WO2021039900A1 - Sample measurement device and sample measurement method - Google Patents

Sample measurement device and sample measurement method Download PDF

Info

Publication number
WO2021039900A1
WO2021039900A1 PCT/JP2020/032342 JP2020032342W WO2021039900A1 WO 2021039900 A1 WO2021039900 A1 WO 2021039900A1 JP 2020032342 W JP2020032342 W JP 2020032342W WO 2021039900 A1 WO2021039900 A1 WO 2021039900A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
region
receiving element
light receiving
Prior art date
Application number
PCT/JP2020/032342
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 吉木
杏奈 飯柴
孝泰 松浦
Original Assignee
公立大学法人兵庫県立大学
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人兵庫県立大学, パナソニック株式会社 filed Critical 公立大学法人兵庫県立大学
Priority to JP2021542999A priority Critical patent/JP7525119B2/en
Publication of WO2021039900A1 publication Critical patent/WO2021039900A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an apparatus and a sample measuring method for measuring the physical characteristics of a sample by detecting the traveling direction distribution of incident light in the sample to be measured.
  • Confocal detection method light lever method, dark field illumination method, interference, polarization space conversion element, and other methods are known as methods for detecting slight differences in the optical path.
  • Spatial transmittance conversion element This is a method of detecting the difference in the optical path by providing a conversion element having a spatial distribution of transmittance in the detection optical system.
  • Annulus illumination and aperture control of a microscope are methods that selectively shield high-frequency components and low-frequency components of the Fourier plane in the imaging system, and change the optical path (optical path shift) due to the spatial periodic structure of the sample.
  • This is a detection method.
  • dark-field illumination illuminates the measurement target from outside the field of view, and only when there is an object that induces an optical path shift such as light scattering, it enters the field of view and is detected.
  • the confocal optical system is often used in microscopes, and a space conversion element such as a pinhole is placed at a position where light emitted from a point light source (a laser beam can also be classified as a point light source) is refocused. Since light rays whose optical paths are deviated due to multiple scattering or refraction cannot pass through pinholes, the change can be measured as an optical path shift. Schlieren detection is also interpreted as the same as confocal in principle.
  • This method is used for microscopes with a light lever cantilever probe.
  • the cantilever is irradiated with a laser beam, and the angle of the reflected light (displacement in the distal direction) is detected.
  • a slight deflection of the cantilever is amplified as an optical path shift of the beam.
  • a split detector or image sensor is used for detection.
  • the optical path shift can be visualized by using the interference of two luminous fluxes. A slight displacement of the detected light with respect to the reference light is reflected in the interference fringes, and the optical path shift amount can be obtained by analyzing the fringes.
  • the polarized space conversion element is, for example, a polarized space conversion element (polarization space filter) having a spatial distribution as described in Patent Document 1.
  • the polarization characteristics in this conversion element are not constant, and the conversion element has different characteristics depending on the location.
  • linearly polarized lighters, phasers, birefringent phasers and the like having high uniformity have been generally used, but on the contrary, they are polarizing elements in which the polarization characteristics are spatially distributed.
  • Each of the above optical detection methods has its own merits, but there is room for further improvement in order to provide a popular type detection device that makes the detection more accurate and the detection device itself is not too expensive. ..
  • the present invention provides a measuring device and a measuring method capable of detecting inclination, waviness, minute steps, scratches, etc. of a reflecting surface by performing spatial polarization filtering on both incident light and reflected light. Is the purpose.
  • the technology for spatially controlling the polarization distribution of the beam can be implemented in optical equipment using the above-mentioned polarization space conversion element.
  • a beam called an axisymmetric beam which is polarized and whose phase is axisymmetric with respect to the main ray of the beam, pays attention to the peculiar property of the focusing point, and controls the orbital angle momentum and the focal electric field distribution.
  • it has been developed as a method for generating a focal shape required for focus engineering as in Non-Patent Document 1.
  • the polarizing element used as an optical element for focus control can also be used as a detection conversion element that selectively transmits a specific polarization distribution.
  • Non-Patent Document 2 when observing the light emitted from a point light source on the pupil surface of a condensing lens, the intensity, phase, and polarization of the light may be distributed depending on the radiation direction. For example, it is used for detecting three-dimensional molecular orientation.
  • Non-Patent Document 2 As described above, in the field of optical measurement, it is possible to add a new function to the optical system by inserting a polarizing space conversion element in both the incident light and the reflected light on the sample.
  • the sample measuring device that has solved the above problems is [1] A light source, a light receiving element that receives light emitted from the light source, and optics that are arranged on the light source side of the light receiving element and selectively extract light of a polarization component in a specific direction from the incident light. It is a sample measuring device having an element, and further includes at least one specific polarizing element of the following (1) and (2).
  • a specific polarizing element that is arranged on the light source side of the measurement target sample and transmits or reflects light emitted from the light source, and a measurement target that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that transmit or reflect light that has passed or reflected the sample.
  • a specific polarizing element that transmits or reflects the emitted light is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, transmits or reflects the light emitted from the light source, and reflects from the measurement target sample.
  • a specific polarizing element that transmits or reflects the emitted light is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample.
  • a specific polarizing element that transmits or reflects the emitted light is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample.
  • a relatively simple optical system is obtained by selectively extracting light of a polarizing component in a specific direction from light transmitted through a polarizing element whose Jones matrix differs depending on the position in the plane and detecting the amount of light.
  • the present invention can be more preferably carried out by using a more specific sample measuring device or a specific measuring method as listed below.
  • the specific polarizing element has M regions (R1 to RM) in the xy plane, and is located at a position of the region Ri and a central axis target of the specific polarizing element with respect to the region Ri.
  • the sample measuring device according to any one of [1] to [3], which has a region Rj and a region Rk adjacent to the region Rj and satisfies the following conditions A and B.
  • [Condition A] When the light whose Jones vector is Jxy is incident on the region Ri and the transmitted light is further incident on the region Rj, the Jones vector of the light transmitted through the region Rj is the same as that of Jxy.
  • the Jones matrix of region Rk is different from the Jones matrix of region Rj.
  • the above i, j, k, and M are natural numbers, respectively.
  • the magnitude of the angle ⁇ formed by the x-axis direction and the optical axis direction at a position separated by a distance r in the direction forming an angle ⁇ degree with respect to the x-axis direction from the center is determined.
  • the sample measuring apparatus according to any one of [1] to [4], which is increased or decreased as ⁇ increases.
  • the light receiving element is composed of a first light receiving element and a second light receiving element, the optical element is a polarizing beam splitter, and the light reflected by the polarizing beam splitter is transferred by the first light receiving element.
  • the sample measuring apparatus according to any one of [1] to [12], which receives light and receives light transmitted by the polarizing beam splitter by a second light receiving element.
  • the specific polarizing element imparts a phase difference that is an integral multiple of a quarter wavelength between a polarization component parallel to the optical axis and a polarization component perpendicular to the optical axis [1].
  • the sample measuring apparatus according to any one of [13].
  • a light source a light receiving element that receives light emitted from the light source, and optics that are arranged on the light source side of the light receiving element and selectively extract light of a polarization component in a specific direction from the incident light.
  • a step of preparing an element and a sample measuring device including at least one of the following (1) and (2) specific polarizing elements, and The step of emitting light from the light source and The step of detecting the light passing through the sample to be measured by the light receiving element, and Measurement method having.
  • (1) A specific polarizing element that is arranged on the light source side of the measurement target sample and transmits or reflects light emitted from the light source, and a measurement target that is arranged on the light receiving element side of the measurement target sample.
  • Both specific polarizing elements that transmit or reflect light transmitted or reflected by the sample (2) It is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, transmits or reflects the light emitted from the light source, and reflects from the measurement target sample.
  • a specific polarizing element that transmits or reflects the emitted light [Specific polarizing element] A transmissive or reflective polarizing element having an in-plane x-axis direction and a y-axis direction orthogonal to the x-axis direction, in which the Jones matrix differs depending on the in-plane position.
  • the specific polarizing element is a polarizing element in which the direction of the optical axis differs depending on the position in the plane, and x at a position separated by a distance r from the center in a direction forming an angle ⁇ degree with respect to the x-axis direction.
  • the light receiving element is composed of a first light receiving element and a second light receiving element, and the optical element is a polarizing beam splitter.
  • the light reflected by the polarization beam splitter is received by the first light receiving element, and the light transmitted by the polarization beam splitter is received by the second light receiving element.
  • Any of [16] to [18] further comprising a step of calculating the ratio or difference between the light intensity detected by the first light receiving element and the light intensity detected by the second light receiving element. The measurement method described in item 1.
  • the specific polarizing element has M regions (R1 to RM) in the xy plane, and is located at a position of the region Ri and a central axis target of the specific polarizing element with respect to the region Ri.
  • the measuring method according to any one of [16] to [20], which has a region Rj and a region Rk adjacent to the region Rj and satisfies the following conditions A and B.
  • [Condition A] When the light whose Jones vector is Jxy is incident on the region Ri and the transmitted light is further incident on the region Rj, the Jones vector of the light transmitted through the region Rj is the same as that of Jxy.
  • the Jones matrix of region Rk is different from the Jones matrix of region Rj. However, i, j, k, and M are natural numbers, respectively.
  • the present invention it is relatively simple to detect the amount of light by selectively extracting the light of the polarization component in a specific direction from the light transmitted or reflected by the polarizing element having a different Jones matrix depending on the position in the plane.
  • the optical system can be used to detect the inclination, waviness, minute steps and scratches of the reflecting surface of the sample.
  • (A) is a diagram showing the optical system of the sample measuring device according to the first embodiment of the present invention, and (b) is a diagram for explaining the reflection of light in the vicinity of the sample. It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 2 of this invention.
  • (A) is a diagram showing a specific polarizing element of the sample measuring device according to the second embodiment of the present invention, and (b) is an incident light when the specific polarizing element is viewed from the optical axis direction and from a sample. It is a figure which shows the position of the return light. It is a figure which shows the intensity of the return light from a sample in the specific polarization element of the sample measuring apparatus which concerns on Embodiment 2 of this invention.
  • Both (a) and (b) are graphs showing the Ir intensity when the amount of R / r is taken on the horizontal axis. It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 3 of this invention. It is a figure which shows the deformation optical system of the sample measuring apparatus which concerns on Embodiments 1 to 3 of this invention. It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 4 of this invention. It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 4 of this invention. It is a figure which shows the optical system of the sample measuring apparatus which concerns on other embodiment.
  • the sample measuring device of the present invention includes a light source, a light receiving element that receives light emitted from the light source, and light of a polarizing component in a specific direction among incident light that is arranged on the light source side of the light receiving element. It is a sample measuring device having an optical element for selectively taking out, and further includes at least one specific polarizing element of the following (1) and (2).
  • a specific polarizing element that is arranged on the light source side of the measurement target sample and receives light emitted from the light source, and a measurement target sample that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that receive transmitted or reflected light. (2) It is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, receives the light emitted from the light source, and is reflected from the measurement target sample. A specific polarizing element that receives light.
  • the specific polarizing element is a transmission type or reflection type polarizing element having an in-plane x-axis direction and a y-axis direction orthogonal to the x-axis direction, and the Jones matrix differs depending on the in-plane position.
  • the measurement method according to the present invention that has solved the above problems is that a light source, a light receiving element that receives light emitted from the light source, and a light receiving element that is arranged closer to the light source side than the light receiving element and can be specified among incident light.
  • the light transmitted through the sample or (2) the light transmitted through the sample is the surface inclination, waviness, and waviness existing in the sample.
  • the traveling direction of light changes according to the degree of the influence.
  • the light whose traveling direction has changed is incident on the specific polarizing element. Since the specific polarizing element has a different Jones matrix depending on the position in the plane as described above, the light transmitted through the specific polarizing element has a different polarization state depending on the difference in the Jones matrix at the transmission point. ..
  • Embodiments 1 to 4 also serve as description of both the sample measuring device in the present invention and the measuring method of the present invention.
  • FIG. 1A is a diagram showing an optical system of the sample measuring device according to the first embodiment of the present invention
  • FIG. 1B is a diagram illustrating reflection of light in the vicinity of the sample.
  • the sample measuring device according to the first embodiment is arranged on the light source 1, the light receiving element 2 that receives the light emitted from the light source 1, and the light source 1 side of the light receiving element 2, and is arranged in a specific direction among the incident light.
  • optical element B side of optical element A it is not only “a place closer to optical element B than optical element A” which is a mere spatial arrangement place, but also "a place closer to optical element B than optical element A”. It also includes the meaning of "a place near the optical element B”.
  • the light is first linearly polarized light that vibrates only in the y-axis direction by the linear polarizing plate 6.
  • the light transmitted through the specific polarizing element 5 in the linearly polarized state is collected by the objective lens 7 and reflected on the surface of the sample 4 to be measured.
  • the return light reflected from the sample 4 to be measured passes through the specific polarizing element 5 again.
  • the return light reflected from the measurement target sample 4 includes 0th-order reflected light, +1-order reflected light, or -1st-order reflected light mirror-reflected on the flat surface of the measurement target sample 4.
  • the +1st-order reflected light, the 0th-order reflected light, and the -1st-order reflected light pass through the compartments 5a, 5b, and 5c of the specific polarizing element 5, respectively.
  • the Jones matrices of compartments 5a, 5b, and 5c are different, and in the example of FIG. 1A, the + 1st-order reflected light is linearly polarized light that is rotated 90 degrees by the compartment 5a and vibrates only in the x-axis direction.
  • the 0th-order reflected light is transmitted as linearly polarized light that continues to vibrate only in the y-axis direction without being subjected to the optical rotation action by the compartment 5b, and the -1st-order reflected light is rotated 45 degrees by the compartment 5c and is rotated in the x-axis direction and the y-axis direction. It becomes linearly polarized light having both vibration components and passes through the specific polarizing element 5.
  • the polarization component in the y-axis direction travels straight and is incident on the light receiving element 2T. Since there is no vibration in the y-axis direction for the + 1st-order reflected light, it does not reach the light receiving element 2T and the intensity is not observed. Since the 0th-order reflected light oscillates in the y-axis direction, it reaches the light receiving element 2T and is detected as strong light. Regarding the -1st-order reflected light, only the vibration component in the y-axis direction reaches the light receiving element 2T, and it is detected that the light is not as strong as the 0th-order reflected light. The light can be detected only by using the light receiving element 2T, but it can also be detected by the component of light that is reflected by the polarizing beam splitter 3 and reaches the light receiving element 2R.
  • the sample has a structure that induces a directional shift of the reflected light, such as an inclination or a minute step
  • the reflected light deviates from the assumed optical path and causes an optical path shift.
  • the polarization direction of the return light from the sample is modulated. Therefore, the deviation of the optical path is converted into a change in polarization, and the reflected light is converted into the specific polarizing element 5 by detecting the light intensity of the portion where the deviation of the optical path is induced by detecting it through, for example, a polarization beam splitter 3. It is possible to identify which part of the throat (compartment 5a, compartment 5b, compartment 5c) has passed.
  • the polarization beam splitter 3 is used, but the present invention is not limited to this, and if an optical element that selectively extracts the light of the polarization component in a specific direction from the incident light is used, the reflection of the portion that induces the deviation of the optical path is used. Only light can be selectively detected.
  • the polarizing beam splitter 3 the ratio or difference between the intensity received by the light receiving element 2T and the intensity received by the light receiving element 2R is obtained to obtain, for example, a portion having low reflectance in the sample 4 to be measured. It is also possible to cancel the decrease in the intensity received by the light receiving element 2T and the intensity received by the light receiving element 2R, and it is possible to perform detection with less error.
  • the first embodiment has been described using an optical system that detects the reflected light from the sample, it is also possible to measure the presence of foreign matter and air bubbles inside the sample by using the transmitted light of the sample.
  • the specific polarizing element described by the following (1) is used.
  • a specific polarizing element that is arranged on the light source side of the measurement target sample and transmits light emitted from the light source, and a measurement target sample that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that transmit transmitted light.
  • the specific polarizing element 5 preferably further has the following features. That is, the specific polarizing element 5 has M regions (R1 to RM) in the xy plane (not shown), and the specific polarization with respect to the region Ri (section 5d in FIG. 1) and this region Ri. It has a region Rj (compartment 5b) at a position targeted by the central axis (5ax) of the element 5 and a region Rk (compartment 5a or 5c) adjacent to this region Rj, and has the following conditions A and B. Meet. However, i, j, k, and M are natural numbers, respectively.
  • the polarization state of the light becomes the same as before the light was incident on the specific polarizing element 5. ..
  • the 0th-order light travels straight through the polarizing beam splitter 3 and is incident on the light receiving element 2T.
  • the sample 4 to be measured is a transparent material.
  • the Jones matrix of the region Rk (section 5a or 5c) is different from the Jones matrix of the region Rj (section 5b), so that the ⁇ primary light transmitted through the compartment 5a or 5c is Since the ratio of the x-direction vibration component and the y-direction vibration component of the light is different from that of the 0th-order light, a predetermined amount is incident on the light receiving element 2R as shown in FIG. This makes it possible to distinguish between the difference in the reflection angle of light on the surface of the sample 4 to be measured and the direction of the light transmitted through the sample 4 to be measured.
  • condition B only a part of the region Rk may form a Jones matrix different from the region Rj, but if all of the region Rk constitutes a Jones matrix different from the region Rj, the light is reflected by the mirror surface. On the other hand, the reflected light shift in any direction can be detected. It is more preferable that the region Rj and all the regions Rk adjacent to the region Rj form a Jones matrix different from each other.
  • the M regions (R1 to RM) By configuring the M regions (R1 to RM) with a large number of regions that are more finely divided, even a slight difference in the reflection direction of the reflected light can be detected. That is, although the number of Ms can be set as many as possible without an upper limit, the Jones matrix in each region changes continuously in the xy plane of the specific polarizing element 5, and individual regions cannot be defined. The case can be explained as follows.
  • the light incident on the region Rin (not shown) in the xy plane of the specific polarizing element 5 is directed to the region Rout (not shown) at the position targeted by the central axis (5ax) of the specific polarizing element with respect to the region Rin.
  • the Jones vector of the light transmitted through the region Rout when incident on the region Rin is the same as the Jones vector of the light incident on the region Rin.
  • Such a specific polarizing element 5 can be manufactured, for example, by forming a predetermined light intensity distribution in a photochromic organic material that causes a change in the refractive index according to the intensity of incident light.
  • FIG. 2 is a diagram showing an optical system of the sample measuring device according to the second embodiment of the present invention.
  • the sample measuring device according to the second embodiment of the present invention is arranged on the light source 1, the light receiving element 2 that receives the light flux emitted from the light source 1, and the light source 1 side of the light receiving element 2, and is of the incident light.
  • It is a sample measuring apparatus having an optical element (polarization beam splitter 3) that selectively extracts light of a polarization component in a specific direction, and further includes a specific polarization element described in (2) below.
  • the luminous flux is first linearly polarized light that vibrates only in the y-axis direction by the linear polarizing plate 6.
  • the light flux transmitted through the specific polarizing element 5 in the state of linearly polarized light is focused by the objective lens 7 and reflected on the surface of the sample 4 to be measured.
  • the return light reflected from the sample 4 to be measured passes through the specific polarizing element 5 again.
  • the return light reflected from the sample 4 to be measured includes the reflected light at various angles as described in the first embodiment. Each reflected light passes through another section of the specific polarizing element 5.
  • the Jones matrix for each compartment is different.
  • the light transmitted through the specific polarizing element 5 is incident on the polarizing beam splitter 3, so that the polarization component in the y-axis direction travels straight and is incident on the light receiving element 2T or the light receiving element 2R.
  • the light can be detected by using only the light receiving element 2T, but it is detected by the component of the light that is reflected by the polarizing beam splitter 3 and reaches the light receiving element 2R. It is also possible.
  • FIG. 3A is a perspective view showing a specific polarizing element 5 of the sample measuring device according to the second embodiment of the present invention
  • FIG. 3B is an incident view of the specific polarizing element 5 when viewed from the optical axis direction. It is a figure which shows the position of the light flux, and the position of the light flux of the return light from a sample 4.
  • the specific polarizing element 5 has compartments (for example, compartments 5d, 5e, 5f) divided by lines in the radial direction passing through the center, and the optical axis direction in each compartment is thick. Indicated by arrows, each compartment is, for example, a ⁇ / 2 plate.
  • the optical axis direction changes by a certain angle when the specific polarizing element 5 is moved by one section in the circumferential direction, and the optical axis direction changes by 90 degrees when the specific polarizing element 5 is rotated halfway.
  • the optical axis direction is configured to change by 180 degrees when the polarizing element 5 goes around once.
  • the section of the specific polarizing element 5 is divided into 16 equal parts all around, but it may be divided into any number of equal parts.
  • FIG. 3B is a diagram showing the position of the luminous flux of the incident light and the position of the luminous flux of the return light from the sample 4 when the specific polarizing element 5 is viewed from the optical axis direction.
  • the number of compartments is larger than that of the example (16 compartments) in FIG. 3A, and there are 36 compartments, but the optic axis may change steplessly.
  • Rotational twist symmetry It shows a structure that twists by an angle that is an integral multiple of 180 degrees in the circumference (hereinafter, may be referred to as "rotational twist symmetry").
  • the specific polarizing element 5 may be used by being rotated in the ⁇ direction.
  • the function is to generate radial polarized light from light incident on horizontally polarized light.
  • points I and E are defined as equations (1) and (2), respectively.
  • r0 represents the synergistic average of the reflectances of horizontally polarized light and vertically polarized light
  • tan ⁇ (rx / ry) is the ratio of the reflectances of the horizontally polarized light component and the vertically polarized light component (
  • rs is the reflectance of s-polarized light
  • rp is the reflectance of p-polarized light
  • represents the phase difference that occurs between horizontally polarized light and vertically polarized light.
  • IR and IT are obtained by dividing equation (5) by surface integral in the beam cross section.
  • the result of the integration is shown in FIG. 8 (a) (the sample is tilted within a range of ⁇ 4 degrees with respect to the case where the optical axis of the incident light and the sample surface are perpendicular to each other).
  • ⁇ 0.8 ⁇ sample tilt angle: ⁇
  • ⁇ 0.8 sample tilt angle: ⁇
  • the difference between IR and IT can be distinguished, but the larger the absolute value of ⁇ , the more IR. It becomes difficult to distinguish between IT and IT.
  • It is preferably ⁇ 0.7 ⁇ ⁇ ⁇ 0.7, more preferably ⁇ 0.6 ⁇ ⁇ 0.6, and even more preferably ⁇ 0.5 ⁇ ⁇ ⁇ 0.5.
  • FIG. 8 (b) is a standardization of the vertical axis of FIG. 8 (a) and a schematic representation of the horizontal axis in the range of 0 ⁇ ⁇ ⁇ 2.
  • this experiment was performed with the working distance of the objective lens set to 125 mm, the beam diameter set to 8 mm, and the NA set to 0.031.
  • the specific polarizing element 5 When the specific polarizing element 5 has rotational twist symmetry, for example, it may generate an axisymmetric polarized beam.
  • This is an optical element in which the optical axes of the ⁇ / 2 plate are distributed so as to be rotationally twisted and symmetrical, and has a function of converting linearly polarized light into an axisymmetric beam such as radial polarized light and azimuth polarized light.
  • the specific polarizing element 5 has an angle ⁇ formed by the x-axis direction and the optical axis direction at a position separated by a distance r in a direction forming an angle ⁇ degree with respect to the x-axis direction from the center (FIG. 3). It is preferable that the size of (not shown) increases or decreases as ⁇ increases.
  • the specific polarizing element 5 is illustrated to be composed of compartments having different optical axes in the circumferential direction and a single optical axis in the radial direction, but the radiation of the specific polarizing element 5 is illustrated. It may be composed of a plurality of compartments having different optical axes in the direction. That is, it is preferable that the specific polarizing element 5 has a different Jones matrix depending on the position in the radial direction.
  • the size of the angle ⁇ is preferably ( ⁇ / 2) ⁇ n.
  • n may be an arbitrary constant or a natural number.
  • a polarizing element generally called a q plate is an optical element in which the direction of the optical axis of the ⁇ / 2 plate changes monotonically and constantly depending on its position in the circumferential direction.
  • the value is called the q value.
  • the q value is 1/2. In the present embodiment, a calculation is performed to confirm how the sensitivity of the measuring device changes when the q value changes.
  • the sensitivity is high, vibrational sensitivity characteristics are generated, and Ir and R / r do not have a one-to-one correspondence, so that it is not suitable for specifying R / r. Therefore, in the sensitivity region in this case, the q value before vibration appears is preferably 1/2 or less. That is, it is preferable that n ⁇ 1.
  • the specific polarizing element 5 may impart a phase difference that is an integral multiple of a quarter wavelength between the polarization component parallel to the optical axis and the polarization component perpendicular to the optical axis.
  • the change in the area ratio between the bright part and the dark part disappears, but the intensity of the dark part continues to decrease except when the birefringence phase amount is ⁇ / 2.
  • the magnitude of the angle ⁇ may be (a) gradually increased or decreased as ⁇ increases, and (b) when the angle ⁇ is within a predetermined range, ⁇ is constant and gradually increases as ⁇ increases. May increase or decrease.
  • FIG. 10 exemplifies the optical system on the light source side of the sample measuring device according to the first and second embodiments. Therefore, the same components are designated by the same reference numerals and the description thereof will be omitted.
  • the characteristic of the third embodiment is the lighting system.
  • the optical system is as shown in FIG.
  • camera image measurement by incoherent light source illumination is a typical example, and the number of beams in this case is considered to be infinite. Most camera image measurements fall into this category.
  • the beam diameter is limited by using the aperture diaphragm in the illumination system.
  • the diameter of all beams can be limited by applying a spatial transform element with a circular aperture to the Fourier plane where all beams are spatially coincident.
  • not only the sensitivity but also the sensitivity characteristics can be adjusted.
  • the sample measuring device can be usefully applied to an optical system having a large working distance (small NA). Further, unlike a conventional interferometer, it is not necessary to make special preparations before observation, and such a simple optical system has not existed in the past.
  • the NA value is preferably 0.3 or less, more preferably 0.2 or less, still more preferably 0.1 or less.
  • the pattern of the conversion element corresponds to M (r, ⁇ ) in the equation (5), but the pattern only needs to maintain rotational torsional symmetry, that is, torsional symmetry with respect to the radial direction ⁇ .
  • the symmetry order may be arbitrary, and the detection capability is exhibited even with the symmetry order 2. In this case, it is mirror-symmetrical and the shift detection direction is limited to the symmetrical plane direction, so that it can also be used for detecting the beam shift direction. There may also be a distribution that depends on the radial direction r, which can be used to adjust the characteristics of the sensitivity curve for beam shift detection.
  • optical systems of FIGS. 2 and 6 are all described as reflection illumination systems, they can also be applied to transmission illumination optical systems by mirror-inverting the illumination optical system with respect to the sample surface.
  • the sensitivity can be adjusted by both the incident beam and the specific polarizing element 5, but the specific sensitivity setting is to determine the dynamic range with NA and adjust the sensitivity by adjusting the specific polarizing element 5.
  • This method is effective when the observation target is fixed to some extent.
  • the specific polarizing element 5 is not a non-variable optical element as shown in FIG. 1 but a variable optical element such as a liquid crystal is used, the generation of a pattern optimized for any observation target is dynamically generated. It can be carried out.
  • the specific polarizing element 5 is a reflection type, LCOS (LIQUID CRYSTAL ON SILICON) can be used.
  • FIG. 11 is a modification of the first to third embodiments, and is an example of an optical system in which the specific polarizing element 5 is a reflective type instead of a transmissive type.
  • Another feature of the sample measuring device is that it includes a polarizing beam splitter 3R for incident light on the light receiving element 2R and a polarizing beam splitter 3T for incident light on the light receiving element 2T. is there.
  • the intensity of the light that can be received by the light receiving element 2R is half the intensity of the light that can be received by the light receiving element 2T. Therefore, even if a signal obtained by doubling the intensity of the light that can be received by the light receiving element 2R is used. good.
  • the sample measuring device according to the fourth embodiment of the present invention will be described with reference to FIGS. 12 and 13, but the same optical elements as those of the sample measuring devices of the first to third embodiments will be described with the same reference numerals. Is omitted.
  • the characteristic of the fourth embodiment is that the sample measuring device has an incident side specific polarizing element 51 and a reflection side specific polarizing element 52, and each specific polarizing element is one side (one side) of the sample 4 to be measured. ), And that the incident light and the reflected light on the measurement target sample 4 are not coaxial and both are oblique with respect to the normal direction of the measurement target sample 4.
  • the aspect ratio of the obtained image is distorted because the observation image of the measurement target sample 4 faces from an oblique direction.
  • the surface shape such as a step may be reflected in the image with good contrast when light is incident from an oblique direction.
  • the surface shape of the measurement target sample 4 can be observed with higher accuracy.
  • 360-degree image information can be obtained by rotating the measurement target sample 4 once in the normal axis direction around the point where the measurement target sample 4 and the optical axis of the sample measurement device intersect, and based on this information.
  • a high-definition observation image can be obtained by a computer tomography method or the like. Further, since the incident light and the reflected light to the measurement target sample 4 are not parallel to each other, it is not necessary to separate the incident light from the reflected light by the beam splitter 3a. Therefore, the SN ratio of the reflected light is improved.
  • the incident angle of light with respect to the measurement target sample 4 is shallow as shown in FIG. 12, it is preferable to individually arrange the incident side objective lens 71 on the incident side and the reflective objective lens 72 on the reflective side.
  • the angle of incidence on the sample 4 to be measured is deep as shown in FIG. 13, both the incident light and the reflected light can be incident on one objective lens 7.
  • the light intensity pattern changes even if the beam shift R / r exceeds 1, but as shown in FIG. 8, the change is saturated in the total light intensity obtained by integrating the changes. Be careful. You should choose which information to extract according to the optical system to be incorporated, the required sensitivity, and the dynamic range. Further, by acquiring the ratio of IT and IR, the measurement can be performed by canceling the difference in reflectance on the surface of the sample 4 to be measured.
  • the light receiving element 2 is an array element, the above integral calculation is required for calculating IT and IR, but the light receiving element 2 is a single unit. A light receiving element having a light receiving unit does not need to perform integration processing, and is preferable for high-speed measurement.
  • the detection sensitivity of the sample measuring device can be adjusted by changing the size of the diameter 2r of the beam incident on the specific polarizing element 5. If the size of the specific polarizing element 5 has a sufficient margin, since the incident light is a single luminous flux in FIG. 2, the sensitivity can be adjusted by expanding or contracting the diameter of the incident beam. Further, the sensitivity can be adjusted by the NA of the objective lens.
  • Such an optical system corresponds to laser scan image measurement and sensor measurement other than image measurement.
  • a liquid crystal element having a plurality of pixels can be used as the specific polarizing element 5.
  • the polarization of the return light is not uniform and has a distribution depending on the incident angle.
  • the Fourier plane does not have to be a Fourier plane in a strict sense, and ellipsometry with a certain degree of spatial resolution can be performed by measuring the distribution of IT and IR on the plane defocused from the image plane. it can.
  • the beam shift is determined by the light intensity ratio or difference measured by the two detectors (light receiving elements 2T and 2R), it is not affected by the difference in reflectance and transmittance of the sample.
  • the illumination light is used for all measurements except absorption and eclipse in the optical system, a high-quality signal can be obtained even with an inexpensive detector, which is advantageous for high-speed measurement.
  • Multi-beam application It can be applied to an optical system in which multiple beams are overlapped at the same time, and can be applied to wide-field observation corresponding to an infinite number of multi-beam measurements.
  • the sensitivity center is 0.45 degrees, and it can be seen that it is within the sensitivity range of the interferometer.
  • Tilt measurement and waviness detection As already described in FIG. 2, it can be used for measuring the tilt of the sample 4 to be measured by the sample measuring device according to the embodiment. It is also possible to measure the swell of a seemingly flat surface by spatially integrating the tilt information. Since the swell is measured at a very low angle, it is easy to separate it from high-frequency components such as defects, roughness, and steps.
  • Focus detection wide-field confocal imaging
  • the optical path of the reflected light changes as shown in FIG. 14, so focusing can be realized by measuring the beam shift.
  • an observation system using a telecentric optical system is constructed on the object side with an objective lens having a focal length f.
  • the optical path shift amount ⁇ x on the specific polarizing element 5 when the focus is deviated by ⁇ f is expressed by the equation (8).
  • x is the distance of the light beam from the main line of the optical system.
  • Cases to be observed The sample measuring device according to the first embodiment of the present invention is effective for the following cases to be observed.
  • 1. Surface observation (A) Measurement of tilt and swell (B) Contamination measurement of defects, particles, etc. (C) Small steps formed by micro-patterning, etc. (D) Roughness 2. Defect observation in bulk (A) Observation of air bubbles in glass (B) Detection of non-uniform refractive index due to distortion, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A sample measurement device having a light source 1, a light-receiving element 2 for receiving light emitted from the light source 1, and an optical element 3 which is positioned farther toward the light source 1 than the light-receiving element 2 and which selectively extracts a light component that is polarized in a specific direction from among incident light, wherein the sample measurement device includes at least one specific-polarization element 5 from among (1) and (2) below. (1) Both of a specific-polarization element 5 which is positioned farther toward the light source 1 than a sample 4 to be measured and which transmits or reflects light emitted from the light source 1, and a specific-polarization element 5 which is positioned farther toward the light-receiving element 2 than the sample 4 to be measured and which transmits or reflects light that is transmitted or reflected by the sample 4 to be measured. (2) A specific-polarization element 5 which is positioned farther toward the light source 1 than the sample 4 to be measured and farther toward the light-receiving element 2 than the sample 4 to be measured, and which transmits or reflects light emitted from the light source 1 and transmits or reflects light that is reflected from the sample 4 to be measured.

