JP3219462B2 - Thin film measuring instrument - Google Patents

Thin film measuring instrument

Info

Publication number
JP3219462B2
JP3219462B2 JP14441192A JP14441192A JP3219462B2 JP 3219462 B2 JP3219462 B2 JP 3219462B2 JP 14441192 A JP14441192 A JP 14441192A JP 14441192 A JP14441192 A JP 14441192A JP 3219462 B2 JP3219462 B2 JP 3219462B2
Authority
JP
Japan
Prior art keywords
light
thin film
optical system
reflectance
pinhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14441192A
Other languages
Japanese (ja)
Other versions
JPH05340869A (en
Inventor
和司 百村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP14441192A priority Critical patent/JP3219462B2/en
Publication of JPH05340869A publication Critical patent/JPH05340869A/en
Application granted granted Critical
Publication of JP3219462B2 publication Critical patent/JP3219462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学薄膜や半導体等の
薄膜の膜厚や複素屈折率を求めるために用いられる薄膜
測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film measuring instrument used for determining the thickness and complex refractive index of an optical thin film or a thin film such as a semiconductor.

【0002】[0002]

【従来の技術】一般に、光学薄膜や半導体産業その他薄
膜の応用分野では基本的な薄膜の特性として屈折率実部
nと屈折率虚部kを測定する必要がある。ここで、複素
屈折率Nは、N=n−ikで表される。従来このような
測定には、別のサンプルを用意してこれらの特性を測定
していた。
2. Description of the Related Art In general, in the optical thin film, semiconductor industry, and other thin film application fields, it is necessary to measure the real part n of the refractive index and the imaginary part k of the refractive index as basic thin film characteristics. Here, the complex refractive index N is represented by N = n-ik. Conventionally, for such a measurement, another sample was prepared and these characteristics were measured.

【0003】一般に、パラメータ測定の基本的な原理と
しては、屈折率実部n、屈折率虚部kおよび膜厚dを測
定するためには、波長数をa とすると(2a+1)個の独立し
た測定データが必要となる。このような測定値として、
p偏光の振幅反射率をrs 、s偏光の振幅反射率をrs
とした場合、反射光のrp /rs 比と位相差を測定した
り、反射率、透過率を測定するなど色々な方法がある。
何等かの方法で十分なデータが得られれば方程式を解く
か、あるいは、最小自乗法等を用いて薄膜のパラメータ
n,k,dを求めることができる。
In general, the basic principle of the parameter measurement is as follows. In order to measure the real part n of the refractive index, the imaginary part k of the refractive index and the film thickness d, if the number of wavelengths is a, (2a + 1) Independent measurement data is required. As such measurements,
the amplitude reflectance of p-polarized light r s, the amplitude reflectance of s-polarized light r s
If the, or to measure the phase difference and r p / r s ratio of the reflected light, there are various ways such as by measuring the reflectance, the transmittance.
If sufficient data can be obtained by any method, the equations can be solved, or the parameters n, k, and d of the thin film can be obtained by using the least square method or the like.

【0004】[0004]

【発明が解決しようとする課題】不透明な基板上の薄膜
の反射率を測定することは一般に行われており、この方
法でnとdを測定することができる。しかし、高い精度
でkを測定するには、反射率の他に透過率を測定する必
要が生じてきて、どうしても透明基板を用いる必要があ
る。薄い透明板では、表面反射と裏面反射の分離が難し
いので、反射率の測定が困難となるからである。従来、
光学硝子上の薄膜の反射率測定の場合では、試料を十分
厚くし、裏面を粗面にした上、黒色塗料等を塗っていた
が、半導体産業で用いられる基板は、厚さが薄いため、
この様な処理は出来ない。
It is common practice to measure the reflectivity of a thin film on an opaque substrate, and this method can be used to measure n and d. However, in order to measure k with high accuracy, it is necessary to measure the transmittance in addition to the reflectance, and it is absolutely necessary to use a transparent substrate. This is because, in a thin transparent plate, it is difficult to separate the front surface reflection from the back surface reflection, so that it is difficult to measure the reflectance. Conventionally,
In the case of measuring the reflectance of a thin film on optical glass, the sample was made sufficiently thick, the back surface was roughened, and black paint was applied, but the substrate used in the semiconductor industry is thin,
Such processing cannot be performed.

