなり、暗黒部が発現
する。円形断面繊維の場合には、光路差が微少であって
も図6(b)に示すような一対の黒い干渉縞が発現す
る。この影像を画像処理装置で解析することにより次式
から複屈折率を求めることができる。
The relationship between the residual optical path difference R and the polarization direction θ is R
= Θ / 180 · λ. Then, when the rotating polarizing plate is rotated by θ, the polarization directions are orthogonal to each other, and a dark portion appears. In the case of a fiber having a circular cross section, a pair of black interference fringes as shown in FIG. By analyzing this image with an image processing device, the birefringence can be determined from the following equation.

【0037】数式6 ΔN={n+(θ/180)}λ/{SQR(D2−W2)} ΔN:繊維の複屈折率 n:波長板の値 θ:回転偏光板の基準点からの回転角度 λ:基準波長 D:円形断面繊維の直径 W:円形断面繊維の一対の黒い干渉縞の間隔Equation 6 ΔN = {n + (θ / 180)} λ / {SQR (D 2 −W 2 )} ΔN: birefringence of fiber n: value of wave plate θ: from reference point of rotating polarizer Rotation angle λ: Reference wavelength D: Diameter of circular cross-section fiber W: Distance between a pair of black interference fringes of circular cross-section fiber

【0038】任意断面繊維の場合には、適正な位置(繊
維の厚みが測定容易な位置が好ましい)に暗黒部が発現
するように回転偏光板(52)を回転させる。この影像
を画像処理装置(36)で解析することにより次式から
複屈折率を求めることができる。
In the case of a fiber having an arbitrary cross section, the rotating polarizing plate (52) is rotated so that a dark portion appears at an appropriate position (a position where the thickness of the fiber is easily measured). The birefringence can be determined from the following equation by analyzing this image with the image processing device (36).

【0039】数式7 ΔN={n+(θ/180)}λ/T ΔN:繊維の複屈折率 n:波長板の値 θ:回転偏光板の基準点からの回転角度 λ:基準波長 T:任意断面繊維の暗黒部の厚さEquation 7 ΔN = {n + (θ / 180)} λ / T ΔN: birefringence of fiber n: value of wave plate θ: rotation angle from reference point of rotating polarizing plate λ: reference wavelength T: arbitrary Thickness of dark section of cross-section fiber

【0040】繊維の厚さTは、予め別の手段(公知の厚
み測定器等)で求めておく。また、シート状のフィルム
等は、厚さTは、通常既知であることが多い。また、あ
る種の繊維は、光路差がほぼ零であったり、負の光路差
を有するものもあるが、nおよびθを零としたり、波長
板の減算を利用してnを負とし回転偏光板を逆回転して
θを負にすることにより複屈折率の測定が可能となる。
The thickness T of the fiber is determined in advance by another means (such as a known thickness measuring device). In addition, the thickness T of a sheet-like film or the like is usually known in many cases. Some types of fibers have an optical path difference of almost zero or have a negative optical path difference. The birefringence can be measured by reversely rotating the plate to make θ negative.

【0041】また、ある種の繊維は、屈折率分散を有
し、光路差が補償された位置の暗黒部が若干色付いて観
察される場合がある。しかし、この場合には次の手順に
より干渉色の次数Kが検証できる。次数Kは、光路差R
=nλのnを示すものである。n番目の干渉縞の位置の
繊維の厚みをTnとし、n+1番目の干渉縞の位置の繊
維の厚みをTn+1とすると、数式8よりn番目の干渉縞
の次数Kが検証できる。Tn、Tn+1の測定方法は、円形
断面繊維の場合、画像処理装置で円断面の補助線を描い
て測定できる。任意断面繊維の場合には、公知の厚さ測
定器で求めることができる。
Some fibers have a refractive index dispersion, and the dark portion at the position where the optical path difference is compensated may be slightly colored and observed. However, in this case, the order K of the interference color can be verified by the following procedure. The order K is the optical path difference R
= Nλ = nλ. If the thickness of the fiber at the position of the n-th interference fringe is T n and the thickness of the fiber at the position of the (n + 1) -th interference fringe is T n + 1 , the order K of the n-th interference fringe can be verified from Expression 8. The method of measuring T n and T n + 1 can be measured by drawing an auxiliary line having a circular cross section with an image processing device in the case of a fiber having a circular cross section. In the case of a fiber having an arbitrary cross section, it can be determined by a known thickness measuring instrument.

【0042】数式8 K=Tn/(Tn+1−TnEquation 8 K = T n / (T n + 1 −T n )

【0043】[0043]

【発明の効果】以上詳述したように、請求項1に係る発
明によれば、測定準備作業および測定作業が容易な配向
度の測定装置を安価に提供できる。請求項2に係る発明
によれば、配向度の測定において、発現した干渉縞の計
数を誤る可能性もなく高精度の測定が可能となる。ま
た、シート状の試料を含めて繊維の配向度の測定が可能
となる。光路差の大小や断面形状にかかわらず多種多様
な繊維の配向度の測定が可能となる。また、光路差が零
の繊維や負の値を示す繊維の配向度の測定も可能とな
る。
As described in detail above, according to the first aspect of the present invention, it is possible to provide an inexpensive measurement apparatus for the degree of orientation in which measurement preparation work and measurement work are easy. According to the second aspect of the present invention, in the measurement of the degree of orientation, it is possible to perform high-accuracy measurement without the possibility of erroneous counting of the developed interference fringes. Further, it becomes possible to measure the degree of orientation of the fiber including the sample in the form of a sheet. It is possible to measure the degree of orientation of various fibers regardless of the difference in optical path and the cross-sectional shape. Further, it becomes possible to measure the degree of orientation of a fiber having a zero optical path difference or a fiber having a negative value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 測定装置構成図FIG. 1 is a configuration diagram of a measuring apparatus.