Description

試料測定装置および試料測定方法Sample measuring device and sample measuring method
 本発明は、測定対象試料における入射光の進行方向分布を検知することにより試料の物理的特徴を測定する装置および試料測定方法に関するものである。 The present invention relates to an apparatus and a sample measuring method for measuring the physical characteristics of a sample by detecting the traveling direction distribution of incident light in the sample to be measured.
 光路の僅かな違いを検出する手法として共焦点検知法、光てこ法、暗視野照明法、干渉、偏光空間変換素子等の各手法が知られている。 Confocal detection method, light lever method, dark field illumination method, interference, polarization space conversion element, and other methods are known as methods for detecting slight differences in the optical path.
1.空間透過率変換素子
 検出光学系に透過率に空間的な分布のある変換素子を設けることによって光路の違いを検出する方法である。顕微鏡の輪帯照明や絞り制御は結像系におけるフーリエ面の高周波成分、低周波成分を選択的に遮蔽する手法であり、試料の空間的な周期構造に起因する光路の変化(光路シフト)を検出する手法である。また、暗視野照明は計測対象を視野外から照明し、光散乱などの光路シフトを誘起する物体があった場合のみそれが視野に入り検出される。共焦点光学系は顕微鏡に多用され、点光源(レーザービームも点光源と分類できる)から発した光が再集光する位置にピンホールなどの空間変換素子を配置する。多重散乱や屈折で光路が逸れた光線はピンホールを通過できないため、その変化を光路シフトとして計測することが可能である。シュリーレン検出も原理的に共焦点と同一と解釈される。
1. 1. Spatial transmittance conversion element This is a method of detecting the difference in the optical path by providing a conversion element having a spatial distribution of transmittance in the detection optical system. Annulus illumination and aperture control of a microscope are methods that selectively shield high-frequency components and low-frequency components of the Fourier plane in the imaging system, and change the optical path (optical path shift) due to the spatial periodic structure of the sample. This is a detection method. In addition, dark-field illumination illuminates the measurement target from outside the field of view, and only when there is an object that induces an optical path shift such as light scattering, it enters the field of view and is detected. The confocal optical system is often used in microscopes, and a space conversion element such as a pinhole is placed at a position where light emitted from a point light source (a laser beam can also be classified as a point light source) is refocused. Since light rays whose optical paths are deviated due to multiple scattering or refraction cannot pass through pinholes, the change can be measured as an optical path shift. Schlieren detection is also interpreted as the same as confocal in principle.
2.光てこ
 カンチレバー式プローブを有する顕微鏡に用いられる方法である。カンチレバーにレーザービームを照射し、その反射光の角度(遠位における変位)を検出するものである。検出位置をカンチレバーから遠方で行うことによりカンチレバーの僅かなたわみがビームの光路シフトとして増幅される。検出には分割検出器やイメージセンサーを用いる。
2. 2. This method is used for microscopes with a light lever cantilever probe. The cantilever is irradiated with a laser beam, and the angle of the reflected light (displacement in the distal direction) is detected. By setting the detection position far from the cantilever, a slight deflection of the cantilever is amplified as an optical path shift of the beam. A split detector or image sensor is used for detection.
3.干渉光学系
 ホログラム計測では2光束の干渉を用いて光路シフトを可視化できる。参照光に対する検出光の僅かな変位が干渉縞に反映され、縞を解析することで光路シフト量を得ることができる。
3. 3. Interference optical system In hologram measurement, the optical path shift can be visualized by using the interference of two luminous fluxes. A slight displacement of the detected light with respect to the reference light is reflected in the interference fringes, and the optical path shift amount can be obtained by analyzing the fringes.
4.偏光空間変換素子
 偏光空間変換素子は、例えば特許文献1に記載されているように空間的に分布をもつ偏光変換素子(偏光空間フィルタ)である。この変換素子内の偏光特性は一定ではなく、場所により異なる特性を持つ変換素子である。従来からユニフォミティーの高い直線偏光子、位相子、複屈折位相子等が一般的に利用されているが、逆にあえて空間的に偏光特性に分布を与えられている偏光素子である。
4. Polarized space conversion element The polarized space conversion element is, for example, a polarized space conversion element (polarization space filter) having a spatial distribution as described in Patent Document 1. The polarization characteristics in this conversion element are not constant, and the conversion element has different characteristics depending on the location. Conventionally, linearly polarized lighters, phasers, birefringent phasers and the like having high uniformity have been generally used, but on the contrary, they are polarizing elements in which the polarization characteristics are spatially distributed.
特開2018-87885号公報JP-A-2018-87885
 上記各々の光検知法はそれぞれのメリットを有しているが、検知をより高精度にしつつも検知装置自体が高額となり過ぎない普及型の検知装置を提供するためにはさらなる改善の余地がある。 Each of the above optical detection methods has its own merits, but there is room for further improvement in order to provide a popular type detection device that makes the detection more accurate and the detection device itself is not too expensive. ..
 本発明は、入射光、反射光いずれに対しても空間偏光フィルタリングを行うことによって、反射面の傾き、うねり、微小な段差や傷などを検出することができる測定装置および測定方法を提供することを目的とするものである。 The present invention provides a measuring device and a measuring method capable of detecting inclination, waviness, minute steps, scratches, etc. of a reflecting surface by performing spatial polarization filtering on both incident light and reflected light. Is the purpose.
 空間的にビームの偏光分布を制御する技術は、上記の偏光空間変換素子によって光学機器に実装が可能である。特に、軸対称ビームと呼ばれる偏光、位相がビームの主光線を軸として軸対称を成すビームは、その集光点がもつ特異な性質に着目して、軌道角運動量の制御、焦点電場分布の制御などが行われ、非特許文献1のようにフォーカスエンジニアリングとして要求される焦点形状を生成する手法として開発されている。一方、焦点制御のための光学素子として使用される偏光素子は、特定の偏光分布を選択的に透過する検出変換素子としても使用できる。例えば、点光源からの発光も、集光レンズの瞳面で観察すれば、放射方向に応じて光の強度、位相、偏光に分布があることがあり、例えば立体的な分子配向の検出に活用される(非特許文献2)。このように、光学計測分野においては、試料への入射光、反射光いずれにおいても偏光空間変換素子の挿入によって新しい機能を光学系に付与することができる。 The technology for spatially controlling the polarization distribution of the beam can be implemented in optical equipment using the above-mentioned polarization space conversion element. In particular, a beam called an axisymmetric beam, which is polarized and whose phase is axisymmetric with respect to the main ray of the beam, pays attention to the peculiar property of the focusing point, and controls the orbital angle momentum and the focal electric field distribution. And so on, it has been developed as a method for generating a focal shape required for focus engineering as in Non-Patent Document 1. On the other hand, the polarizing element used as an optical element for focus control can also be used as a detection conversion element that selectively transmits a specific polarization distribution. For example, when observing the light emitted from a point light source on the pupil surface of a condensing lens, the intensity, phase, and polarization of the light may be distributed depending on the radiation direction. For example, it is used for detecting three-dimensional molecular orientation. (Non-Patent Document 2). As described above, in the field of optical measurement, it is possible to add a new function to the optical system by inserting a polarizing space conversion element in both the incident light and the reflected light on the sample.
 上記課題を解決し得た本発明にかかる試料測定装置は、
[1]光源と、当該光源から射出される光を受光する受光素子と、該受光素子よりも前記光源側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子とを有する試料測定装置であって、さらに下記(1)および(2)のうち少なくとも一方の特定偏光素子を含むことを特徴とする試料測定装置である。
(1)測定対象試料よりも前記光源側に配置されており前記光源から射出される光を透過または反射する特定偏光素子、および、測定対象試料よりも前記受光素子側に配置されており測定対象試料を透過または反射した光を透過または反射する特定偏光素子の両方。
(2)測定対象試料よりも前記光源側であってかつ測定対象試料よりも前記受光素子側に配置されており、前記光源から射出される光を透過または反射し、かつ、測定対象試料から反射された光を透過または反射する特定偏光素子。
[特定偏光素子]
 面内にx軸方向とこれに直交するy軸方向とを有し、面内の位置によってジョーンズ行列が異なっている透過型または反射型の偏光素子。
The sample measuring device according to the present invention that has solved the above problems is
[1] A light source, a light receiving element that receives light emitted from the light source, and optics that are arranged on the light source side of the light receiving element and selectively extract light of a polarization component in a specific direction from the incident light. It is a sample measuring device having an element, and further includes at least one specific polarizing element of the following (1) and (2).
(1) A specific polarizing element that is arranged on the light source side of the measurement target sample and transmits or reflects light emitted from the light source, and a measurement target that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that transmit or reflect light that has passed or reflected the sample.
(2) It is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, transmits or reflects the light emitted from the light source, and reflects from the measurement target sample. A specific polarizing element that transmits or reflects the emitted light.
[Specific polarizing element]
A transmissive or reflective polarizing element having an in-plane x-axis direction and a y-axis direction orthogonal to the x-axis direction, in which the Jones matrix differs depending on the in-plane position.
 本発明においては、面内の位置によってジョーンズ行列が異なっている偏光素子を透過する光から、特定方向の偏光成分の光を選択的に取り出して光量を検知することにより、比較的簡単な光学系を用いて試料の反射面の傾き、うねり、微小な段差や傷などを検出することができる。また、以下に列挙するような更に特定の試料測定装置または特定の測定方法を用いることにより、本発明をより好ましく実施することができる。 In the present invention, a relatively simple optical system is obtained by selectively extracting light of a polarizing component in a specific direction from light transmitted through a polarizing element whose Jones matrix differs depending on the position in the plane and detecting the amount of light. Can be used to detect the inclination, waviness, minute steps, scratches, etc. of the reflective surface of the sample. In addition, the present invention can be more preferably carried out by using a more specific sample measuring device or a specific measuring method as listed below.
[2]上記[1]の(1)により特定される特定偏光素子の両方を有しており、いずれの特定偏光素子も測定対象試料の一方側に配置されている[1]に記載の試料測定装置。 [2] The sample according to [1], which has both of the specific polarizing elements specified by (1) of the above [1], and both of the specific polarizing elements are arranged on one side of the sample to be measured. measuring device.
[3]前記特定偏光素子のxy平面内の領域Rinに入射した光を該領域Rinに対して前記特定偏光素子の中心軸対象の位置にある領域Routに入射させたとき、前記領域Routを透過した光のジョーンズベクトルは、前記領域Rinに入射した光のジョーンズベクトルと同じである[1]または[2]に記載の試料測定装置。 [3] When the light incident on the region Rin in the xy plane of the specific polarizing element is incident on the region Rout at the position of the central axis of the specific polarizing element with respect to the region Rin, the region Rout is transmitted. The sample measuring device according to [1] or [2], wherein the Jones vector of the light obtained is the same as the Jones vector of the light incident on the region Rin.
[4]前記特定偏光素子は、xy平面内にM個の領域(R1~RM)を有しており、領域Riと、該領域Riに対して前記特定偏光素子の中心軸対象の位置にある領域Rjと、該領域Rjに隣接している領域Rkとを有しており、下記条件Aおよび条件Bを満たす[1]~[3]のいずれか一項に記載の試料測定装置。
[条件A]
 ジョーンズベクトルがJxyである光を領域Riに入射させ、透過した光をさらに領域Rjに入射させたとき、前記領域Rjを透過した光のジョーンズベクトルは、Jxyと同じである。
[条件B]
 領域Rkのジョーンズ行列は、領域Rjのジョーンズ行列とは異なるものである。但し、上記i、j、k、Mはそれぞれ自然数である。
[4] The specific polarizing element has M regions (R1 to RM) in the xy plane, and is located at a position of the region Ri and a central axis target of the specific polarizing element with respect to the region Ri. The sample measuring device according to any one of [1] to [3], which has a region Rj and a region Rk adjacent to the region Rj and satisfies the following conditions A and B.
[Condition A]
When the light whose Jones vector is Jxy is incident on the region Ri and the transmitted light is further incident on the region Rj, the Jones vector of the light transmitted through the region Rj is the same as that of Jxy.
[Condition B]
The Jones matrix of region Rk is different from the Jones matrix of region Rj. However, the above i, j, k, and M are natural numbers, respectively.
[5]前記特定偏光素子は、中心から、x軸方向に対して角度θ度をなす方向に距離rだけ離れた位置におけるx軸方向と前記光学軸方向とのなす角度αの大きさが、θの増加に伴い増加または減少しているものである[1]~[4]のいずれか一項に記載の試料測定装置。 [5] In the specific polarizing element, the magnitude of the angle α formed by the x-axis direction and the optical axis direction at a position separated by a distance r in the direction forming an angle θ degree with respect to the x-axis direction from the center is determined. The sample measuring apparatus according to any one of [1] to [4], which is increased or decreased as θ increases.
[6]前記特定偏光素子は、径方向の位置によってジョーンズ行列が異なっている[1]~[5]のいずれか一項に記載の試料測定装置。 [6] The sample measuring device according to any one of [1] to [5], wherein the specific polarizing element has a Jones matrix different depending on the position in the radial direction.
[7]前記角度αの大きさは、(θ/2)・nである[4]~[6]のいずれか一項に記載の試料測定装置。但し、nは任意の定数である。 [7] The sample measuring device according to any one of [4] to [6], wherein the magnitude of the angle α is (θ / 2) · n. However, n is an arbitrary constant.
[8]nが1.0以下である[7]に記載の試料測定装置。 [8] The sample measuring device according to [7], wherein n is 1.0 or less.
[9]前記角度αの大きさは、(θ/2)・nである[4]~[8]のいずれか一項に記載の試料測定装置。但し、nは整数である。 [9] The sample measuring device according to any one of [4] to [8], wherein the magnitude of the angle α is (θ / 2) · n. However, n is an integer.
[10]前記角度αの大きさは、θの増加に伴い漸増または漸減する[4]~[9]のいずれか一項に記載の試料測定装置。 [10] The sample measuring device according to any one of [4] to [9], wherein the magnitude of the angle α gradually increases or decreases as θ increases.
[11]前記角度θが所定の範囲内にあるとき前記αは一定であり、前記角度αの大きさは、θの増加に伴い段階的に増加または減少する[4]~[9]のいずれか一項に記載の試料測定装置。 [11] When the angle θ is within a predetermined range, the α is constant, and the magnitude of the angle α increases or decreases stepwise as θ increases. [4] to [9] The sample measuring device according to item 1.
[12]前記特定偏光素子と測定対象試料との間に対物レンズが配置されている[1]~[11]のいずれか一項に記載の試料測定装置。 [12] The sample measuring device according to any one of [1] to [11], wherein an objective lens is arranged between the specific polarizing element and the sample to be measured.
[13]前記受光素子が第1の受光素子および第2の受光素子により構成されており、前記光学素子は偏光ビームスプリッターであり、該偏光ビームスプリッターにおいて反射される光を第1の受光素子で受光し、該偏光ビームスプリッターにおいて透過される光を第2の受光素子で受光する[1]~[12]のいずれか一項に記載の試料測定装置。 [13] The light receiving element is composed of a first light receiving element and a second light receiving element, the optical element is a polarizing beam splitter, and the light reflected by the polarizing beam splitter is transferred by the first light receiving element. The sample measuring apparatus according to any one of [1] to [12], which receives light and receives light transmitted by the polarizing beam splitter by a second light receiving element.
[14]前記特定偏光素子は、前記光学軸に平行な偏光成分と前記光学軸に垂直な偏光成分との間に四分の一波長の整数倍の位相差を付与するものである[1]~[13]のいずれか一項に記載の試料測定装置。 [14] The specific polarizing element imparts a phase difference that is an integral multiple of a quarter wavelength between a polarization component parallel to the optical axis and a polarization component perpendicular to the optical axis [1]. The sample measuring apparatus according to any one of [13].
[15]前記受光素子の受光面は、測定対象試料のフーリエ面である[1]~[14]のいずれか一項に記載の試料測定装置。 [15] The sample measuring device according to any one of [1] to [14], wherein the light receiving surface of the light receiving element is a Fourier surface of the sample to be measured.
[16]光源と、当該光源から射出された光を受光する受光素子と、該受光素子よりも前記光源側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子と、下記(1)および(2)のうち少なくとも一方の特定偏光素子を含む試料測定装置を準備するステップと、
 前記光源から光を射出させるステップと、
 測定対象試料を経由した光を前記受光素子により検出するステップと、
を有する測定方法。
(1)測定対象試料よりも前記光源側に配置されており前記光源から射出される光を透過または反射する特定偏光素子、および、測定対象試料よりも前記受光素子側に配置されており測定対象試料で透過または反射した光を透過または反射する特定偏光素子の両方。
(2)測定対象試料よりも前記光源側であってかつ測定対象試料よりも前記受光素子側に配置されており、前記光源から射出される光を透過または反射し、かつ、測定対象試料から反射された光を透過または反射する特定偏光素子。
[特定偏光素子]
 面内にx軸方向とこれに直交するy軸方向とを有し、面内の位置によってジョーンズ行列が異なっている透過型または反射型の偏光素子。
[16] A light source, a light receiving element that receives light emitted from the light source, and optics that are arranged on the light source side of the light receiving element and selectively extract light of a polarization component in a specific direction from the incident light. A step of preparing an element and a sample measuring device including at least one of the following (1) and (2) specific polarizing elements, and
The step of emitting light from the light source and
The step of detecting the light passing through the sample to be measured by the light receiving element, and
Measurement method having.
(1) A specific polarizing element that is arranged on the light source side of the measurement target sample and transmits or reflects light emitted from the light source, and a measurement target that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that transmit or reflect light transmitted or reflected by the sample.
(2) It is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, transmits or reflects the light emitted from the light source, and reflects from the measurement target sample. A specific polarizing element that transmits or reflects the emitted light.
[Specific polarizing element]
A transmissive or reflective polarizing element having an in-plane x-axis direction and a y-axis direction orthogonal to the x-axis direction, in which the Jones matrix differs depending on the in-plane position.
[17]前記特定偏光素子は、面内が複数の領域に区画されており、一部の複数の領域は旋光子であり、他の複数の領域は旋光子ではない[16]に記載の測定方法。 [17] The measurement according to [16], wherein the specific polarizing element is divided into a plurality of regions in a plane, some of the plurality of regions are optical rotations, and the other plurality of regions are not optical rotations. Method.
[18]前記特定偏光素子は、面内の位置によって光学軸の向きが異なる偏光素子であって、中心から、x軸方向に対して角度θ度をなす方向に距離rだけ離れた位置におけるx軸方向と前記光学軸方向とのなす角度αの大きさは、θの増加に伴い増加または減少しているものである[16]または[17]に記載の測定方法。 [18] The specific polarizing element is a polarizing element in which the direction of the optical axis differs depending on the position in the plane, and x at a position separated by a distance r from the center in a direction forming an angle θ degree with respect to the x-axis direction. The measuring method according to [16] or [17], wherein the magnitude of the angle α formed by the axial direction and the optical axial direction increases or decreases as θ increases.