【0005】微小部分での測定をしようとすると、正確
に同一の場所での反射率、透過率を測定する必要がある
が、従来の分光器では、反射、透過を同一の場所につい
て測定することは難しい。
In order to measure a minute portion, it is necessary to accurately measure the reflectance and transmittance at the same place. In a conventional spectroscope, however, it is necessary to measure the reflection and transmission at the same place. Is difficult.

【0006】反射率実部nと透過率虚部k、あるいは反
射率実部nと膜厚dを求めるための方法としては、円偏
光解析法とも呼ばれるエリプソメトリー法が知られてい
る。これは、偏光した斜入射光を試料に当て、反射され
る円偏光を解析することにより光のrp とrs の強度比
および位相差を測定してnとd等を求める。平行光束を
投影しており、光量を確保するために光束径がある程度
大きい必要がある。光束径が大きいことと、光束が当た
っている部分の確認が正確にできないために、微小部分
の測定は困難である。
As a method for obtaining the real part of reflectance n and the imaginary part of transmittance k or the real part of reflectance n and the film thickness d, an ellipsometry method also known as a circular ellipsometry is known. This sheds oblique incident light polarized in a sample, the intensity ratio and phase difference of light of r p and r s by analyzing the circularly polarized light reflected by measured Request n and d the like. A parallel light beam is projected, and the light beam diameter needs to be large to some extent in order to secure the light amount. Since the diameter of the light beam is large and the portion where the light beam hits cannot be confirmed accurately, it is difficult to measure a minute portion.

【0007】また、メイル(Male) の方法では、薄膜の
表面からの反射率、裏面からの反射率、透過率を予め測
定しておき、これらのデータから計算し、描いておいた
チャートを用いるグラフ法でn,k,dを求める方法で
ある。この場合も、上述のエリプソメトリー方法と同様
に、薄い試料については反射率の測定が困難である。表
面からの反射率、裏面からの反射率を同一場所で測定す
る必要があるが、特に、微小部分を測る場合、試料を付
け換えるのに位置合わせが困難になる。
In the Male method, the reflectance from the front surface, the reflectance from the back surface, and the transmittance of the thin film are measured in advance, and a chart drawn and calculated from these data is used. In this method, n, k, and d are obtained by a graph method. Also in this case, similarly to the ellipsometry method described above, it is difficult to measure the reflectance of a thin sample. It is necessary to measure the reflectivity from the front surface and the reflectivity from the back surface at the same place. Particularly, when measuring a minute part, it is difficult to perform alignment when replacing the sample.

【0008】本発明は、薄膜や微小部分の反射率、透過
率の測定を可能にして、n,k,dが容易に測定できる
手段を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a means for enabling measurement of the reflectance and transmittance of a thin film or a minute portion, so that n, k, and d can be easily measured.

【0009】[0009]

【問題を解決する手段】本発明は、照明用の光源と、輪
帯開口を有する絞りとピンホールとを有する照明光学系
と、上記照明光学系からの光束を測定試料に投影する対
物光学系と、上記測定試料に投影された光束の反射光を
受光する受光面を有する分光装置とから構成され、上記
輪帯開口の大きさを任意に変化させることによって、異
なる複数の入射角度に対する分光反射率並びに分光透過
率を測定することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides an illumination light source, an illumination optical system having an aperture having a ring-shaped aperture and a pinhole, and an objective optical system for projecting a light beam from the illumination optical system onto a measurement sample. And a spectroscopic device having a light receiving surface for receiving the reflected light of the light beam projected on the measurement sample, and by arbitrarily changing the size of the annular opening, the spectral reflection for a plurality of different incident angles is achieved. It is characterized by measuring the transmittance and the spectral transmittance.

【0010】猶、本発明に用いられる輪帯開口の大きさ
を切換られることの出来る絞りは、液晶絞りのような電
気的手段や、シャッター絞りのようなメカ的手段を用い
たものでも良いし、また、開口の大きさの異なった絞り
を複数設けて挿脱機構とすることによって絞りを選択す
るようにして用いても良い。
The aperture used in the present invention, which can switch the size of the annular aperture, may be one using an electric means such as a liquid crystal aperture or a mechanical means such as a shutter aperture. Alternatively, a plurality of apertures having different aperture sizes may be provided and used as an insertion / removal mechanism so that the aperture is selected.