【図2】 偏光機構および光路差補償機構を表す構成図FIG. 2 is a configuration diagram showing a polarization mechanism and an optical path difference compensation mechanism.

【図3】 段階補償機構を表す構成図FIG. 3 is a configuration diagram showing a step compensation mechanism.

【図4】 繊維の配向を表す図FIG. 4 is a diagram showing fiber orientation.

【図5】 光路差を表す図FIG. 5 is a diagram showing an optical path difference.

【図6】 観察図FIG. 6 is an observation diagram

【符号の説明】[Explanation of symbols]

1 配向度測定装置 2 光源機構 3 観察機構 4 段階補償機構 5 連続補償機構 F 合成繊維フィラメント Reference Signs List 1 orientation degree measuring device 2 light source mechanism 3 observation mechanism 4 step compensation mechanism 5 continuous compensation mechanism F synthetic fiber filament

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01J 3/00 - 3/52 G01J 4/00 - 4/04 G01J 9/00 - 9/04 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 G01J 3/00-3/52 G01J 4 / 00-4/04 G01J 9/00-9/04 Practical file (PATOLIS) Patent file (PATOLIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維の配向度を測定する装置であって、
測定対象である繊維に白色光を照射する光源機構と、前
記照射光を観察する観察機構と、前記光源機構と繊維の
間に配設された段階補償機構と、前記観察機構と繊維の
間に配設された連続補償機構の4機構とからなり、前記
段階補償機構が、固定偏光板と、光路差補償値の異なる
複数の波長板と、波長板を90度方向を変えて載置可能
な加減算切欠部とからなり、前記連続補償機構が、楕円
偏光を直線偏光に変換する変換機構と、正逆回転自在な
回転偏光板とからなることを特徴とする測定装置。
An apparatus for measuring the degree of orientation of a fiber, comprising:
A light source mechanism for irradiating the fiber to be measured with white light, an observation mechanism for observing the irradiation light, a step compensation mechanism disposed between the light source mechanism and the fiber, and between the observation mechanism and the fiber The step compensation mechanism comprises a fixed polarization plate, a plurality of wavelength plates having different optical path difference compensation values, and the wavelength plate can be mounted by changing the direction by 90 degrees. A measuring device comprising an addition / subtraction notch, wherein the continuous compensating mechanism comprises a conversion mechanism for converting elliptically polarized light into linearly polarized light, and a rotating polarizer capable of rotating forward and backward.
JP32035698A 1998-11-11 1998-11-11 Fiber orientation measurement device and orientation measurement method Expired - Lifetime JP3336276B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32035698A JP3336276B2 (en) 1998-11-11 1998-11-11 Fiber orientation measurement device and orientation measurement method
TW88119053A TW414814B (en) 1998-11-11 1999-11-02 Measure-device and measure-method for the orientation-degree of a fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32035698A JP3336276B2 (en) 1998-11-11 1998-11-11 Fiber orientation measurement device and orientation measurement method

Publications (2)

Publication Number Publication Date
JP2000146829A JP2000146829A (en) 2000-05-26
JP3336276B2 true JP3336276B2 (en) 2002-10-21

Family

ID=18120573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32035698A Expired - Lifetime JP3336276B2 (en) 1998-11-11 1998-11-11 Fiber orientation measurement device and orientation measurement method

Country Status (2)

Country Link
JP (1) JP3336276B2 (en)
TW (1) TW414814B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1910442B (en) * 2004-01-20 2011-04-13 联邦科学和工业研究组织 Method and apparatus for testing fibres
CN110426379B (en) * 2019-08-08 2021-12-17 南京林业大学 Rotary type wood single-fiber sectional area measuring device and method

Also Published As

Publication number Publication date
TW414814B (en) 2000-12-11
JP2000146829A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
US7239388B2 (en) Retardance measurement system and method
JP3909363B2 (en) Spectral polarization measurement method
EP1693658B1 (en) Spectroscopic polarimetry
JPH08304229A (en) Method and instrument for measuring refractive index distribution of optical element
US6947137B2 (en) System and method for measuring birefringence in an optical material
JPH0887724A (en) Flare preventing optical system, flare preventing method, floating high measuring device
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
JP2002107119A (en) Method and apparatus for measurement of thickness of specimen
EP0737856B1 (en) A method of investigating samples by changing polarisation
CN113008426B (en) Double-frequency quantitative photoelastic measuring instrument and measuring method
Medhat et al. Interferometric determination of the birefringence dispersion of anisotropic materials
JP3285365B2 (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
JP3336276B2 (en) Fiber orientation measurement device and orientation measurement method
JP2001141602A (en) System and method for evaluating double refraction
GB2347496A (en) Indicating optical anisotropy
CN113008427B (en) Liquid crystal photoelastic stress measuring instrument and measuring method
CN114061803B (en) Circular polarization photoelastic stress measuring system and measuring method
JP3813800B2 (en) Liquid crystal cell parameter detector
US7233395B2 (en) Performing retardation measurements
JP3219462B2 (en) Thin film measuring instrument
JPH10267831A (en) Birefringence measuring optical system and high space resolution polarization analyzer
JP3234507B2 (en) Synthetic fiber filament orientation measurement method
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
EP1057081B1 (en) Linear conoscopic holography
Dix Photoelastic Methods for Measuring Anisotropy Effects

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180802

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180802

Year of fee payment: 16

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180802

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term