[19]前記試料測定装置において、
(a)前記受光素子が第1の受光素子および第2の受光素子により構成されており、前記光学素子は偏光ビームスプリッターであり、
(b)前記偏光ビームスプリッターにおいて反射される光を第1の受光素子で受光し、該偏光ビームスプリッターにおいて透過される光を第2の受光素子で受光するものであり、
 前記第1の受光素子で検出される光強度と、前記第2の受光素子で検出される光強度の比または差を計算するステップを更に有している[16]~[18]のいずれか一項に記載の測定方法。
[19] In the sample measuring device,
(A) The light receiving element is composed of a first light receiving element and a second light receiving element, and the optical element is a polarizing beam splitter.
(B) The light reflected by the polarization beam splitter is received by the first light receiving element, and the light transmitted by the polarization beam splitter is received by the second light receiving element.
Any of [16] to [18] further comprising a step of calculating the ratio or difference between the light intensity detected by the first light receiving element and the light intensity detected by the second light receiving element. The measurement method described in item 1.
[20]前記特定偏光素子の領域Rinに入射した光を該領域Rinに対して前記特定偏光素子の中心軸対象の位置にある領域Routに入射させたとき、前記領域Routを透過した光のジョーンズベクトルは、前記領域Rinに入射した光のジョーンズベクトルと同じである[16]~[19]のいずれか一項に記載の測定方法。 [20] When the light incident on the region Rin of the specific polarizing element is incident on the region Rout located at the position of the central axis of the specific polarizing element with respect to the region Rin, Jones of the light transmitted through the region Rout. The measuring method according to any one of [16] to [19], wherein the vector is the same as the Jones vector of light incident on the region Rin.
[21]前記特定偏光素子は、xy平面内にM個の領域(R1~RM)を有しており、領域Riと、該領域Riに対して前記特定偏光素子の中心軸対象の位置にある領域Rjと、該領域Rjに隣接している領域Rkとを有しており、下記条件Aおよび条件Bを満たす[16]~[20]のいずれか一項に記載の測定方法。
[条件A]
 ジョーンズベクトルがJxyである光を領域Riに入射させ、透過した光をさらに領域Rjに入射させたとき、前記領域Rjを透過した光のジョーンズベクトルは、Jxyと同じである。
[条件B]
 領域Rkのジョーンズ行列は、領域Rjのジョーンズ行列とは異なるものである。但し、i、j、k、Mはそれぞれ自然数である。
[21] The specific polarizing element has M regions (R1 to RM) in the xy plane, and is located at a position of the region Ri and a central axis target of the specific polarizing element with respect to the region Ri. The measuring method according to any one of [16] to [20], which has a region Rj and a region Rk adjacent to the region Rj and satisfies the following conditions A and B.
[Condition A]
When the light whose Jones vector is Jxy is incident on the region Ri and the transmitted light is further incident on the region Rj, the Jones vector of the light transmitted through the region Rj is the same as that of Jxy.
[Condition B]
The Jones matrix of region Rk is different from the Jones matrix of region Rj. However, i, j, k, and M are natural numbers, respectively.
 本発明においては、面内の位置によってジョーンズ行列が異なっている偏光素子に透過または反射する光から、特定方向の偏光成分の光を選択的に取り出して光量を検知することにより、比較的簡単な光学系を用いて試料の反射面の傾き、うねり、微小な段差や傷などを検出することができる。 In the present invention, it is relatively simple to detect the amount of light by selectively extracting the light of the polarization component in a specific direction from the light transmitted or reflected by the polarizing element having a different Jones matrix depending on the position in the plane. The optical system can be used to detect the inclination, waviness, minute steps and scratches of the reflecting surface of the sample.
(a)は、本発明の実施の形態1にかかる試料測定装置の光学系を示す図であり、(b)は、試料付近の光の反射を説明する図である。(A) is a diagram showing the optical system of the sample measuring device according to the first embodiment of the present invention, and (b) is a diagram for explaining the reflection of light in the vicinity of the sample. 本発明の実施の形態2にかかる試料測定装置の光学系を示す図である。It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 2 of this invention. (a)は、本発明の実施の形態2にかかる試料測定装置の特定偏光素子を示す図であり、(b)は、特定偏光素子を光軸方向から見たときの入射光および試料からの戻り光の位置を示す図である。(A) is a diagram showing a specific polarizing element of the sample measuring device according to the second embodiment of the present invention, and (b) is an incident light when the specific polarizing element is viewed from the optical axis direction and from a sample. It is a figure which shows the position of the return light. 本発明の実施の形態2にかかる試料測定装置の特定偏光素子における試料からの戻り光の強度を示す図である。It is a figure which shows the intensity of the return light from a sample in the specific polarization element of the sample measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2にかかる試料測定装置の特定偏光素子における試料からの戻り光の強度を示す図である。It is a figure which shows the intensity of the return light from a sample in the specific polarization element of the sample measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2にかかる試料測定装置の特定偏光素子における試料からの戻り光の強度を示す図である。It is a figure which shows the intensity of the return light from a sample in the specific polarization element of the sample measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2にかかる試料測定装置の特定偏光素子における試料からの戻り光の強度を示す図である。It is a figure which shows the intensity of the return light from a sample in the specific polarization element of the sample measuring apparatus which concerns on Embodiment 2 of this invention. (a)(b)は、本発明の実施の形態2にかかる試料測定装置における試料の傾き角と戻り光の強度との関係を示すグラフである。(A) and (b) are graphs showing the relationship between the tilt angle of a sample and the intensity of return light in the sample measuring device according to the second embodiment of the present invention. (a)(b)共に、横軸にR/r量を取ったときのIr強度を示したグラフである。Both (a) and (b) are graphs showing the Ir intensity when the amount of R / r is taken on the horizontal axis. 本発明の実施の形態3にかかる試料測定装置の光学系を示す図である。It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態1~3にかかる試料測定装置の変形光学系を示す図である。It is a figure which shows the deformation optical system of the sample measuring apparatus which concerns on Embodiments 1 to 3 of this invention. 本発明の実施の形態4にかかる試料測定装置の光学系を示す図である。It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4にかかる試料測定装置の光学系を示す図である。It is a figure which shows the optical system of the sample measuring apparatus which concerns on Embodiment 4 of this invention. その他の実施の形態にかかる試料測定装置の光学系を示す図である。It is a figure which shows the optical system of the sample measuring apparatus which concerns on other embodiment.
 以下、実施の形態に基づき本発明をより具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail based on the embodiments, but the present invention is not limited by the following embodiments as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the purpose of the above and the following. Of course, it is also possible to carry out the above, and all of them are included in the technical scope of the present invention.
 本発明の試料測定装置は、光源と、当該光源から射出される光を受光する受光素子と、当該受光素子よりも前記光源側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子とを有する試料測定装置であって、さらに下記(1)および(2)のうち少なくとも一方の特定偏光素子を含むものである。 The sample measuring device of the present invention includes a light source, a light receiving element that receives light emitted from the light source, and light of a polarizing component in a specific direction among incident light that is arranged on the light source side of the light receiving element. It is a sample measuring device having an optical element for selectively taking out, and further includes at least one specific polarizing element of the following (1) and (2).
(1)測定対象試料よりも前記光源側に配置されており前記光源から射出される光を受光する特定偏光素子、および、測定対象試料よりも前記受光素子側に配置されており測定対象試料で透過または反射した光を受光する特定偏光素子の両方。
(2)測定対象試料よりも前記光源側であってかつ測定対象試料よりも前記受光素子側に配置されており、前記光源から射出される光を受光し、かつ、測定対象試料から反射された光を受光する特定偏光素子。
(1) A specific polarizing element that is arranged on the light source side of the measurement target sample and receives light emitted from the light source, and a measurement target sample that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that receive transmitted or reflected light.
(2) It is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, receives the light emitted from the light source, and is reflected from the measurement target sample. A specific polarizing element that receives light.
 本発明において特定偏光素子とは、面内にx軸方向とこれに直交するy軸方向とを有し、面内の位置によってジョーンズ行列が異なっている透過型または反射型の偏光素子である。 In the present invention, the specific polarizing element is a transmission type or reflection type polarizing element having an in-plane x-axis direction and a y-axis direction orthogonal to the x-axis direction, and the Jones matrix differs depending on the in-plane position.
 上記課題を解決し得た本発明にかかる測定方法は、光源と、当該光源から射出された光を受光する受光素子と、該受光素子よりも前記光源側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子と、上記(1)および(2)のうち少なくとも一方の特定偏光素子を含む試料測定装置を準備するステップと、前記光源から光を射出させるステップと、測定対象試料を経由した光を前記受光素子により検出するステップと、を有するものである。 The measurement method according to the present invention that has solved the above problems is that a light source, a light receiving element that receives light emitted from the light source, and a light receiving element that is arranged closer to the light source side than the light receiving element and can be specified among incident light. A step of preparing an optical element that selectively extracts light of a polarization component in a direction, a sample measuring device including at least one of the above-mentioned (1) and (2) specific polarization elements, and a step of emitting light from the light source. It also has a step of detecting the light passing through the sample to be measured by the light receiving element.
 上記本発明の試料測定装置および本発明の測定方法においては、(1)試料において透過された光、または(2)試料を透過した光は、当該試料に存在している表面の傾き、うねり、微小な段差や傷などの影響を受けた箇所においては、その影響の度合いに応じて光の進行方向が変化する。進行方向が変化した光は特定偏光素子に入射する。特定偏光素子は、上記のように面内の位置によってジョーンズ行列が異なっているため、特定偏光素子を透過した光は、当該透過箇所のジョーンズ行列の違いに応じて異なる偏光状態を有している。したがって、特定偏光素子を透過した光の偏光状態を検知することにより当該透過光が特定偏光素子のどの位置を透過して来た光であるかを特定することができる。したがって、特定偏光素子は、位置によってジョーンズ行列がどのように異なっているかが既知である必要がある。特定偏光素子を透過した光の偏光状態を検知するためには、当該光を特定方向の偏光成分の光を選択的に取り出す光学素子を通して最終的には受光素子により光の強度測定を行う。以下、実施の形態1~4は、本発明における試料測定装置および本発明の測定方法の両方の説明を兼ねているものである。 In the sample measuring apparatus of the present invention and the measuring method of the present invention, (1) the light transmitted through the sample or (2) the light transmitted through the sample is the surface inclination, waviness, and waviness existing in the sample. In a place affected by a minute step or a scratch, the traveling direction of light changes according to the degree of the influence. The light whose traveling direction has changed is incident on the specific polarizing element. Since the specific polarizing element has a different Jones matrix depending on the position in the plane as described above, the light transmitted through the specific polarizing element has a different polarization state depending on the difference in the Jones matrix at the transmission point. .. Therefore, by detecting the polarization state of the light transmitted through the specific polarizing element, it is possible to specify at which position of the specific polarizing element the transmitted light is the light transmitted. Therefore, the specific polarizing element needs to know how the Jones matrix differs depending on the position. In order to detect the polarization state of the light transmitted through the specific polarizing element, the intensity of the light is finally measured by the light receiving element through the optical element that selectively extracts the light of the polarization component in the specific direction. Hereinafter, Embodiments 1 to 4 also serve as description of both the sample measuring device in the present invention and the measuring method of the present invention.
(実施の形態1)
 以下、図1を用いて本発明の実施の形態1にかかる試料測定装置および当該装置を用いた測定方法について説明する。図1(a)は、本発明の実施の形態1にかかる試料測定装置の光学系を示す図であり、(b)は、試料付近の光の反射を説明する図である。実施の形態1にかかる試料測定装置は、光源1と、光源1から射出される光を受光する受光素子2と、受光素子2よりも光源1側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子(偏光ビームスプリッター3)とを有する試料測定装置であって、さらに下記(2)に説明される特定偏光素子を含むものである。なお、本発明において一般に「光学素子Aよりも光学素子B側」というときには、単なる空間的な配置場所である「光学素子Aよりも光学素子Bに近い場所」のみならず、光路の道のり上「光学素子Bに近い場所」の意味も含むものとする。
(Embodiment 1)
Hereinafter, the sample measuring device according to the first embodiment of the present invention and the measuring method using the device will be described with reference to FIG. FIG. 1A is a diagram showing an optical system of the sample measuring device according to the first embodiment of the present invention, and FIG. 1B is a diagram illustrating reflection of light in the vicinity of the sample. The sample measuring device according to the first embodiment is arranged on the light source 1, the light receiving element 2 that receives the light emitted from the light source 1, and the light source 1 side of the light receiving element 2, and is arranged in a specific direction among the incident light. It is a sample measuring apparatus having an optical element (polarizing beam splitter 3) for selectively extracting light of a polarizing component, and further includes a specific polarizing element described in (2) below. In the present invention, when the term "optical element B side of optical element A" is generally used, it is not only "a place closer to optical element B than optical element A" which is a mere spatial arrangement place, but also "a place closer to optical element B than optical element A". It also includes the meaning of "a place near the optical element B".
(2)測定対象試料4よりも光源1側であってかつ測定対象試料4よりも受光素子2側に配置されており、光源1から射出される光を透過し、かつ、測定対象試料4から反射された光を透過する特定偏光素子5。すなわち、光源1、受光素子2、および特定偏光素子5はいずれも測定対象試料4の一方面(反射面)側に存在している。 (2) It is arranged on the light source 1 side of the measurement target sample 4 and on the light receiving element 2 side of the measurement target sample 4, transmits the light emitted from the light source 1, and is from the measurement target sample 4. A specific polarizing element 5 that transmits the reflected light. That is, the light source 1, the light receiving element 2, and the specific polarizing element 5 are all present on one surface (reflection surface) side of the sample 4 to be measured.
 光源1から射出した光の伝播進路を順に辿って説明すると、光はまず直線偏光板6によってy軸方向にのみ振動する直線偏光となる。直線偏光の状態で特定偏光素子5を透過した光は対物レンズ7によって集光され、測定対象試料4の表面で反射される。測定対象試料4から反射してきた戻り光は、特定偏光素子5を再度透過する。ここで、測定対象試料4から反射してきた戻り光には、測定対象試料4の平坦面で鏡面反射した0次反射光や+1次反射光、或いは-1次反射光を含んでいる。+1次反射光、0次反射光、-1次反射光は、それぞれ特定偏光素子5の区画5a、区画5b、区画5cを通過する。区画5a、区画5b、区画5cのジョーンズ行列はそれぞれ異なっており、図1(a)の例では、+1次反射光は区画5aにより90度旋光されてx軸方向にのみ振動する直線偏光となり、0次反射光は区画5bにより旋光作用を受けないで引き続きy軸方向にのみ振動する直線偏光として透過し、-1次反射光は区画5cにより45度旋光されてx軸方向およびy軸方向の両方の振動成分を有する直線偏光となって特定偏光素子5を透過する。 Explaining by tracing the propagation path of the light emitted from the light source 1 in order, the light is first linearly polarized light that vibrates only in the y-axis direction by the linear polarizing plate 6. The light transmitted through the specific polarizing element 5 in the linearly polarized state is collected by the objective lens 7 and reflected on the surface of the sample 4 to be measured. The return light reflected from the sample 4 to be measured passes through the specific polarizing element 5 again. Here, the return light reflected from the measurement target sample 4 includes 0th-order reflected light, +1-order reflected light, or -1st-order reflected light mirror-reflected on the flat surface of the measurement target sample 4. The +1st-order reflected light, the 0th-order reflected light, and the -1st-order reflected light pass through the compartments 5a, 5b, and 5c of the specific polarizing element 5, respectively. The Jones matrices of compartments 5a, 5b, and 5c are different, and in the example of FIG. 1A, the + 1st-order reflected light is linearly polarized light that is rotated 90 degrees by the compartment 5a and vibrates only in the x-axis direction. The 0th-order reflected light is transmitted as linearly polarized light that continues to vibrate only in the y-axis direction without being subjected to the optical rotation action by the compartment 5b, and the -1st-order reflected light is rotated 45 degrees by the compartment 5c and is rotated in the x-axis direction and the y-axis direction. It becomes linearly polarized light having both vibration components and passes through the specific polarizing element 5.
 特定偏光素子5を透過した光は偏光ビームスプリッター3に入射することによりy軸方向の偏光成分は直進して受光素子2Tに入射する。+1次反射光についてはy軸方向の振動がないため受光素子2Tに到達せず強度は観測されない。0次反射光はy軸方向に振動しているので受光素子2Tに到達し、強い光として検知される。-1次反射光についてはy軸方向の振動成分のみが受光素子2Tに到達し、0次反射光ほど強い光ではないが検知される。
 光の検出は、受光素子2Tのみを用いて検出することも可能であるが、偏光ビームスプリッター3により反射されて受光素子2Rに到達する光の成分により検出することも可能である。
When the light transmitted through the specific polarizing element 5 is incident on the polarizing beam splitter 3, the polarization component in the y-axis direction travels straight and is incident on the light receiving element 2T. Since there is no vibration in the y-axis direction for the + 1st-order reflected light, it does not reach the light receiving element 2T and the intensity is not observed. Since the 0th-order reflected light oscillates in the y-axis direction, it reaches the light receiving element 2T and is detected as strong light. Regarding the -1st-order reflected light, only the vibration component in the y-axis direction reaches the light receiving element 2T, and it is detected that the light is not as strong as the 0th-order reflected light.
The light can be detected only by using the light receiving element 2T, but it can also be detected by the component of light that is reflected by the polarizing beam splitter 3 and reaches the light receiving element 2R.