【0011】[0011]

【作用】本発明は、以上の構成であるから、落射照明の
顕微鏡光学系に簡単な付加装置を加えた単一の光学系
で、反射率及び透過率を測定でき、その結果をデータ処
理することでn,k,dを求めることができ、顕微鏡光
学系を基本としているので微小部分の測定が可能とな
る。また、照明光学系のピンホールは光軸方向に沿って
移動できるものであり、基本的には対物レンズの試料側
焦点位置と共役に位置されるものであり、前記輪帯開口
絞りは対物レンズの瞳と共役な位置に配置されており、
輪帯状にされたことで測定試料の裏面からの反射と表面
からの反射の分離が可能となる。
According to the present invention, the reflectivity and the transmittance can be measured by a single optical system in which a simple additional device is added to the microscope optical system for epi-illumination, and the results are processed. In this way, n, k, and d can be obtained, and a microscopic portion can be measured because the microscope optical system is used as a basis. Further, the pinhole of the illumination optical system is movable along the optical axis direction, and is basically positioned conjugate with the sample-side focal position of the objective lens. Is located at a position conjugate with the pupil of
Due to the annular shape, the reflection from the back surface and the reflection from the front surface of the measurement sample can be separated.

【0012】[0012]

【実施例】まず、本発明の1実施例を図1に基づいて説
明する。図において、光源1からの光束は輪帯絞り2に
より輪帯光束となり、レンズで結像され焦点位置に配置
されたピンホール3を経て再び輪帯光束となり、ハーフ
ミラー4によって対物レンズ5の方向に導かれ測定試料
表面6aにピンホール3の像が形成される。
First, an embodiment of the present invention will be described with reference to FIG. In the figure, a light beam from a light source 1 is turned into an orbicular light beam by an orbicular diaphragm 2, passes through a pinhole 3 which is imaged by a lens and is arranged at a focal position, and becomes an orbicular light beam again. And an image of the pinhole 3 is formed on the measurement sample surface 6a.

【0013】測定試料表面6aからの反射光は再びハー
フミラー4を通り、結像レンズ7により像面絞り9上に
結像する。像面絞り9を通過した光は分光装置10によ
り分光される。測定データはデータ処理装置11により
処理され、n,k,dの値が演算される。結像レンズ7
からの光束は、また観察光学系8に導かれ測定箇所の確
認ができる。
The reflected light from the measurement sample surface 6a passes through the half mirror 4 again and forms an image on the image plane stop 9 by the imaging lens 7. The light that has passed through the image plane stop 9 is split by the spectroscope 10. The measurement data is processed by the data processing device 11, and the values of n, k, and d are calculated. Imaging lens 7
Is guided to the observation optical system 8 again, and the measurement position can be confirmed.

【0014】次に反射率測定の方法を説明する。前述の
ように、従来の測定方法では、測定しようとする薄膜の
反射光に、別の面の反射光がノイズとして重なり合って
しまうため、薄い試料の反射率を正確に測定することが
困難であったが、本発明では次のようにこれを正確に測
定することが出来る。
Next, a method of measuring the reflectance will be described. As described above, in the conventional measurement method, the reflected light of another surface overlaps with the reflected light of the thin film to be measured as noise, and thus it is difficult to accurately measure the reflectance of a thin sample. However, according to the present invention, this can be accurately measured as follows.

【0015】図2(a),(b)に基づき、本発明の第
1の実施例による反射光の測定概念を説明する。対物レ
ンズ5によって測定試料表面6aにピンホール3の像が
形成され、反射光は再び対物レンズ5を通って像面絞り
9の位置に結像する。今、図2(b)においてBを測定
点とすると、本来の測定光は、A→B→Cなる経路を辿
って像面絞り9に到達する。B点と像面絞り9は共役の
関係にあるので、像面絞り9上で小さなピンホール3の
像を作り、像面絞り9を通過できる。
The concept of measuring reflected light according to the first embodiment of the present invention will be described with reference to FIGS. 2 (a) and 2 (b). An image of the pinhole 3 is formed on the measurement sample surface 6 a by the objective lens 5, and the reflected light passes through the objective lens 5 again and forms an image at the position of the image plane stop 9. Now, assuming that B is a measurement point in FIG. 2B, the original measurement light reaches the image plane stop 9 along a path of A → B → C. Since the point B and the image plane stop 9 have a conjugate relationship, an image of the small pinhole 3 is formed on the image plane stop 9 and can pass through the image plane stop 9.