 以上のように、試料に傾き、あるいは微小な段差など、反射光の方向シフトを誘起する構造があった場合、反射光は想定する光路を外れ、光路のズレを生じる.その結果、特定偏光素子5の異なる部位を通過する結果、試料からの戻り光の偏光方向は変調を受ける。よって光路のズレが偏光の変化に変換され、それを例えば偏光ビームスプリッター3などを介して検出することによって光路のズレを誘起した部位の光強度を検出することにより、反射光が特定偏光素子5のどの部位(区画5aか、区画5bか、区画5cか)を通過してきたものかを特定することができる。 As described above, if the sample has a structure that induces a directional shift of the reflected light, such as an inclination or a minute step, the reflected light deviates from the assumed optical path and causes an optical path shift. As a result, as a result of passing through different parts of the specific polarizing element 5, the polarization direction of the return light from the sample is modulated. Therefore, the deviation of the optical path is converted into a change in polarization, and the reflected light is converted into the specific polarizing element 5 by detecting the light intensity of the portion where the deviation of the optical path is induced by detecting it through, for example, a polarization beam splitter 3. It is possible to identify which part of the throat (compartment 5a, compartment 5b, compartment 5c) has passed.
 実施の形態1では、偏光ビームスプリッター3を利用したがこれに限らず、入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子を用いれば、光路のズレを誘起する部位の反射光のみを選択的に検出することができる。偏光ビームスプリッター3を利用する場合は、受光素子2Tで受光した強度と受光素子2Rで受光した強度の比または差取得することにより、測定対象試料4の中で例えば反射率の低い部位であっても受光素子2Tで受光した強度と受光素子2Rで受光した強度の減少分をキャンセルすることもでき、誤差の少ない検出を行うことができる。 In the first embodiment, the polarization beam splitter 3 is used, but the present invention is not limited to this, and if an optical element that selectively extracts the light of the polarization component in a specific direction from the incident light is used, the reflection of the portion that induces the deviation of the optical path is used. Only light can be selectively detected. When the polarizing beam splitter 3 is used, the ratio or difference between the intensity received by the light receiving element 2T and the intensity received by the light receiving element 2R is obtained to obtain, for example, a portion having low reflectance in the sample 4 to be measured. It is also possible to cancel the decrease in the intensity received by the light receiving element 2T and the intensity received by the light receiving element 2R, and it is possible to perform detection with less error.
 実施の形態1では、試料からの反射光を検出する光学系を用いて説明したが、試料の透過光を用いて試料内部の異物や気泡の存在等を測定することも可能である。この場合は、下記(1)によって説明される特定偏光素子を用いる。 Although the first embodiment has been described using an optical system that detects the reflected light from the sample, it is also possible to measure the presence of foreign matter and air bubbles inside the sample by using the transmitted light of the sample. In this case, the specific polarizing element described by the following (1) is used.
 (1)測定対象試料よりも前記光源側に配置されており前記光源から射出される光を透過する特定偏光素子、および、測定対象試料よりも前記受光素子側に配置されており測定対象試料を透過した光を透過する特定偏光素子の両方。 (1) A specific polarizing element that is arranged on the light source side of the measurement target sample and transmits light emitted from the light source, and a measurement target sample that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that transmit transmitted light.
 特定偏光素子5は、さらに次の特徴を備えていることが好ましい。すなわち特定偏光素子5は、xy平面内にM個の領域(R1~RM)を有しており(図示せず)、領域Ri(図1における区画5d)と、この領域Riに対して特定偏光素子5の中心軸(5ax)対象の位置にある領域Rj(区画5b)と、この領域Rjに隣接している領域Rk(区画5aまたは5c)とを有しており、下記条件Aおよび条件Bを満たす。但し、i、j、k、Mはそれぞれ自然数である。
[条件A]
 ジョーンズベクトルがJxyである光を領域Ri(区画5d)に入射させ、透過した光をさらに領域Rj(区画5b)に入射させたとき、領域Rj(区画5b)を透過した光のジョーンズベクトルは、Jxyと同じである。
[条件B]
 領域Rk(区画5aまたは5c)のジョーンズ行列は、領域Rj(区画5b)のジョーンズ行列とは異なるものである。
The specific polarizing element 5 preferably further has the following features. That is, the specific polarizing element 5 has M regions (R1 to RM) in the xy plane (not shown), and the specific polarization with respect to the region Ri (section 5d in FIG. 1) and this region Ri. It has a region Rj (compartment 5b) at a position targeted by the central axis (5ax) of the element 5 and a region Rk ( compartment 5a or 5c) adjacent to this region Rj, and has the following conditions A and B. Meet. However, i, j, k, and M are natural numbers, respectively.
[Condition A]
When the light whose Jones vector is Jxy is incident on the region Ri (section 5d) and the transmitted light is further incident on the region Rj (section 5b), the Jones vector of the light transmitted through the region Rj (section 5b) is Same as Jxy.
[Condition B]
The Jones matrix in region Rk ( partition 5a or 5c) is different from the Jones matrix in region Rj (partition 5b).
 上記条件Aを満たすことにより、区画5dを透過した入射光が測定対象試料4において鏡面反射して区画5bに再入射したとき、光の偏光状態が特定偏光素子5への入射前と同じになる。これにより、図1の例では0次光が偏光ビームスプリッター3を直進して受光素子2Tに入射する。測定対象試料4が透過材料の場合も同様である。 By satisfying the above condition A, when the incident light transmitted through the compartment 5d is specularly reflected in the sample 4 to be measured and re-entered into the compartment 5b, the polarization state of the light becomes the same as before the light was incident on the specific polarizing element 5. .. As a result, in the example of FIG. 1, the 0th-order light travels straight through the polarizing beam splitter 3 and is incident on the light receiving element 2T. The same applies when the sample 4 to be measured is a transparent material.
 他方、上記条件Bのように領域Rk(区画5aまたは5c)のジョーンズ行列が、領域Rj(区画5b)のジョーンズ行列とは異なるものであることにより区画5aまたは5cを透過した±1次光は、光のx方向振動成分とy方向振動成分との比が0次光とは異なる偏光になるため、図1のように所定量が受光素子2Rに入射する。これにより、測定対象試料4の表面での光の反射角の違いや測定対象試料4を透過する光の変向を区別することができる。 On the other hand, as in the above condition B, the Jones matrix of the region Rk ( section 5a or 5c) is different from the Jones matrix of the region Rj (section 5b), so that the ± primary light transmitted through the compartment 5a or 5c is Since the ratio of the x-direction vibration component and the y-direction vibration component of the light is different from that of the 0th-order light, a predetermined amount is incident on the light receiving element 2R as shown in FIG. This makes it possible to distinguish between the difference in the reflection angle of light on the surface of the sample 4 to be measured and the direction of the light transmitted through the sample 4 to be measured.
 なお条件Bでは、領域Rkのうち一部のみが領域Rjと異なるジョーンズ行列を構成していても良いが、領域Rkの全部が領域Rjとは異なるジョーンズ行列を構成していれば鏡面反射光に対してどの方向への反射光シフトも検出することができる。領域Rjおよび領域Rjに隣接する全ての領域Rkが互いに異なるジョーンズ行列を構成していることが一層好ましい。 In condition B, only a part of the region Rk may form a Jones matrix different from the region Rj, but if all of the region Rk constitutes a Jones matrix different from the region Rj, the light is reflected by the mirror surface. On the other hand, the reflected light shift in any direction can be detected. It is more preferable that the region Rj and all the regions Rk adjacent to the region Rj form a Jones matrix different from each other.
 M個の領域(R1~RM)を、より細かく区分されている多数の領域により構成ことにより反射光の反射方向の僅かな違いも検出することができる。すなわち、Mの個数は上限なく多く設定することが可能であるが、各領域におけるジョーンズ行列が特定偏光素子5のxy平面内において連続的に変化するものであり個別の領域を規定することができない場合については次のように説明することができる。 By configuring the M regions (R1 to RM) with a large number of regions that are more finely divided, even a slight difference in the reflection direction of the reflected light can be detected. That is, although the number of Ms can be set as many as possible without an upper limit, the Jones matrix in each region changes continuously in the xy plane of the specific polarizing element 5, and individual regions cannot be defined. The case can be explained as follows.
 すなわち、特定偏光素子5のxy平面内の領域Rin(図示せず)に入射した光を該領域Rinに対して特定偏光素子の中心軸(5ax)対象の位置にある領域Rout(図示せず)に入射させたとき、領域Routを透過した光のジョーンズベクトルは、領域Rinに入射した光のジョーンズベクトルと同じである。このような特定偏光素子5は、例えば、入射光の強度に応じて屈折率の変化を起すフォトクロミック有機材料の中に所定の光強度分布を形成することにより製造することができる。 That is, the light incident on the region Rin (not shown) in the xy plane of the specific polarizing element 5 is directed to the region Rout (not shown) at the position targeted by the central axis (5ax) of the specific polarizing element with respect to the region Rin. The Jones vector of the light transmitted through the region Rout when incident on the region Rin is the same as the Jones vector of the light incident on the region Rin. Such a specific polarizing element 5 can be manufactured, for example, by forming a predetermined light intensity distribution in a photochromic organic material that causes a change in the refractive index according to the intensity of incident light.
(実施の形態2)
 以下、図2~図8を用いて本発明の実施の形態2にかかる試料測定装置について説明する。図2は、本発明の実施の形態2にかかる試料測定装置の光学系を示す図である。本発明の実施の形態2にかかる試料測定装置は、光源1と、光源1から射出される光束を受光する受光素子2と、受光素子2よりも光源1側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子(偏光ビームスプリッター3)とを有する試料測定装置であって、さらに下記(2)に説明される特定偏光素子を含むものである。
(Embodiment 2)
Hereinafter, the sample measuring apparatus according to the second embodiment of the present invention will be described with reference to FIGS. 2 to 8. FIG. 2 is a diagram showing an optical system of the sample measuring device according to the second embodiment of the present invention. The sample measuring device according to the second embodiment of the present invention is arranged on the light source 1, the light receiving element 2 that receives the light flux emitted from the light source 1, and the light source 1 side of the light receiving element 2, and is of the incident light. It is a sample measuring apparatus having an optical element (polarization beam splitter 3) that selectively extracts light of a polarization component in a specific direction, and further includes a specific polarization element described in (2) below.
 (2)測定対象試料4よりも光源1側であってかつ測定対象試料4よりも受光素子2側に配置されており、光源1から射出される束光を透過し、かつ、測定対象試料4から反射された光束を透過する特定偏光素子5。すなわち、光源1、受光素子2、および特定偏光素子5はいずれも測定対象試料4の一方面(反射面)側に存在している。 (2) It is arranged on the light source 1 side of the measurement target sample 4 and on the light receiving element 2 side of the measurement target sample 4, transmits the bundled light emitted from the light source 1, and is the measurement target sample 4. A specific polarizing element 5 that transmits a light beam reflected from the light source. That is, the light source 1, the light receiving element 2, and the specific polarizing element 5 are all present on one surface (reflection surface) side of the sample 4 to be measured.
 光源1から射出した光束の伝播進路を順に辿って説明すると、光束はまず直線偏光板6によってy軸方向にのみ振動する直線偏光となる。直線偏光の状態で特定偏光素子5を透過した光束は対物レンズ7によって集光され、測定対象試料4の表面で反射される。測定対象試料4から反射してきた戻り光は、特定偏光素子5を再度透過する。ここで、測定対象試料4から反射してきた戻り光には、実施の形態1で説明した通り、様々な角度の反射光を含んでいる。それぞれの反射光は特定偏光素子5の別の区画を通過する。各区画のジョーンズ行列はそれぞれ異なっている。 Explaining by tracing the propagation path of the luminous flux emitted from the light source 1 in order, the luminous flux is first linearly polarized light that vibrates only in the y-axis direction by the linear polarizing plate 6. The light flux transmitted through the specific polarizing element 5 in the state of linearly polarized light is focused by the objective lens 7 and reflected on the surface of the sample 4 to be measured. The return light reflected from the sample 4 to be measured passes through the specific polarizing element 5 again. Here, the return light reflected from the sample 4 to be measured includes the reflected light at various angles as described in the first embodiment. Each reflected light passes through another section of the specific polarizing element 5. The Jones matrix for each compartment is different.
 特定偏光素子5を透過した光は偏光ビームスプリッター3に入射することによりy軸方向の偏光成分は直進して受光素子2T或いは受光素子2Rに入射する。実施の形態1で既に説明した通り、光の検出は受光素子2Tのみを用いて検出することも可能であるが、偏光ビームスプリッター3により反射されて受光素子2Rに到達する光の成分により検出することも可能である。 The light transmitted through the specific polarizing element 5 is incident on the polarizing beam splitter 3, so that the polarization component in the y-axis direction travels straight and is incident on the light receiving element 2T or the light receiving element 2R. As already described in the first embodiment, the light can be detected by using only the light receiving element 2T, but it is detected by the component of the light that is reflected by the polarizing beam splitter 3 and reaches the light receiving element 2R. It is also possible.
 図3(a)は、本発明の実施の形態2にかかる試料測定装置の特定偏光素子5を示す斜視図であり、(b)は、特定偏光素子5を光軸方向から見たときの入射光の光束の位置および試料4からの戻り光の光束の位置を示す図である。 FIG. 3A is a perspective view showing a specific polarizing element 5 of the sample measuring device according to the second embodiment of the present invention, and FIG. 3B is an incident view of the specific polarizing element 5 when viewed from the optical axis direction. It is a figure which shows the position of the light flux, and the position of the light flux of the return light from a sample 4.
 図3(a)に示されるように特定偏光素子5は中心を通る放射方向のラインによって区分される区画(例えば区画5d、5e、5f)を有しており、各区画における光軸方向は太矢印によって示されており、各区画はそれぞれ例えばλ/2板である。図3(a)に示されるように光軸方向は特定偏光素子5の周方向に1区画分移動すると一定角度変化し、特定偏光素子5を半周すれば光軸方向は90度変化し、特定偏光素子5を1周すれば光軸方向は180度変化するように構成されている。図3(a)の例では、特定偏光素子5の区画は全周で16等分されているが、何等分であってもよい。 As shown in FIG. 3A, the specific polarizing element 5 has compartments (for example, compartments 5d, 5e, 5f) divided by lines in the radial direction passing through the center, and the optical axis direction in each compartment is thick. Indicated by arrows, each compartment is, for example, a λ / 2 plate. As shown in FIG. 3A, the optical axis direction changes by a certain angle when the specific polarizing element 5 is moved by one section in the circumferential direction, and the optical axis direction changes by 90 degrees when the specific polarizing element 5 is rotated halfway. The optical axis direction is configured to change by 180 degrees when the polarizing element 5 goes around once. In the example of FIG. 3A, the section of the specific polarizing element 5 is divided into 16 equal parts all around, but it may be divided into any number of equal parts.
 図3(b)は、特定偏光素子5を光軸方向から見たときの入射光の光束の位置および試料4からの戻り光の光束の位置を示す図である。区画の数は図3(a)の例(16区画)よりも多く取ってあり36区画あるが、光学軸が無段階に変化するものであってもよい。 FIG. 3B is a diagram showing the position of the luminous flux of the incident light and the position of the luminous flux of the return light from the sample 4 when the specific polarizing element 5 is viewed from the optical axis direction. The number of compartments is larger than that of the example (16 compartments) in FIG. 3A, and there are 36 compartments, but the optic axis may change steplessly.
 図3(b)に示すように入射ビームの半径をrとし、入射ビームの中心を原点Oとするxy座標系、戻り光のビームの中心の座標系O’を原点とするxy’座標系で表す。ビームのシフト量(入射ビームの中心Oと戻り光のビームの中心O’との間の距離)をRとし、ビームのシフト方向、すなわち入射ビームの中心Oから見た戻り光のビームの中心O’の回転角をΘとする。特定偏光素子5の光学軸は図3(a)において示した太矢印と同じのものであり、特定偏光素子5の周方向の変化に伴い光学軸が徐々にねじれてゆき特定偏光素子5の1周分で180度の整数倍の角度分だけねじれる構造(以下、「回転ねじれ対称」と記載することがある)を示すものである。特定偏光素子5はθ方向に回転させて使用しても構わない。図3(a)および(b)では、水平偏光入射の光からラジアル偏光が生成される機能となっている。 As shown in FIG. 3B, in the xy coordinate system in which the radius of the incident beam is r and the center of the incident beam is the origin O, and the coordinate system O'in the center of the return light beam is the xy'coordinate system. Represent. Let R be the amount of beam shift (distance between the center O of the incident beam and the center O'of the return light beam), and the shift direction of the beam, that is, the center O of the return light seen from the center O of the incident beam. Let Θ be the rotation angle of'. The optical axis of the specific polarizing element 5 is the same as the thick arrow shown in FIG. 3 (a), and the optical axis is gradually twisted as the specific polarizing element 5 changes in the circumferential direction. It shows a structure that twists by an angle that is an integral multiple of 180 degrees in the circumference (hereinafter, may be referred to as "rotational twist symmetry"). The specific polarizing element 5 may be used by being rotated in the θ direction. In FIGS. 3A and 3B, the function is to generate radial polarized light from light incident on horizontally polarized light.
 図3(b)に示すように、入射ビーム内のI点(r、 θ)を通って入射した光線に注目すると反射後の戻り光はE点を通過する(但し、括弧内の前者rは原点Oからの距離を示すものであり、後者θはx軸となす角を示すものである)。E点はxy座標系では(x、X)であり、同様に括弧内の前者xは原点Oからの距離を示すものであり、後者Xはx軸となす角を示すものである。このときI点およびE点はそれぞれ、式(1)および式(2)のように規定される。 As shown in FIG. 3 (b), when focusing on the light beam incident on the incident beam through the point I (r, θ) in the incident beam, the return light after reflection passes through the point E (however, the former r in parentheses is It indicates the distance from the origin O, and the latter θ indicates the angle formed with the x-axis). The point E is (x, X) in the xy coordinate system. Similarly, the former x in parentheses indicates the distance from the origin O, and the latter X indicates the angle formed with the x-axis. At this time, points I and E are defined as equations (1) and (2), respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
θ’およびr’については式(3)および式(4)のように記載される。 θ'and r'are described as in equations (3) and (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この時、特定偏光素子5の光学軸の方向は、I点ではθ/2、 E点ではX/2となる。このときの光の偏光状態の変化をジョーンズ記法で記述すると、式(5)のようになる。 At this time, the direction of the optical axis of the specific polarizing element 5 is θ / 2 at the point I and X / 2 at the point E. When the change in the polarization state of light at this time is described in Jones notation, it becomes as shown in equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 但し、Ein 、 Eoutは特定偏光素子5への入射光、射出光の偏光を表し、M(θ)は方位角方向にθ回転したλ/2板の作用を示している。また、Sは測定対象試料4の反射による作用を表し、一般には式(6)の関係が成り立つ。 However, Ein and Eout represent the polarization of the incident light and the emitted light to the specific polarizing element 5, and M (θ) indicates the action of the λ / 2 plate rotated by θ in the azimuth direction. Further, S represents the action due to the reflection of the sample 4 to be measured, and the relationship of the equation (6) generally holds.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)においてr0は水平偏光と垂直偏光の反射率の相乗平均を表わし、tanχ(rx/ry)は水平偏光成分と垂直偏光成分の反射率の比(|rs|/|rp|。ただしrsはs偏光の反射係数、rpはp偏光の反射係数である)、Δは水平偏光と垂直偏光の間に発生する位相差を表す。これらのパラメーターは入射角が大きい場合にはジョーンズベクトルに大きな影響を及ぼすが、後述するように、ビームシフト計測においては高感度を得るには入射角が小さい低NA用途が適しているため、実際には次式(7)のように考えて良い。 In equation (6), r0 represents the synergistic average of the reflectances of horizontally polarized light and vertically polarized light, and tanχ (rx / ry) is the ratio of the reflectances of the horizontally polarized light component and the vertically polarized light component (| rs | / | rp |. rs is the reflectance of s-polarized light, rp is the reflectance of p-polarized light), and Δ represents the phase difference that occurs between horizontally polarized light and vertically polarized light. These parameters have a large effect on the Jones vector when the incident angle is large, but as will be described later, in beam shift measurement, low NA applications with a small incident angle are suitable for obtaining high sensitivity. Can be thought of as the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(5)より、入射ビーム内の任意の点を通る光線が戻り光となるときの偏光の変化が分かる。図2において、入射偏光と同じ偏光成分は受光素子2R側、直交する成分は受光素子2T側として偏光ビームスプリッター3を介して分離検出されるため、式(1)よりR=0ならばX=π+θとなり、EinとEoutは同じ偏光方向となるため、戻り光は全て受光素子2R側に検出される。一方、R≠0であればこの関係が成立しない場合があるため、受光素子2Tの受光強度ITとして検出される光量が増加し、代わりに、受光素子2Tの受光強度IRが減少する。水平方向にビームシフトが生じた時、ビームシフト距離Rをビーム径rで除した比率(R/r)=0のとき、R/r=0.5のとき、R/r=1のとき、R/r=8のとき、受光素子2R側で検出される光強度IRを特定偏光素子5上の光強度分布で表した結果を図4~7に示す。R/rの増加に伴い、強度分布が変化し、受光素子2Rの検出強度IRの総量は減少していることが分かる。なお、減少分は全てIT側で検出される。そのため、ITの分布はIRの強度を反転させたものが検出されると考えて良い。 From equation (5), it can be seen that the change in polarized light occurs when a light beam passing through an arbitrary point in the incident beam becomes return light. In FIG. 2, the same polarization component as the incident polarized light is separated and detected on the light receiving element 2R side, and the orthogonal component is separated and detected on the light receiving element 2T side via the polarizing beam splitter 3. Therefore, if R = 0 from the equation (1), X = Since π + θ and Ein and Eout have the same polarization direction, all the return light is detected on the light receiving element 2R side. On the other hand, if R ≠ 0, this relationship may not be established, so that the amount of light detected as the light receiving intensity IT of the light receiving element 2T increases, and instead, the light receiving intensity IR of the light receiving element 2T decreases. When a beam shift occurs in the horizontal direction, when the ratio of the beam shift distance R divided by the beam diameter r (R / r) = 0, when R / r = 0.5, and when R / r = 1, FIGS. 4 to 7 show the results of expressing the light intensity IR detected on the light receiving element 2R side by the light intensity distribution on the specific polarizing element 5 when R / r = 8. It can be seen that as the R / r increases, the intensity distribution changes and the total amount of the detected intensity IR of the light receiving element 2R decreases. All the decrease is detected on the IT side. Therefore, it can be considered that the distribution of IT is detected by reversing the intensity of IR.
 IRおよびITは、式(5)をビーム断面内において面積分することによって得られる。 その積分結果を図8(a)に示す(入射光の光軸と試料表面が垂直であるときを基準として、±4度の範囲で試料を傾けたものである)。図8(a)に示すように、-0.8≦(試料の傾き角:β)≦0.8のとき、IRおよびITの違いを区別することができるがβの絶対値が大きくなるほどIRとITの違いを区別しにくくなる。好ましくは-0.7≦β≦0.7、より好ましくは-0.6≦β≦0.6、さらに好ましくは-0.5≦β≦0.5である。図8(b)は、図8(a)の縦軸を規格化し、横軸を0≦β≦2の範囲で模式化したものである。但し本実験は、対物レンズのワーキングディスタンスを125mmとし、ビーム径を8mmとし、NAを0.031として行ったものである。 IR and IT are obtained by dividing equation (5) by surface integral in the beam cross section. The result of the integration is shown in FIG. 8 (a) (the sample is tilted within a range of ± 4 degrees with respect to the case where the optical axis of the incident light and the sample surface are perpendicular to each other). As shown in FIG. 8A, when −0.8 ≦ (sample tilt angle: β) ≦ 0.8, the difference between IR and IT can be distinguished, but the larger the absolute value of β, the more IR. It becomes difficult to distinguish between IT and IT. It is preferably −0.7 ≦ β ≦ 0.7, more preferably −0.6 ≦ β ≦ 0.6, and even more preferably −0.5 ≦ β ≦ 0.5. 8 (b) is a standardization of the vertical axis of FIG. 8 (a) and a schematic representation of the horizontal axis in the range of 0 ≦ β ≦ 2. However, this experiment was performed with the working distance of the objective lens set to 125 mm, the beam diameter set to 8 mm, and the NA set to 0.031.
 特定偏光素子5としては回転ねじれ対称を持つものである場合、例えば、軸対称偏光ビームを生成するものでよい。これはλ/2板の光学軸が回転ねじれ対称になるように分布している光学素子であり、直線偏光をラジアル偏光、アジマス偏光のような軸対称ビームに変換する機能をもつ。 When the specific polarizing element 5 has rotational twist symmetry, for example, it may generate an axisymmetric polarized beam. This is an optical element in which the optical axes of the λ / 2 plate are distributed so as to be rotationally twisted and symmetrical, and has a function of converting linearly polarized light into an axisymmetric beam such as radial polarized light and azimuth polarized light.
 図3に示したように特定偏光素子5は、中心からx軸方向に対して角度θ度をなす方向に距離rだけ離れた位置におけるx軸方向と前記光学軸方向とのなす角度α(図示せず)の大きさが、θの増加に伴い増加または減少しているものであることが好ましい。 As shown in FIG. 3, the specific polarizing element 5 has an angle α formed by the x-axis direction and the optical axis direction at a position separated by a distance r in a direction forming an angle θ degree with respect to the x-axis direction from the center (FIG. 3). It is preferable that the size of (not shown) increases or decreases as θ increases.
 図3においては、特定偏光素子5は周方向には光学軸の異なる区画により構成されており放射方向には単一の光学軸により構成されているものを例示したが、特定偏光素子5の放射方向に光学軸の異なる複数の区画により構成されていてもよい。すなわち特定偏光素子5は、径方向の位置によってジョーンズ行列が異なって構成されていることが好ましい。 In FIG. 3, the specific polarizing element 5 is illustrated to be composed of compartments having different optical axes in the circumferential direction and a single optical axis in the radial direction, but the radiation of the specific polarizing element 5 is illustrated. It may be composed of a plurality of compartments having different optical axes in the direction. That is, it is preferable that the specific polarizing element 5 has a different Jones matrix depending on the position in the radial direction.
 角度αの大きさは、(θ/2)・nであることが好ましい。但し、nは任意の定数であってもよいし自然数であってもよい。 The size of the angle α is preferably (θ / 2) · n. However, n may be an arbitrary constant or a natural number.
 一般にqプレートと呼ばれている偏光素子は、その円周方向の位置によってλ/2板の光学軸の向きが単調一定に変化する光学素子である。円周方向に1回転したときに光学軸がq回転するとき、その値はq値と呼ばれる。直線偏光からラジアル偏光、アジマス偏光を生成する時、q値は1/2である。本実施の形態では、q値が変化した場合、測定装置の感度がどのように変化するかを確認する計算を行った。光学軸の向きを表わす角度αの大きさが(θ/2)・n(n=1)のとき、偏光素子の円周方向の位置θが360度(1周)するとαは180度変化するので、n=1のときはq値が1/2であることに相当する。 A polarizing element generally called a q plate is an optical element in which the direction of the optical axis of the λ / 2 plate changes monotonically and constantly depending on its position in the circumferential direction. When the optic axis makes q rotations when it makes one rotation in the circumferential direction, the value is called the q value. When generating radial polarized light and azimuth polarized light from linearly polarized light, the q value is 1/2. In the present embodiment, a calculation is performed to confirm how the sensitivity of the measuring device changes when the q value changes. When the magnitude of the angle α representing the direction of the optical axis is (θ / 2) · n (n = 1), when the position θ in the circumferential direction of the polarizing element is 360 degrees (1 circumference), α changes by 180 degrees. Therefore, when n = 1, it corresponds to the q value being 1/2.
 図9(a)は、測定対象試料4に100%反射の平滑面であることを想定し、反射面の傾きによって戻り光ビーム光軸が入射光ビーム光軸に対してずれた量としてR/rを横軸に取ったグラフである。縦軸はIrの強度であり光軸のズレがない状態、すなわちR/r=0の時の強度を1とした時の相対強度である。図9(a)から、q値が1/2を下回ると感度が低下し、一方でダイナミックレンジが増えることがわかる。逆にq値が1/2を上回ると低R/r領域での感度が向上する。しかし一度Irが低下しきった後、再び増大に転じてオーバーシュートを生じる。そのため、感度は高いものの振動的な感度特性が発生することからIrとR/rとが1対1対応しないためR/rを特定するには向かない。そのためこの場合の感度領域は振動が現れる前のq値が1/2以下であることが好ましい。つまり、n≦1であることが好ましい。 FIG. 9A assumes that the sample 4 to be measured has a smooth surface with 100% reflection, and R / is the amount by which the optical axis of the return light beam deviates from the optical axis of the incident light beam due to the inclination of the reflection surface. It is a graph which took r on the horizontal axis. The vertical axis is the intensity of Ir, which is the relative intensity when there is no deviation of the optical axis, that is, when the intensity when R / r = 0 is 1. From FIG. 9A, it can be seen that when the q value is less than 1/2, the sensitivity decreases, while the dynamic range increases. On the contrary, when the q value exceeds 1/2, the sensitivity in the low R / r region is improved. However, once Ir has decreased completely, it starts to increase again and an overshoot occurs. Therefore, although the sensitivity is high, vibrational sensitivity characteristics are generated, and Ir and R / r do not have a one-to-one correspondence, so that it is not suitable for specifying R / r. Therefore, in the sensitivity region in this case, the q value before vibration appears is preferably 1/2 or less. That is, it is preferable that n ≦ 1.
 特定偏光素子5は、光学軸に平行な偏光成分と光学軸に垂直な偏光成分との間に四分の一波長の整数倍の位相差を付与しても良い。 The specific polarizing element 5 may impart a phase difference that is an integral multiple of a quarter wavelength between the polarization component parallel to the optical axis and the polarization component perpendicular to the optical axis.
 図9(a)により、Irが振動挙動を示さない条件においてq=1/2のとき最高感度を有することが分かったため、q=1/2の場合に限定しqプレートが持つ複屈折位相差を変化させた時の感度特性の評価を行った。qプレートに限らず複屈折偏光素子は波長分散の影響を受け、同じ素子でも波長によって複屈折位相差が異なる。これは、光源として白色光源を利用した時、qプレートの設計波長以外の光に対しては性能が劣化するということを意味する。また白色でなくとも単色LEDのような帯域が狭くない光源を利用するときどこまでの性能が期待できるかを考慮する際にも重要な視点となる。実際に波長分散がどれくらいになるかは製品によって異なるため本実施形態ではqプレート本来のλ/2(位相差π)に加え、λ/4(位相差π/2)、λ/8(位相差π/4)、および3λ/4(位相差3π/2)とした場合の感度特性を比較した。 From FIG. 9A, it was found that Ir has the highest sensitivity when q = 1/2 under the condition that it does not show vibration behavior. Therefore, the birefringence phase difference of the q plate is limited to the case of q = 1/2. The sensitivity characteristics when the above was changed were evaluated. Not limited to the q plate, the birefringent polarizing element is affected by the wavelength dispersion, and the birefringence phase difference differs depending on the wavelength even for the same element. This means that when a white light source is used as the light source, the performance deteriorates with respect to light other than the design wavelength of the q plate. It is also an important point of view when considering how much performance can be expected when using a light source such as a monochromatic LED that is not white but has a narrow band. Since the actual wavelength dispersion differs depending on the product, in this embodiment, in addition to the original λ / 2 (phase difference π) of the q plate, λ / 4 (phase difference π / 2) and λ / 8 (phase difference) The sensitivity characteristics when π / 4) and 3λ / 4 (phase difference 3π / 2) were used were compared.
 図9(b)は、図9(a)と同様、横軸をR/rとし縦軸をIrとした。なお、3λ/4の結果はλ/4と全く同じになったので省略する。 In FIG. 9B, the horizontal axis is R / r and the vertical axis is Ir, as in FIG. 9A. The result of 3λ / 4 is exactly the same as that of λ / 4, so it is omitted.
 図9(b)より、複屈折位相量がλ/2のとき、R/rが1に達すると感度が飽和するが、λ/4、λ/8の場合は、R/rが1より大きいエリアでも感度を持つ。この理由は、R/r=1は反射ビームの光軸が入射ビームの外へシフトする瞬間でありそれ以降は、図4~7に示した受光素子2R側で検出される光強度IRの光強度分布が放射縞状の強度分布となり、幾何学的にも大きな変化はない。そのため、明部と暗部の面積比の変化はなくなるが複屈折位相量がλ/2の場合以外では暗部の強度の低下がそれ以降も続くためである。またR/r=1以下とそれ以上は検出特性が異なっており不連続な感度特性が見て取れる。これは強度分布の幾何学的な変化とその後の暗部の強度変化では感度特性が異なるためである。この問題は入射ビームの強度分布を調整することで連続な感度特性が得られる。 From FIG. 9B, when the birefringence phase amount is λ / 2, the sensitivity is saturated when R / r reaches 1, but in the case of λ / 4 and λ / 8, R / r is larger than 1. Has sensitivity even in the area. The reason for this is that R / r = 1 is the moment when the optical axis of the reflected beam shifts out of the incident beam, and after that, the light of the light intensity IR detected on the light receiving element 2R side shown in FIGS. 4 to 7. The intensity distribution becomes a radial stripe-like intensity distribution, and there is no significant change in geometry. Therefore, the change in the area ratio between the bright part and the dark part disappears, but the intensity of the dark part continues to decrease except when the birefringence phase amount is λ / 2. Further, the detection characteristics are different when R / r = 1 or less and more, and discontinuous sensitivity characteristics can be seen. This is because the sensitivity characteristics differ between the geometrical change in the intensity distribution and the subsequent intensity change in the dark area. This problem can be solved by adjusting the intensity distribution of the incident beam to obtain continuous sensitivity characteristics.
 角度αの大きさは、(ア)θの増加に伴い漸増または漸減しても良いし、(イ)角度θが所定の範囲内にあるときαは一定でありかつθの増加に伴い段階的に増加または減少してもよい。 The magnitude of the angle α may be (a) gradually increased or decreased as θ increases, and (b) when the angle θ is within a predetermined range, α is constant and gradually increases as θ increases. May increase or decrease.
(実施の形態3)
 次に図10を用いて本発明の実施の形態3にかかる試料測定装置について説明するが、これは実施の形態1および実施の形態2における試料測定装置の光源側の光学系を例示するものであるので同一の構成には同一の符号を付して説明を省略する。実施の形態3において特徴的であるのは、照明系である。
(Embodiment 3)
Next, the sample measuring device according to the third embodiment of the present invention will be described with reference to FIG. 10, which exemplifies the optical system on the light source side of the sample measuring device according to the first and second embodiments. Therefore, the same components are designated by the same reference numerals and the description thereof will be omitted. The characteristic of the third embodiment is the lighting system.
 複数ビームの同時照射を伴う光学系では例えば図10のような光学系となる。具体的にはインコヒーレント光源照明によるカメラ画像計測が典型例であり、この場合のビーム数は無限として考察される。カメラ画像計測の多くがこれに該当する。この場合、ビーム径の制限は照明系における開口絞りを利用する。全てのビームが空間的に一致するフーリエ面に円形開口の空間変換素子をかけることによって全てのビームの径を制限することができる。また、感度のみならず、感度特性の調整も行うことができる。高NA領域では低感度高ダイナミックレンジ、低NA領域では高感度低ダイナミックレンジとなるため、それぞれの領域の透過率を調整することで感度特性を調整することで、感度特性にリニアリティーを付与することもできる。 For an optical system that involves simultaneous irradiation of a plurality of beams, for example, the optical system is as shown in FIG. Specifically, camera image measurement by incoherent light source illumination is a typical example, and the number of beams in this case is considered to be infinite. Most camera image measurements fall into this category. In this case, the beam diameter is limited by using the aperture diaphragm in the illumination system. The diameter of all beams can be limited by applying a spatial transform element with a circular aperture to the Fourier plane where all beams are spatially coincident. Moreover, not only the sensitivity but also the sensitivity characteristics can be adjusted. Since it has a low sensitivity and high dynamic range in the high NA region and a high sensitivity and low dynamic range in the low NA region, it is necessary to add linearity to the sensitivity characteristics by adjusting the sensitivity characteristics by adjusting the transmittance in each region. You can also.
 したがって、本発明の実施の形態における試料測定装置は、特にワーキングディスタンスが大きい(NAが小さい)光学系に有用に適用できるものである。また従来の干渉計のように観測前に特段の準備をすることが不要であり、このような簡便な光学系は従来存在しなかった。NA値は、好ましくは0.3以下、より好ましくは0.2以下、更に好ましくは0.1以下である。 Therefore, the sample measuring device according to the embodiment of the present invention can be usefully applied to an optical system having a large working distance (small NA). Further, unlike a conventional interferometer, it is not necessary to make special preparations before observation, and such a simple optical system has not existed in the past. The NA value is preferably 0.3 or less, more preferably 0.2 or less, still more preferably 0.1 or less.
 また、偏光空間変換素子のパターンを調整することによって同様のことを行うことができる。変換素子のパターンは式(5)におけるM(r、 θ)に相当するが、そのパターンは回転ねじれ対称性、すなわち、また、動径方向θに対するねじれ対称性が保たれていれば良い。対称次数は任意でよく、対称次数2でも検出能力は発揮される。この場合は鏡面対称であり、シフト検出の方向が対称面方向に制限されるため、ビームシフトの方向を検出する用途に使用することもできる。また、半径方向rに依存する分布があっても良く、これはビームシフト検出の感度曲線の特性を調整するために使用することができる。  Also, the same thing can be done by adjusting the pattern of the polarization space conversion element. The pattern of the conversion element corresponds to M (r, θ) in the equation (5), but the pattern only needs to maintain rotational torsional symmetry, that is, torsional symmetry with respect to the radial direction θ. The symmetry order may be arbitrary, and the detection capability is exhibited even with the symmetry order 2. In this case, it is mirror-symmetrical and the shift detection direction is limited to the symmetrical plane direction, so that it can also be used for detecting the beam shift direction. There may also be a distribution that depends on the radial direction r, which can be used to adjust the characteristics of the sensitivity curve for beam shift detection.
 なお、図2および図6の光学系は全て反射照明系で説明されているが、照明光学系を試料面に対して鏡像反転することで透過照明光学系にも適用できる。 Although the optical systems of FIGS. 2 and 6 are all described as reflection illumination systems, they can also be applied to transmission illumination optical systems by mirror-inverting the illumination optical system with respect to the sample surface.