【0016】これに対し、測定試料6の裏面(鏡面)1
2で反射する光は、A→D→Eなる経路を辿り、結局B
の鏡像B’からの光束と同じ様な経路を辿る。従って、
この光束については像面絞り9の位置では結像せずリン
グ状にぼけた像が広がる。リング状にぼけた像は、全て
像面絞り9でカットされてしまうので分光装置10には
到達できない。
On the other hand, the back surface (mirror surface) 1 of the measurement sample 6
The light reflected at 2 follows the path of A → D → E, and eventually B
Follow the same path as the light beam from the mirror image B 'of FIG. Therefore,
This light flux does not form an image at the position of the image plane stop 9 and an image blurred in a ring shape spreads. Since all the images blurred in a ring shape are cut by the image plane stop 9, they cannot reach the spectroscopic device 10.

【0017】このように、本発明による構成によれば、
例え試料6が薄い場合であっても、試料6の裏面12か
らの反射光は全く除去された状態で、表面反射光のみを
分光装置10へ導くようになっているので、正確な反射
率を測定することが出来る。
Thus, according to the configuration of the present invention,
Even if the sample 6 is thin, only the surface reflected light is guided to the spectrometer 10 in a state where the reflected light from the back surface 12 of the sample 6 is completely removed. Can be measured.

【0018】以下、本発明の構成要素よりなる測定器を
用いて、n,k,dの測定手順を説明する。 先ず、基板表面の薄膜のついていない部分の反射率
を測定する。入射角をθ1,θ2 、波長をλ、第1の測定
値をM1 、基板表面の反射率をRsubとすると、 M1(θ1,λ) =Rsub(θ1,λ) M1(θ2,λ) =Rsub(θ2,λ)
The procedure for measuring n, k, and d using a measuring instrument comprising the components of the present invention will be described below. First, the reflectance of the portion of the substrate surface where no thin film is provided is measured. When the incident angle is θ1, θ2, the wavelength is λ, the first measured value is M1, and the reflectance of the substrate surface is Rsub, M1 (θ1, λ) = Rsub (θ1, λ) M1 (θ2, λ) = Rsub (θ2, λ)

【0019】 次に試料6の裏面に着けられた鏡面1
2の反射率を測定し、の結果と合わせ、鏡面反射率R
mir を求める。第2の測定値M2(θ1,λ) 、M2(θ2,
λ) は、 M2(θ1,λ) ={1−Rsub(θ1,λ) }2 Rmir(θ1,λ) ∴ Rmir(θ1,λ) =M2(θ1,λ) /{1−M1(θ1,λ) }2 同様に M2(θ2,λ) ={1−Rsub(θ2,λ) }2 Rmir(θ2,λ) ∴ Rmir(θ2,λ) =M2(θ2,λ) /{1−M1(θ2,λ) }2 以上の測定で輪帯開口を切替え、各々の入射角について
反射率を求めておく。
Next, the mirror surface 1 attached to the back surface of the sample 6
2 is measured, and the result is combined with the result.
Find mir. The second measured values M2 (θ1, λ), M2 (θ2,
λ) is M2 (θ1, λ) = 1−Rsub (θ1, λ)} 2 Rmir (θ1, λ) ∴Rmir (θ1, λ) = M2 (θ1, λ) / {1-M1 (θ1, λ)} 2 Similarly, M2 (θ2, λ) = {1−Rsub (θ2, λ)} 2 Rmir (θ2, λ) ∴Rmir (θ2, λ) = M2 (θ2, λ) / {1-M1 ( θ2, λ) 輪 The orifice is switched in the measurement of 2 or more, and the reflectance is obtained for each incident angle.