 このように、入射ビーム、特定偏光素子5の双方で感度を調節できるが、具体的な感度設定はNAでダイナミックレンジを決定し、特定偏光素子5を調節することで感度調整を行う。本手法では観察対象がある程度確定している場合に有効である。また、特定偏光素子5としは図1において示したような非可変光学素子ではなく、液晶のような可変光学素子を用いると、あらゆる観察対象に対して最適化されたパターンの生成を動的に行うことができる。特定偏光素子5を反射型とする場合は、LCOS(LIQUID CRYSTAL ON SILICON)を用いることができる。 In this way, the sensitivity can be adjusted by both the incident beam and the specific polarizing element 5, but the specific sensitivity setting is to determine the dynamic range with NA and adjust the sensitivity by adjusting the specific polarizing element 5. This method is effective when the observation target is fixed to some extent. Further, when the specific polarizing element 5 is not a non-variable optical element as shown in FIG. 1 but a variable optical element such as a liquid crystal is used, the generation of a pattern optimized for any observation target is dynamically generated. It can be carried out. When the specific polarizing element 5 is a reflection type, LCOS (LIQUID CRYSTAL ON SILICON) can be used.
 図11は、実施の形態1~3の変形例であり、特定偏光素子5を透過型ではなく反射型とした光学系の一例である。 FIG. 11 is a modification of the first to third embodiments, and is an example of an optical system in which the specific polarizing element 5 is a reflective type instead of a transmissive type.
 また、多くの偏光素子は波長依存性を伴うが、本使用法に関しては白色光下でも機能を発揮する。ただし、設計波長において最も高い感度を発揮する。 In addition, although many polarizing elements are wavelength-dependent, this usage method works even under white light. However, it exhibits the highest sensitivity at the design wavelength.
 実施の形態3における試料測定装置のその他の特徴は、受光素子2Rに光を入射させるための偏光ビームスプリッター3Rと受光素子2Tに光を入射させるための偏光ビームスプリッター3Tをそれぞれ備えている点である。この場合、受光素子2Rで受光できる光の強度は受光素子2Tで受光できる光の強度の半分となるため、受光素子2Rで受光できる光の強度を2倍して得られた信号を用いても良い。 Another feature of the sample measuring device according to the third embodiment is that it includes a polarizing beam splitter 3R for incident light on the light receiving element 2R and a polarizing beam splitter 3T for incident light on the light receiving element 2T. is there. In this case, the intensity of the light that can be received by the light receiving element 2R is half the intensity of the light that can be received by the light receiving element 2T. Therefore, even if a signal obtained by doubling the intensity of the light that can be received by the light receiving element 2R is used. good.
(実施の形態4)
 次に図12および図13を用いて本発明の実施の形態4にかかる試料測定装置について説明するが、実施の形態1~3の試料測定装置と同じ光学素子には同じ符号を付して説明を省略する。実施の形態4において特徴的であるのは、試料測定装置は入射側特定偏光素子51、反射側特定偏光素子52を有しており、いずれの特定偏光素子も測定対象試料4の片側(一方側)に配置されていること、及び、測定対象試料4への入射光と反射光とが同軸上にはなく、双方、測定対象試料4の法線方向に対して斜めである点である。このように測定対象試料4の一方側に2つの特定偏光素子51、52を配置した場合、測定対象試料4の観察像は斜め方向から臨んだものであるから得られる像は縦横比が歪んだものとなるが、測定対象試料4の表面形状によっては斜め方向から光を入射させるほうが段差等の表面形状が像にコントラストよく反映されることがある。また、測定対象試料4の同一箇所において異なる方向からの複数の観察像を得れば、測定対象試料4の表面形状を一層精度良く観察することができる。例えば、測定対象試料4と試料測定装置の光軸とが交わる点を中心として測定対象試料4を法線軸方向に1回転させることにより360度の画像情報を得ることができるのでこれらの情報を元にコンピュータトモグラフィ法等により高精細の観察像を取得することができる。また、測定対象試料4への入射光および反射光が平行ではないためビームスプリッター3aで反射光から入射光を分離する必要がない。そのため反射光のSN比が向上する。
(Embodiment 4)
Next, the sample measuring device according to the fourth embodiment of the present invention will be described with reference to FIGS. 12 and 13, but the same optical elements as those of the sample measuring devices of the first to third embodiments will be described with the same reference numerals. Is omitted. The characteristic of the fourth embodiment is that the sample measuring device has an incident side specific polarizing element 51 and a reflection side specific polarizing element 52, and each specific polarizing element is one side (one side) of the sample 4 to be measured. ), And that the incident light and the reflected light on the measurement target sample 4 are not coaxial and both are oblique with respect to the normal direction of the measurement target sample 4. When the two specific polarizing elements 51 and 52 are arranged on one side of the measurement target sample 4 in this way, the aspect ratio of the obtained image is distorted because the observation image of the measurement target sample 4 faces from an oblique direction. However, depending on the surface shape of the sample 4 to be measured, the surface shape such as a step may be reflected in the image with good contrast when light is incident from an oblique direction. Further, if a plurality of observation images from different directions are obtained at the same location of the measurement target sample 4, the surface shape of the measurement target sample 4 can be observed with higher accuracy. For example, 360-degree image information can be obtained by rotating the measurement target sample 4 once in the normal axis direction around the point where the measurement target sample 4 and the optical axis of the sample measurement device intersect, and based on this information. A high-definition observation image can be obtained by a computer tomography method or the like. Further, since the incident light and the reflected light to the measurement target sample 4 are not parallel to each other, it is not necessary to separate the incident light from the reflected light by the beam splitter 3a. Therefore, the SN ratio of the reflected light is improved.
なお、図12のように測定対象試料4に対する光の入射角が浅い場合は、入射側において入射側対物レンズ71、反射側において反射側対物レンズ72を各々個別に配置することが好ましい。他方、図13のように測定対象試料4への入射角が深い場合は、入射光及び反射光の両方を1つの対物レンズ7に入射させることもできる。 When the incident angle of light with respect to the measurement target sample 4 is shallow as shown in FIG. 12, it is preferable to individually arrange the incident side objective lens 71 on the incident side and the reflective objective lens 72 on the reflective side. On the other hand, when the angle of incidence on the sample 4 to be measured is deep as shown in FIG. 13, both the incident light and the reflected light can be incident on one objective lens 7.
(その他任意の付加形態)
 図4~図7では、ビームシフトR/rが1を超えても光強度パターンには変化があるが、図8に示すように、それを積分した合計の光量では変化が飽和している点に注意を要する。組み込む光学系と必要な感度、ダイナミックレンジに応じてどちらの情報を抽出するかを選択すべきである。またITとIRの比率を取得することによって、測定対象試料4表面における反射率の違いをキャンセルした測定ができる。なお、受光素子2で特定偏光素子5上を観察する場合、受光素子2がアレイ素子であればITおよびIRの算出のために上記の積分計算が必要になるが、受光素子2が単一の受光部を有する受光素子であれば積分処理を行う必要がないため高速測定に好ましい。
(Other optional additional forms)
In FIGS. 4 to 7, the light intensity pattern changes even if the beam shift R / r exceeds 1, but as shown in FIG. 8, the change is saturated in the total light intensity obtained by integrating the changes. Be careful. You should choose which information to extract according to the optical system to be incorporated, the required sensitivity, and the dynamic range. Further, by acquiring the ratio of IT and IR, the measurement can be performed by canceling the difference in reflectance on the surface of the sample 4 to be measured. When observing on the specific polarizing element 5 with the light receiving element 2, if the light receiving element 2 is an array element, the above integral calculation is required for calculating IT and IR, but the light receiving element 2 is a single unit. A light receiving element having a light receiving unit does not need to perform integration processing, and is preferable for high-speed measurement.
 特定偏光素子5に入射するビームの直径2rの大きさを変更することによって試料測定装置の検知感度を調整することができる。特定偏光素子5の大きさに十分な余裕があれば、図2において入射光は単一光束であるため、入射ビーム直径を拡縮することで感度調整を行うことができる。さらに、対物レンズのNAによっても感度を調整することができる。このような光学系はレーザースキャン画像計測や、画像計測以外のセンサ計測が該当する。 The detection sensitivity of the sample measuring device can be adjusted by changing the size of the diameter 2r of the beam incident on the specific polarizing element 5. If the size of the specific polarizing element 5 has a sufficient margin, since the incident light is a single luminous flux in FIG. 2, the sensitivity can be adjusted by expanding or contracting the diameter of the incident beam. Further, the sensitivity can be adjusted by the NA of the objective lens. Such an optical system corresponds to laser scan image measurement and sensor measurement other than image measurement.
 特定偏光素子5としては、複数画素を有する液晶素子を用いることができる。 As the specific polarizing element 5, a liquid crystal element having a plurality of pixels can be used.
 一様偏光素子を高NA対物レンズに適用した場合、戻り光の偏光は一様ではなく、入射角に依存した分布を有する。この場合、偏光空間フィルタが配置されているフーリエ面上のIT、およびIRの分布を計測することにより、入射角をパラメーターに含めた偏光特性の解析ができ、これによって、空間分解能が高いエリプソメトリーを行うことができる。なお、フーリエ面とは厳密な意味でのフーリエ面である必要はなく、像面からデフォーカスされた面でITおよびIRの分布を計測することにより空間分解能が一定程度高いエリプソメトリーを行うことができる。 When a uniform polarization element is applied to a high NA objective lens, the polarization of the return light is not uniform and has a distribution depending on the incident angle. In this case, by measuring the distribution of IT and IR on the Fourier plane on which the polarization space filter is placed, it is possible to analyze the polarization characteristics including the incident angle as a parameter, thereby ellipsometry with high spatial resolution. It can be performed. The Fourier plane does not have to be a Fourier plane in a strict sense, and ellipsometry with a certain degree of spatial resolution can be performed by measuring the distribution of IT and IR on the plane defocused from the image plane. it can.
 実施の形態にかかる付加的な構成および効果について次の(1)~(8)により説明する。 The additional configurations and effects of the embodiments will be described by the following (1) to (8).
(1)品質安定性
 ビームシフトは2つの検出器(受光素子2T、2R)で計測される光の強度比または差で求められるため、試料の反射率、透過率の違いの影響は受けない。また照明光は吸収や光学系におけるケラレを除いて全て計測に使われるため、安価な検出器でも高品質の信号が得られ高速計測に有利である。
(1) Quality stability Since the beam shift is determined by the light intensity ratio or difference measured by the two detectors ( light receiving elements 2T and 2R), it is not affected by the difference in reflectance and transmittance of the sample. In addition, since the illumination light is used for all measurements except absorption and eclipse in the optical system, a high-quality signal can be obtained even with an inexpensive detector, which is advantageous for high-speed measurement.
(2)多ビーム適用
 多ビームを同時に重なり合う光学系でも適用可能であり、無限数の多ビーム測定に相当するワイド視野観察に適用可能となる。
(2) Multi-beam application It can be applied to an optical system in which multiple beams are overlapped at the same time, and can be applied to wide-field observation corresponding to an infinite number of multi-beam measurements.
(3)計測限界
 干渉計で計測できない大きな傾きから干渉計の計測領域の微細な傾きも計測できる。試算すると、干渉縞ピッチの計測限界を25μm(1000 LPI)とする。波長を532nmとすると、このときの傾きは 0.6度となる。これに対し、図9においてNAが0.03 (F値16、 分解能15μm)の対物レンズで組み、特定偏光素子5を挿入した光学系では、 図8に示すとおり、IT/IRが変化する領域が0.9度以下、感度中心は0.45度となり、干渉計の感度領域内に有ることが分かる。特定偏光素子5や、NAを可変とすることで、更に大きな傾きの計測へ拡張でき、干渉計の計測範囲を超えることができる。
(3) Measurement limit It is possible to measure the minute inclination of the measurement area of the interferometer from the large inclination that cannot be measured by the interferometer. As a trial calculation, the measurement limit of the interference fringe pitch is 25 μm (1000 LPI). Assuming that the wavelength is 532 nm, the inclination at this time is 0.6 degrees. On the other hand, in an optical system in which an objective lens having an NA of 0.03 (F value 16 and a resolution of 15 μm) is inserted in FIG. 9 and a specific polarizing element 5 is inserted, as shown in FIG. 8, the region where IT / IR changes. Is 0.9 degrees or less, the sensitivity center is 0.45 degrees, and it can be seen that it is within the sensitivity range of the interferometer. By making the specific polarizing element 5 and NA variable, it is possible to extend the measurement to a larger inclination and exceed the measurement range of the interferometer.
(4)正反射除去
 光軸に垂直な平滑光沢面を観察する時、物体側がテレセントリック光学系であれば観察面全体が、それ以外であれば観察面中央の輝度が極端に増し、特に後者においては高輝度部分がハレーションを起こし、試料全体を観察することが困難となる。特定偏光素子5を用いれば、垂直反射を選択的に除去できるため、視認性を向上させることができる。また、特定偏光素子5の設計によって、除去特性も調節することができる。
(4) Specular reflection removal When observing a smooth glossy surface perpendicular to the optical axis, the brightness of the entire observation surface is extremely increased if the object side is a telecentric optical system, and the brightness of the center of the observation surface is extremely increased otherwise, especially in the latter case. The high-intensity part causes halation, which makes it difficult to observe the entire sample. By using the specific polarizing element 5, vertical reflection can be selectively removed, so that visibility can be improved. In addition, the removal characteristics can be adjusted by designing the specific polarizing element 5.
(5)欠陥検出、段差検出、および粗さ検出
 実施の形態1においても既に説明したとおり、試料表面に微細な段差が生じると、その高低差に対応した位相の不連続が生じ、その不連続を補うためにビームシフトを伴う光波を生じる。傷をはじめとする点状、線状の欠陥、コンタミ、半導体工程等で作られる微小段差等を可視化できる。受光素子2T側で計測すると暗視野計測となるため、検出器感度を上げることによって微小段差であっても計測が可能となる。また、検出限界内であれば、IT/IR比との校正による段差計測への発展も可能である。検出範囲は特定偏光素子5の設計に依存する。
(5) Defect detection, step detection, and roughness detection As already described in the first embodiment, when a minute step is generated on the sample surface, a phase discontinuity corresponding to the height difference occurs, and the discontinuity occurs. A light wave with a beam shift is generated to compensate for this. It is possible to visualize spot-like and linear defects such as scratches, contamination, and minute steps created in the semiconductor process. Since the dark field measurement is performed when the measurement is performed on the light receiving element 2T side, it is possible to measure even a minute step by increasing the detector sensitivity. Further, if it is within the detection limit, it is possible to develop into step measurement by calibration with the IT / IR ratio. The detection range depends on the design of the specific polarizing element 5.
(6)傾き計測およびうねり検出
 図2でもすでに述べたとおり、実施の形態にかかる試料測定装置により測定対象試料4の傾きを計測する用途に使用できる。また、傾き情報を空間的に積分することによって、一見平坦に見える面のうねりを計測することもできる。うねりはごく低角度の傾き計測であるため、欠陥や粗さ、段差などの高周波成分とは分離しやすい。
(6) Tilt measurement and waviness detection As already described in FIG. 2, it can be used for measuring the tilt of the sample 4 to be measured by the sample measuring device according to the embodiment. It is also possible to measure the swell of a seemingly flat surface by spatially integrating the tilt information. Since the swell is measured at a very low angle, it is easy to separate it from high-frequency components such as defects, roughness, and steps.
(7)焦点検出 (広視野共焦点イメージング)
 試料面が観察光学系の焦点から外れた場合、図14に示すとおり反射光の光路が変わるため、そのビームシフトを計測することによってピント合わせが実現できる。例えば、焦点距離fの対物レンズによって、物体側にテレセントリック光学系による観察システムを構築する。この時、ピントがΔfずれたときの特定偏光素子5上における光路シフト量Δxは式(8)のように表わされる。
(7) Focus detection (wide-field confocal imaging)
When the sample surface is out of the focus of the observation optical system, the optical path of the reflected light changes as shown in FIG. 14, so focusing can be realized by measuring the beam shift. For example, an observation system using a telecentric optical system is constructed on the object side with an objective lens having a focal length f. At this time, the optical path shift amount Δx on the specific polarizing element 5 when the focus is deviated by Δf is expressed by the equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、xは当該光線の光学系主線からの距離である。これより、光線が高NA側の光路を通るほど大きな光路シフトが得られることから、対物レンズの開口瞳のうち、辺縁部を通過する光路を例えば暗視野照明の光路を利用した焦点合わせ光学系がより効果的である。これは、ビームシフト検出においては辺縁部よりは中心部の方が、感度が高いこととは対称的であり、対物レンズの瞳を2つに分けて利用することによって立体的な計測を行うことができる。 Here, x is the distance of the light beam from the main line of the optical system. As a result, a larger optical path shift can be obtained as the light beam passes through the optical path on the high NA side. Therefore, the optical path passing through the edge of the open pupil of the objective lens is focused by using, for example, the optical path of dark field illumination. The system is more effective. This is in symmetry with the fact that the central part has higher sensitivity than the peripheral part in beam shift detection, and three-dimensional measurement is performed by using the pupil of the objective lens in two parts. be able to.
(8)観察対象事例
 本発明の実施の形態1にかかる試料測定装置は次の観察対象事例に対して有効である。
1.表面観察
(ア) 傾き、うねりの計測
(イ) 欠陥、パーティクル等のコンタミ計測
(ウ) マイクロパターニング等で形成された微小段差
(エ) 粗さ
2.バルク中欠陥観察
(ア) ガラス中の気泡などの観察
(イ) 歪みなどによる屈折率の不均一部分の検出
(8) Cases to be observed The sample measuring device according to the first embodiment of the present invention is effective for the following cases to be observed.
1. 1. Surface observation
(A) Measurement of tilt and swell
(B) Contamination measurement of defects, particles, etc.
(C) Small steps formed by micro-patterning, etc.
(D) Roughness 2. Defect observation in bulk
(A) Observation of air bubbles in glass
(B) Detection of non-uniform refractive index due to distortion, etc.
 本願は、2019年8月28日に出願された日本国特許出願第2019-156108号に基づく優先権の利益を主張するものである。2019年8月28日に出願された日本国特許出願第2019-156108号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2019-156108 filed on August 28, 2019. The entire contents of the specification of Japanese Patent Application No. 2019-156108 filed on August 28, 2019 are incorporated herein by reference.
 1 光源
 2 受光素子
 3 偏光ビームスプリッター
 3a ビームスプリッター
 4 測定対象試料
 5 特定偏光素子
 5a 区画(領域k)
 5b 区画(領域j)
 5c 区画(領域k)
 5d 区画(領域i)
 5ax 中心軸
 51 入射側特定偏光素子
 52 反射側特定偏光素子
 6 直線偏光板
 7 対物レンズ
 71 入射側対物レンズ
 72 反射側対物レンズ
 8 結像レンズ
1 Light source 2 Light receiving element 3 Polarized beam splitter 3a Beam splitter 4 Sample to be measured 5 Specific polarized element 5a Section (region k)
5b section (area j)
5c section (area k)
5d compartment (area i)
5ax central axis 51 incident side specific polarizing element 52 reflective side specific polarizing element 6 linear polarizing plate 7 objective lens 71 incident side objective lens 72 reflection side objective lens 8 imaging lens

Claims (21)

  1.  光源と、当該光源から射出される光を受光する受光素子と、該受光素子よりも前記光源側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子とを有する試料測定装置であって、さらに下記(1)および(2)のうち少なくとも一方の特定偏光素子を含むことを特徴とする試料測定装置。
    (1)測定対象試料よりも前記光源側に配置されており前記光源から射出される光を透過または反射する特定偏光素子、および、測定対象試料よりも前記受光素子側に配置されており測定対象試料を透過または反射した光を透過または反射する特定偏光素子の両方。
    (2)測定対象試料よりも前記光源側であってかつ測定対象試料よりも前記受光素子側に配置されており、前記光源から射出される光を透過または反射し、かつ、測定対象試料から反射された光を透過または反射する特定偏光素子。
    [特定偏光素子]
     面内にx軸方向とこれに直交するy軸方向とを有し、面内の位置によってジョーンズ行列が異なっている透過型または反射型の偏光素子。
    A light source, a light receiving element that receives light emitted from the light source, and an optical element that is arranged on the light source side of the light source and selectively extracts light having a polarization component in a specific direction from the incident light. A sample measuring device having a sample measuring device, further comprising at least one of the following specific polarizing elements (1) and (2).
    (1) A specific polarizing element that is arranged on the light source side of the measurement target sample and transmits or reflects light emitted from the light source, and a measurement target that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that transmit or reflect light that has passed or reflected the sample.
    (2) It is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, transmits or reflects the light emitted from the light source, and reflects from the measurement target sample. A specific polarizing element that transmits or reflects the emitted light.
    [Specific polarizing element]
    A transmissive or reflective polarizing element having an in-plane x-axis direction and a y-axis direction orthogonal to the x-axis direction, in which the Jones matrix differs depending on the in-plane position.
  2.  請求項1の(1)により特定される特定偏光素子の両方を有しており、いずれの特定偏光素子も測定対象試料の一方側に配置されている請求項1に記載の試料測定装置。 The sample measuring device according to claim 1, which has both of the specific polarizing elements specified by (1) of claim 1, and both of the specific polarizing elements are arranged on one side of the sample to be measured.
  3.  前記特定偏光素子のxy平面内の領域Rinに入射した光を該領域Rinに対して前記特定偏光素子の中心軸対象の位置にある領域Routに入射させたとき、前記領域Routを透過した光のジョーンズベクトルは、前記領域Rinに入射した光のジョーンズベクトルと同じである請求項1または2に記載の試料測定装置。 When the light incident on the region Rin in the xy plane of the specific polarizing element is incident on the region Rout located at the position of the central axis of the specific polarizing element with respect to the region Rin, the light transmitted through the region Rout The sample measuring device according to claim 1 or 2, wherein the Jones vector is the same as the Jones vector of light incident on the region Rin.
  4.  前記特定偏光素子は、xy平面内にM個の領域(R1~RM)を有しており、領域Riと、該領域Riに対して前記特定偏光素子の中心軸対象の位置にある領域Rjと、該領域Rjに隣接している領域Rkとを有しており、下記条件Aおよび条件Bを満たす請求項1~3のいずれか一項に記載の試料測定装置。
    [条件A]
     ジョーンズベクトルがJxyである光を領域Riに入射させ、透過した光をさらに領域Rjに入射させたとき、前記領域Rjを透過した光のジョーンズベクトルは、Jxyと同じである。
    [条件B]
     領域Rkのジョーンズ行列は、領域Rjのジョーンズ行列とは異なるものである。
    但し、上記i、j、k、Mはそれぞれ自然数である。
    The specific polarizing element has M regions (R1 to RM) in the xy plane, and the region Ri and the region Rj located at a position symmetrical with respect to the central axis of the specific polarizing element with respect to the region Ri. The sample measuring device according to any one of claims 1 to 3, which has a region Rk adjacent to the region Rj and satisfies the following conditions A and B.
    [Condition A]
    When the light whose Jones vector is Jxy is incident on the region Ri and the transmitted light is further incident on the region Rj, the Jones vector of the light transmitted through the region Rj is the same as that of Jxy.
    [Condition B]
    The Jones matrix of region Rk is different from the Jones matrix of region Rj.
    However, the above i, j, k, and M are natural numbers, respectively.
  5.  前記特定偏光素子は、中心から、x軸方向に対して角度θ度をなす方向に距離rだけ離れた位置におけるx軸方向と前記光学軸方向とのなす角度αの大きさが、θの増加に伴い増加または減少しているものである請求項1~4のいずれか一項に記載の試料測定装置。 In the specific polarizing element, the magnitude of the angle α formed by the x-axis direction and the optical axis direction at a position separated by a distance r in the direction forming an angle θ degree with respect to the x-axis direction from the center increases by θ. The sample measuring apparatus according to any one of claims 1 to 4, which is increasing or decreasing in accordance with the above.
  6.  前記特定偏光素子は、径方向の位置によってジョーンズ行列が異なっている請求項1~5のいずれか一項に記載の試料測定装置。 The sample measuring device according to any one of claims 1 to 5, wherein the specific polarizing element has a Jones matrix different depending on the position in the radial direction.
  7.  前記角度αの大きさは、(θ/2)・nである請求項4~6のいずれか一項に記載の試料測定装置。但し、nは任意の定数である。 The sample measuring device according to any one of claims 4 to 6, wherein the magnitude of the angle α is (θ / 2) · n. However, n is an arbitrary constant.
  8.  nが1.0以下である請求項7に記載の試料測定装置。 The sample measuring device according to claim 7, wherein n is 1.0 or less.
  9.  前記角度αの大きさは、(θ/2)・nである請求項4~8のいずれか一項に記載の試料測定装置。但し、nは整数である。 The sample measuring device according to any one of claims 4 to 8, wherein the magnitude of the angle α is (θ / 2) · n. However, n is an integer.
  10.  前記角度αの大きさは、θの増加に伴い漸増または漸減する請求項4~9のいずれか一項に記載の試料測定装置。 The sample measuring device according to any one of claims 4 to 9, wherein the magnitude of the angle α gradually increases or decreases as θ increases.
  11.  前記角度θが所定の範囲内にあるとき前記αは一定であり、前記角度αの大きさは、θの増加に伴い段階的に増加または減少する請求項4~9のいずれか一項に記載の試料測定装置。 The item according to any one of claims 4 to 9, wherein the α is constant when the angle θ is within a predetermined range, and the magnitude of the angle α gradually increases or decreases as θ increases. Sample measuring device.
  12.  前記特定偏光素子と測定対象試料との間に対物レンズが配置されている請求項1~11のいずれか一項に記載の試料測定装置。 The sample measuring device according to any one of claims 1 to 11, wherein an objective lens is arranged between the specific polarizing element and the sample to be measured.
  13.  前記受光素子が第1の受光素子および第2の受光素子により構成されており、前記光学素子は偏光ビームスプリッターであり、該偏光ビームスプリッターにおいて反射される光を第1の受光素子で受光し、該偏光ビームスプリッターにおいて透過される光を第2の受光素子で受光する請求項1~12のいずれか一項に記載の試料測定装置。 The light receiving element is composed of a first light receiving element and a second light receiving element. The optical element is a polarizing beam splitter, and the light reflected by the polarizing beam splitter is received by the first light receiving element. The sample measuring apparatus according to any one of claims 1 to 12, wherein the light transmitted through the polarizing beam splitter is received by the second light receiving element.
  14.  前記特定偏光素子は、前記光学軸に平行な偏光成分と前記光学軸に垂直な偏光成分との間に四分の一波長の整数倍の位相差を付与するものである請求項1~13のいずれか一項に記載の試料測定装置。 The specific polarizing element gives a phase difference that is an integral multiple of a quarter wavelength between a polarization component parallel to the optical axis and a polarization component perpendicular to the optical axis, according to claims 1 to 13. The sample measuring apparatus according to any one item.
  15.  前記受光素子の受光面は、測定対象試料のフーリエ面である請求項1~14のいずれか一項に記載の試料測定装置。 The sample measuring device according to any one of claims 1 to 14, wherein the light receiving surface of the light receiving element is a Fourier surface of the sample to be measured.
  16.  光源と、当該光源から射出された光を受光する受光素子と、該受光素子よりも前記光源側に配置されており入射光のうち特定方向の偏光成分の光を選択的に取り出す光学素子と、下記(1)および(2)のうち少なくとも一方の特定偏光素子を含む試料測定装置を準備するステップと、
     前記光源から光を射出させるステップと、
     測定対象試料を経由した光を前記受光素子により検出するステップと、
    を有する測定方法。
    (1)測定対象試料よりも前記光源側に配置されており前記光源から射出される光を透過または反射する特定偏光素子、および、測定対象試料よりも前記受光素子側に配置されており測定対象試料で透過または反射した光を透過または反射する特定偏光素子の両方。
    (2)測定対象試料よりも前記光源側であってかつ測定対象試料よりも前記受光素子側に配置されており、前記光源から射出される光を透過または反射し、かつ、測定対象試料から反射された光を透過または反射する特定偏光素子。
    [特定偏光素子]
     面内にx軸方向とこれに直交するy軸方向とを有し、面内の位置によってジョーンズ行列が異なっている透過型または反射型の偏光素子。
    A light source, a light receiving element that receives light emitted from the light source, and an optical element that is arranged on the light source side of the light receiving element and selectively extracts light having a polarization component in a specific direction from the incident light. The step of preparing a sample measuring device including at least one of the following (1) and (2) specific polarizing elements, and
    The step of emitting light from the light source and
    The step of detecting the light passing through the sample to be measured by the light receiving element, and
    Measurement method having.
    (1) A specific polarizing element that is arranged on the light source side of the measurement target sample and transmits or reflects light emitted from the light source, and a measurement target that is arranged on the light receiving element side of the measurement target sample. Both specific polarizing elements that transmit or reflect light transmitted or reflected by the sample.
    (2) It is arranged on the light source side of the measurement target sample and on the light receiving element side of the measurement target sample, transmits or reflects the light emitted from the light source, and reflects from the measurement target sample. A specific polarizing element that transmits or reflects the emitted light.
    [Specific polarizing element]
    A transmissive or reflective polarizing element having an in-plane x-axis direction and a y-axis direction orthogonal to the x-axis direction, in which the Jones matrix differs depending on the in-plane position.
  17.  前記特定偏光素子は、面内が複数の領域に区画されており、一部の複数の領域は旋光子であり、他の複数の領域は旋光子ではない請求項16に記載の測定方法。 The measuring method according to claim 16, wherein the specific polarizing element is divided into a plurality of regions in a plane, some of the plurality of regions are optical rotations, and the other plurality of regions are not optical rotations.
  18.  前記特定偏光素子は、面内の位置によって光学軸の向きが異なる偏光素子であって、中心から、x軸方向に対して角度θ度をなす方向に距離rだけ離れた位置におけるx軸方向と前記光学軸方向とのなす角度αの大きさは、θの増加に伴い増加または減少しているものである請求項15~17のいずれか一項に記載の測定方法。 The specific polarizing element is a polarizing element in which the direction of the optical axis differs depending on the position in the plane, and is the x-axis direction at a position separated by a distance r from the center in a direction forming an angle θ degree with respect to the x-axis direction. The measuring method according to any one of claims 15 to 17, wherein the magnitude of the angle α formed with the optical axis direction increases or decreases as θ increases.
  19.  前記試料測定装置において、
    (a)前記受光素子が第1の受光素子および第2の受光素子により構成されており、前記光学素子は偏光ビームスプリッターであり、
    (b)前記偏光ビームスプリッターにおいて反射される光を第1の受光素子で受光し、該偏光ビームスプリッターにおいて透過される光を第2の受光素子で受光するものであり、
     前記第1の受光素子で検出される光強度と、前記第2の受光素子で検出される光強度の比または差を計算するステップを更に有している請求項15~18のいずれか一項に記載の測定方法。
    In the sample measuring device
    (A) The light receiving element is composed of a first light receiving element and a second light receiving element, and the optical element is a polarizing beam splitter.
    (B) The light reflected by the polarization beam splitter is received by the first light receiving element, and the light transmitted by the polarization beam splitter is received by the second light receiving element.
    Any one of claims 15 to 18, further comprising a step of calculating the ratio or difference between the light intensity detected by the first light receiving element and the light intensity detected by the second light receiving element. The measurement method described in.
  20.  前記特定偏光素子の領域Rinに入射した光を該領域Rinに対して前記特定偏光素子の中心軸対象の位置にある領域Routに入射させたとき、前記領域Routを透過した光のジョーンズベクトルは、前記領域Rinに入射した光のジョーンズベクトルと同じである請求項15~19のいずれか一項に記載の測定方法。 When the light incident on the region Rin of the specific polarizing element is incident on the region Rout located at the position of the central axis of the specific polarizing element with respect to the region Rin, the Jones vector of the light transmitted through the region Rout is: The measuring method according to any one of claims 15 to 19, which is the same as the Jones vector of light incident on the region Rin.
  21.  前記特定偏光素子は、xy平面内にM個の領域(R1~RM)を有しており、領域Riと、該領域Riに対して前記特定偏光素子の中心軸対象の位置にある領域Rjと、該領域Rjに隣接している領域Rkとを有しており、下記条件Aおよび条件Bを満たす請求項15~20のいずれか一項に記載の測定方法。
    [条件A]
     ジョーンズベクトルがJxyである光を領域Riに入射させ、透過した光をさらに領域Rjに入射させたとき、前記領域Rjを透過した光のジョーンズベクトルは、Jxyと同じである。
    [条件B]
     領域Rkのジョーンズ行列は、領域Rjのジョーンズ行列とは異なるものである。
    但し、i、j、k、Mはそれぞれ自然数である。
    The specific polarizing element has M regions (R1 to RM) in the xy plane, and the region Ri and the region Rj located at a position symmetrical with respect to the central axis of the specific polarizing element with respect to the region Ri. The measuring method according to any one of claims 15 to 20, which has a region Rk adjacent to the region Rj and satisfies the following conditions A and B.
    [Condition A]
    When the light whose Jones vector is Jxy is incident on the region Ri and the transmitted light is further incident on the region Rj, the Jones vector of the light transmitted through the region Rj is the same as that of Jxy.
    [Condition B]
    The Jones matrix of region Rk is different from the Jones matrix of region Rj.
    However, i, j, k, and M are natural numbers, respectively.
PCT/JP2020/032342 2019-08-28 2020-08-27 Sample measurement device and sample measurement method WO2021039900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542999A JP7525119B2 (en) 2019-08-28 2020-08-27 Sample measurement device and sample measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-156108 2019-08-28
JP2019156108 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021039900A1 true WO2021039900A1 (en) 2021-03-04