【0020】 測定試料表面6aについて、図3
(a)に示す如く、異なる入射角の光R1,R2 について
の反射率Rfilm( θ1,λ) およびRfilm( θ2,λ) を測
定する。
FIG. 3 shows the measurement sample surface 6a.
As shown in (a), the reflectances Rfilm (θ1, λ) and Rfilm (θ2, λ) for the light R1, R2 at different incident angles are measured.

【0021】 次に、ピンホール3を光軸方向に移動
して、鏡面12からの反射光が薄膜上にピンホール像を
作るように調整し、薄膜透過率Tfilmを求める。第3の
測定値M3(θ1,λ) 、M3(θ2,λ) は、 M3(θ1,λ) ={Tfilm( θ1,λ) }2 Rmir(θ1,λ) ∴ Tfilm (θ1,λ) ={M3(θ1,λ) /Rmir(θ1,λ) }1/2 同様に M3(θ2,λ) ={Tfilm( θ2,λ) }2 Rmir(θ2,λ) ∴ Tfilm (θ2,λ) ={M3(θ2,λ) /Rmir(θ2,λ) }1/2
Next, the pinhole 3 is moved in the direction of the optical axis to adjust the reflected light from the mirror surface 12 so as to form a pinhole image on the thin film, thereby obtaining a thin film transmittance Tfilm. The third measured values M3 (θ1, λ) and M3 (θ2, λ) are as follows: M3 (θ1, λ) = {Tfilm (θ1, λ)} 2 Rmir (θ1, λ) ∴Tfilm (θ1, λ) = {M3 (θ1, λ) / Rmir (θ1, λ)} 1/2 Similarly, M3 (θ2, λ) = {Tfilm (θ2, λ)} 2 Rmir (θ2, λ) ∴Tfilm (θ2, λ) = {M3 (θ2, λ) / Rmir (θ2, λ)} 1/2

【0022】以上のように単純に試料6を光軸方向に移
動し、鏡面12にピンホール像を合わせるだけでも透過
率を測定可能であるが、鏡面12上に焦点が合うため測
定値が鏡面の均一性に左右され易い。以上により反射率
のデータ、透過率のデータが測定される。
As described above, the transmittance can be measured simply by simply moving the sample 6 in the optical axis direction and aligning the pinhole image with the mirror surface 12, but since the focus is on the mirror surface 12, the measured value is smaller than the mirror surface. Is easily affected by the uniformity of Thus, the reflectance data and the transmittance data are measured.

【0023】このようにして測定された反射率のデータ
Rfilm( θ1,λ) 、Rfilm( θ2,λ) 、透過率のデータ
Tfilm (θ1,λ) 、Tfilm (θ2,λ) を用い、データ処
理装置11により薄膜の複素屈折率Nに必要なn、kや
膜厚dを求める。
Data processing is performed using the reflectance data Rfilm (θ1, λ), Rfilm (θ2, λ), transmittance data Tfilm (θ1, λ) and Tfilm (θ2, λ) thus measured. The apparatus 11 obtains n and k and the film thickness d necessary for the complex refractive index N of the thin film.

【0024】以上の説明では、2個のデータTfilm (θ
1,λ) 及びTfilm (θ2,λ) を測定したが、Tfilm (θ
1,λ) とTfilm (θ2,λ) のうちのどちらか一方のみで
もn,k,dを求めることができるが、ここで特に複数
の入射角θ1,θ2 についての測定をしたのは、測定値の
数が多い程、データ処理に時間を要するが、得られた結
果の信頼性が高くなるからである。
In the above description, two data Tfilm (θ
1, λ) and Tfilm (θ2, λ) were measured.
1, λ) and Tfilm (θ2, λ) can be used to determine n, k, and d. Here, the measurement for a plurality of incident angles θ1 and θ2 is particularly This is because the larger the number of values, the longer the data processing time, but the higher the reliability of the obtained result.

【0025】以上の算出には、例えば、大域最適化手法
を用いても良い。またMaleの方法のようにデータから算
出しても良いが、具体的にはd,n, kの(2a+1)個の未
知数を4a個の測定値から決定するものである。
For the above calculation, for example, a global optimization method may be used. Although it may be calculated from data as in the case of Male's method, specifically, (2a + 1) unknowns of d, n, and k are determined from 4a measured values.