Family

ID=74685140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032342 WO2021039900A1 (en) 2019-08-28 2020-08-27 Sample measurement device and sample measurement method

Country Status (2)

Country Link
JP (1) JP7525119B2 (en)
WO (1) WO2021039900A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178785A1 (en) * 2009-12-28 2011-07-21 Asml Netherlands B.V. Calibration Method and Apparatus
CN103048268A (en) * 2013-01-10 2013-04-17 南京中迅微传感技术有限公司 Digital electronic shear speckle interferometer based on micro-polaroid array
WO2014084007A1 (en) * 2012-11-29 2014-06-05 シチズンホールディングス株式会社 Light modulation element
US20160252449A1 (en) * 2014-03-07 2016-09-01 Halliburton Energy Services, Inc. Wavelength-Dependent Light Intensity Modulation in Multivariate Optical Computing Devices Using Polarizers
JP2016535288A (en) * 2013-09-24 2016-11-10 オリンパス・ソフト・イメージング・ソリューションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for optical measurement of particle properties
JP2018501524A (en) * 2015-01-09 2018-01-18 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Liquid crystal achromatic phase modulator
JP2018029251A (en) * 2016-08-17 2018-02-22 ソニー株式会社 Inspection apparatus, inspection method, and program
JP2018087885A (en) * 2016-11-28 2018-06-07 公立大学法人兵庫県立大学 Polarization control device and polarization control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178785A1 (en) * 2009-12-28 2011-07-21 Asml Netherlands B.V. Calibration Method and Apparatus
WO2014084007A1 (en) * 2012-11-29 2014-06-05 シチズンホールディングス株式会社 Light modulation element
CN103048268A (en) * 2013-01-10 2013-04-17 南京中迅微传感技术有限公司 Digital electronic shear speckle interferometer based on micro-polaroid array
JP2016535288A (en) * 2013-09-24 2016-11-10 オリンパス・ソフト・イメージング・ソリューションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for optical measurement of particle properties
US20160252449A1 (en) * 2014-03-07 2016-09-01 Halliburton Energy Services, Inc. Wavelength-Dependent Light Intensity Modulation in Multivariate Optical Computing Devices Using Polarizers
JP2018501524A (en) * 2015-01-09 2018-01-18 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Liquid crystal achromatic phase modulator
JP2018029251A (en) * 2016-08-17 2018-02-22 ソニー株式会社 Inspection apparatus, inspection method, and program
JP2018087885A (en) * 2016-11-28 2018-06-07 公立大学法人兵庫県立大学 Polarization control device and polarization control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO, M ET AL.: "Orientation detection of a single molecule using pupil filter with electrically controllable polarization pattern", OPT. REV., vol. 22, 6 October 2015 (2015-10-06), pages 875 - 881, XP035891674, DOI: 10.1007/s10043-015-0143-0 *

Also Published As

Publication number Publication date
JP7525119B2 (en) 2024-07-30
JPWO2021039900A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US8681413B2 (en) Illumination control
US5835217A (en) Phase-shifting point diffraction interferometer
KR100917912B1 (en) Single-Polarizer Focused-Beam Ellipsometer
RU2617555C2 (en) Spectroscopic measurement device
US20120140243A1 (en) Non-contact surface characterization using modulated illumination
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
KR20090113895A (en) Apparatus for Measuring Defects in a Glass Sheet
JP2006023307A (en) Microscope focusing system, and method especially for inspecting mask for emulating high-aperture focusing system
JPH03183904A (en) Detection of shape of object
JP7329608B2 (en) Sensitive particle detection using spatially varying polarization rotators and polarizers
JP7489403B2 (en) Deflectometry Measurement System
KR20200010461A (en) Methods and associated optical devices for measuring curvature of reflective surfaces
TW201617598A (en) Birefringence measurement device and birefringence measurement method
US8547557B2 (en) Apparatus for determining a height map of a surface through both interferometric and non-interferometric measurements
JP2015505039A (en) Non-contact surface shape evaluation using modulated light
US20050270543A1 (en) Wavefront-measuring interferometer apparatus, and light beam measurement apparatus and method thereof
JP6629572B2 (en) Lighting device and observation system
WO2021039900A1 (en) Sample measurement device and sample measurement method
GB2135448A (en) Inspection apparatus and method
JP3219462B2 (en) Thin film measuring instrument
JP6999805B2 (en) Data acquisition device
JP3886619B2 (en) Object defect inspection method and inspection apparatus
JP3670821B2 (en) Refractive index distribution measuring device
JP2003083886A (en) Surface plasmon microscope and dark ring image data acquisition method under the same
JP6886124B2 (en) Optical element characteristic measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857846

Country of ref document: EP

Kind code of ref document: A1