【0026】猶、本実施例は、データ処理装置11を用
いて分光装置10で得られた分光反射率や分光透過率の
値から膜厚や複素屈折率を算出しているが、分光装置1
0で得られた値を表示する表示装置を設け、その値を人
間が読取り計算して算出しても良い。
In the present embodiment, the film thickness and the complex refractive index are calculated from the values of the spectral reflectance and the spectral transmittance obtained by the spectroscope 10 using the data processor 11.
A display device for displaying the value obtained as 0 may be provided, and the value may be read and calculated by a human.

【0027】[0027]

【発明の効果】上述のように、本発明は、極めて簡単な
構成の測定装置であって、反射率、及び透過率の測定が
でき、データ処理によりn,k,dを求めることがで
き、微小部分の測定が可能である。
As described above, the present invention is a measuring apparatus having a very simple structure, capable of measuring the reflectance and the transmittance, and obtaining n, k, and d by data processing. Measurement of minute parts is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体構成図である。FIG. 1 is an overall configuration diagram of the present invention.

【図2】(a)は、輪帯開口による反射光測定概念の説
明図である。(b)は、反射の状態を示す説明図であ
る。
FIG. 2A is an explanatory diagram of a concept of measuring reflected light by an annular opening. (B) is an explanatory view showing a state of reflection.

【図3】(a)は、反射率の測定原理説明図である。
(b)は、透過率の測定原理説明図である。
FIG. 3A is an explanatory diagram of a measurement principle of reflectance.
(B) is an explanatory diagram of the measurement principle of the transmittance.

【符号の説明】[Explanation of symbols]

1 光源 2 輪帯絞り 3 ピンホール 4 ハーフミラー 5 対物レンズ 6 測定試料 6a 測定試料表面 7 結像レンズ 8 観察光学系 9 像面絞り 10 分光装置 11 データ処理装置 12 鏡面 Reference Signs List 1 light source 2 annular stop 3 pinhole 4 half mirror 5 objective lens 6 measurement sample 6a measurement sample surface 7 imaging lens 8 observation optical system 9 image plane stop 10 spectroscope 11 data processing device 12 mirror surface

フロントページの続き (56)参考文献 特開 昭55−33644(JP,A) 特開 平3−183903(JP,A) 特開 平3−176605(JP,A) 特開 平3−17505(JP,A) 特開 昭53−3363(JP,A) 特開 平4−348254(JP,A) 特開 平6−175031(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01J 3/00 - 3/52 Continuation of front page (56) References JP-A-55-33644 (JP, A) JP-A-3-183903 (JP, A) JP-A-3-176605 (JP, A) JP-A-3-17505 (JP) JP-A-53-3363 (JP, A) JP-A-4-348254 (JP, A) JP-A-6-175031 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB G01N 21/00-21/01 G01N 21/17-21/61 G01J 3/00-3/52

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 照明用の光源と、輪帯開口を有する絞り
とピンホールとを有する照明光学系と、上記照明光学系
からの光束を測定試料に投影する対物光学系と、上記測
定試料に投影された光束の反射光を受光する受光面を有
する分光装置とから構成され、上記輪帯開口の大きさを
任意に変化させることによって、異なる複数の入射角度
に対する分光反射率並びに分光透過率を測定することを
特徴とする薄膜測定器。
A light source for illumination; an illumination optical system having an aperture having a ring-shaped aperture and a pinhole; an objective optical system for projecting a light beam from the illumination optical system onto a measurement sample; A spectroscopic device having a light receiving surface for receiving the reflected light of the projected light flux, and by arbitrarily changing the size of the annular opening, the spectral reflectance and the spectral transmittance for a plurality of different incident angles are changed. A thin film measuring device characterized by measuring.
【請求項2】 上記測定試料からの反射光を複数に分割
し、上記分割光の1つの光路に上記分光装置の受光面が
来るように設けられた光束分割手段と、上記分割光の他
の1つの光路上に設けられた観察光学系と、上記分光装
置によって測定された分光反射率並びに分光透過率の値
より薄膜の膜厚及び複素屈折率を算出する演算処理手段
とを有することを特徴とする請求項1記載の薄膜測定
器。
2. A light beam splitting means provided so as to divide the reflected light from the measurement sample into a plurality of light beams so that a light receiving surface of the spectroscopic device comes to one optical path of the split light, An observation optical system provided on one optical path, and arithmetic processing means for calculating a film thickness and a complex refractive index of the thin film from the values of the spectral reflectance and the spectral transmittance measured by the spectroscope. The thin film measuring device according to claim 1, wherein
【請求項3】 上記ピンホールが光軸方向に移動自在に
設けられたことを特徴とする請求項1または2記載の薄
膜測定器。
3. The thin-film measuring instrument according to claim 1, wherein the pinhole is provided so as to be movable in an optical axis direction.
JP14441192A 1992-06-04 1992-06-04 Thin film measuring instrument Expired - Fee Related JP3219462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14441192A JP3219462B2 (en) 1992-06-04 1992-06-04 Thin film measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14441192A JP3219462B2 (en) 1992-06-04 1992-06-04 Thin film measuring instrument

Publications (2)

Publication Number Publication Date
JPH05340869A JPH05340869A (en) 1993-12-24
JP3219462B2 true JP3219462B2 (en) 2001-10-15

Family

ID=15361552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14441192A Expired - Fee Related JP3219462B2 (en) 1992-06-04 1992-06-04 Thin film measuring instrument

Country Status (1)

Country Link
JP (1) JP3219462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761906B2 (en) 2021-01-07 2023-09-19 Samsung Electronics Co., Ltd. Optical device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790628B2 (en) * 1998-08-20 2006-06-28 大塚電子株式会社 Method and apparatus for measuring film thickness and optical constant
JP2007285761A (en) * 2006-04-13 2007-11-01 Shibuya Optical Co Ltd Half mirror, and microscopic spectrophotometer using the same
CN103575663B (en) * 2012-08-07 2016-06-29 中国科学院大连化学物理研究所 A kind of scaling method of metal and semiconductor film material optical constant
CN106198568B (en) * 2015-05-24 2019-03-12 上海微电子装备(集团)股份有限公司 A kind of measuring device and measuring method of the film with transparent substrates
DE102019102330C5 (en) 2019-01-30 2023-02-23 Leica Microsystems Cms Gmbh Optical system for a microscope, microscope with an optical system and method for imaging an object using a microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761906B2 (en) 2021-01-07 2023-09-19 Samsung Electronics Co., Ltd. Optical device

Also Published As

Publication number Publication date
JPH05340869A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US5581350A (en) Method and system for calibrating an ellipsometer
KR960013677B1 (en) Apparatus and method for interferometrically measuring the thickness of thin films using full aperture irradiation
EP0647828B1 (en) Cofocal optical systems for thickness measurements of patterned wafers
JP5472096B2 (en) Imaging optical inspection apparatus and method for inspecting planar reflective surface of sample
JPH10507833A (en) Spectroscopic ellipsometer
US9239237B2 (en) Optical alignment apparatus and methodology for a video based metrology tool
WO2006032485A1 (en) Wavelength and incidence angle resolved ellipsometer or reflectometer
JPH03205536A (en) Ellipsometer with high resolving power and method of its use
JP4399126B2 (en) Spectroscopic ellipsometer
CN107561007A (en) A kind of measured thin film apparatus and method
US6795185B2 (en) Film thickness measuring apparatus
JP3219462B2 (en) Thin film measuring instrument
FR2800163A1 (en) Device for measuring spatial distribution of spectral emission of an object for determination of color properties of display screens, has improved spectral resolution as a function of wavelength
US5548401A (en) Photomask inspecting method and apparatus
JPH0915504A (en) Differential interference microscope
JP3694298B2 (en) Surface measuring apparatus and measuring method thereof
GB2135448A (en) Inspection apparatus and method
JPH11118668A (en) Method and apparatus for inspecting defect of object
WO2021039900A1 (en) Sample measurement device and sample measurement method
JP3067697B2 (en) Phase difference measuring device
JP2000105101A (en) Oblique-incidence interferometer device
JP3829663B2 (en) Spectrophotometer
JPS598762B2 (en) How to use the information
JPH10111244A (en) Method and apparatus for measuring distribution of refractive index
JPH04127024A (en) Two-dimensional image spectroscope and two-dimensional image spectroscopic processor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees