JPH0682003A - Full fired heat recovery combined cycle power plant - Google Patents

Full fired heat recovery combined cycle power plant

Info

Publication number
JPH0682003A
JPH0682003A JP7417392A JP7417392A JPH0682003A JP H0682003 A JPH0682003 A JP H0682003A JP 7417392 A JP7417392 A JP 7417392A JP 7417392 A JP7417392 A JP 7417392A JP H0682003 A JPH0682003 A JP H0682003A
Authority
JP
Japan
Prior art keywords
condensate
gas
water
superheater
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7417392A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kurosawa
一浩 黒澤
Hiroshi Arase
央 荒瀬
Akihiro Kawauchi
章弘 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP7417392A priority Critical patent/JPH0682003A/en
Publication of JPH0682003A publication Critical patent/JPH0682003A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent overheat from occurrence when the flow rates of condensed water and feed water have lowered. CONSTITUTION:With lowering of the load of a steam turbine, the flow rates of condensed water and feed water are lowered so that the feed water and the condensed water may be subjected to overheating. In that case, a condensed water temperature detector detects the temperature of the condensed water which has passed through a low pressure gas superheater 7 and a circulation pump 21 is driven based on the detected temperature and the condensed water which has passed through the low pressure gas superheater 7 incorporated into a condensed water communication pipeline 20 where the condensed water joins the condensed water of a supply pipe 41 and it is returned to the low pressure gas superheater 7. More specifically, the condensed water is circulated, which makes it possible to prevent the condensed water from being overheated even when the reduction of heat exchange quantity of the low pressure gas superheater is minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気再燃型コンバインド
サイクル発電プラントに係り、特にプラントの運転時、
ガス加熱器を通過する給水及び復水が過熱する(スチー
ミング)を防止するのに好適なものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas re-combustion combined cycle power plant, particularly when the plant is in operation.
The present invention relates to a device suitable for preventing overheating (steaming) of feed water and condensate passing through a gas heater.

【0002】[0002]

【従来の技術】図4に、主にヨーロッパで用いられてい
る従来技術の排気再燃型コンバインド発電プラントのサ
イクル構成の一部を示す。ガスタービン1からの排ガス
中には13〜15%程度のO2が残存しており、その排
ガスを蒸気発生器としてのボイラ風箱4,蒸気発生ボイ
ラ3に導入し、燃焼用空気として利用することにより、
蒸気を発生させる。蒸気発生ボイラ3からの排ガスは3
50℃程度の高温であり、蒸気タービンサイクルの高圧
給水加熱器19及び低圧給水加熱器15とパラレル(若
しくはシリーズ)に接続された高圧ガス加熱器6及び低
圧ガス加熱器7を通って熱回収されることにより、10
0〜150℃程度に冷却された後、誘引通風ファン8を
通り煙突9から大気中に放出されることとなる。一方、
復水器10からの復水は復水ポンプ11で昇圧され、グ
ランド蒸気復水器12,脱気器水位調整弁13を経て復
水分配弁14に入り、該分配弁14にて二方向に分かれ
て流出する。この場合、一方においては低圧給水加熱器
15により加熱され、他方においては低圧ガス加熱器7
内を通過した後、低圧給水加熱器15によって加熱され
た復水と合流し、合流した復水が脱気器16に導かれ
る。脱気器16においては、ボイラなどが腐食するのを
防止するため、復水中の溶存酸素及び炭酸ガスを除去
し、除去された復水が給水分配弁18によって二方向に
分かれて流出する。この場合、一方においては高圧給水
加熱器19により所望の圧力と温度とに高められ、他方
においては高圧ガス加熱器6内を通過した後、前述の如
く高圧給水加熱器19を経た復水と合流し、蒸気発生ボ
イラ3に導かれることにより蒸気を発生させる。
2. Description of the Related Art FIG. 4 shows a part of a cycle configuration of a conventional exhaust gas re-combustion combined power plant mainly used in Europe. About 13 to 15% of O2 remains in the exhaust gas from the gas turbine 1, and the exhaust gas is introduced into the boiler wind box 4 as the steam generator 4 and the steam generating boiler 3 to be used as combustion air. Due to
Generates steam. Exhaust gas from the steam generating boiler 3 is 3
It has a high temperature of about 50 ° C., and heat is recovered through the high pressure gas heater 6 and the low pressure gas heater 7 connected in parallel (or series) with the high pressure feed water heater 19 and the low pressure feed water heater 15 of the steam turbine cycle. By doing 10
After being cooled to about 0 to 150 ° C., it is discharged into the atmosphere from the chimney 9 through the induced draft fan 8. on the other hand,
Condensed water from the condenser 10 is boosted by the condensate pump 11, passes through the gland steam condenser 12 and the deaerator water level adjusting valve 13 and enters the condensate distribution valve 14, and the distribution valve 14 bidirectionally. It is divided and flows out. In this case, one side is heated by the low-pressure feed water heater 15, and the other side is heated by the low-pressure gas heater 7.
After passing through the inside, it joins the condensate heated by the low-pressure feed water heater 15, and the combined condensate is guided to the deaerator 16. In the deaerator 16, dissolved oxygen and carbon dioxide gas in the condensate are removed in order to prevent the boiler and the like from being corroded, and the removed condensate flows out in two directions by the feed water distribution valve 18. In this case, on the one hand, the pressure and temperature are raised to the desired pressure by the high-pressure feed water heater 19, and on the other hand, after passing through the high-pressure gas heater 6, it joins the condensate that has passed through the high-pressure feed water heater 19 as described above. Then, the steam is generated by being guided to the steam generating boiler 3.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記に示す
従来技術は、蒸気発生ボイラ3からの排ガスが高圧ガス
加熱器6では給水によって熱回収され、また低圧ガス加
熱器7では復水によって熱回収されることにより、一般
の蒸気原動機プラントより高い熱効率を有している。し
かしながら、従来技術の排気再燃型コンバインドプラン
トにおいては、蒸気タービンの負荷の降下時、高圧ガス
加熱器6を流通する給水や、低圧ガス加熱器7を流通す
る復水の流量も低下するものの、その給水及び復水の流
量の低下幅に対し、高圧ガス加熱器6及び低圧ガス加熱
器7の熱交換量の低下幅が小さいため、高圧ガス加熱器
6によって給水が過熱されると共に、低圧ガス過熱器7
によって復水も過熱されてしまう問題がある。
In the prior art described above, the exhaust gas from the steam generating boiler 3 is heat-recovered by the feed water in the high-pressure gas heater 6 and the condensate is recovered in the low-pressure gas heater 7. By doing so, it has higher thermal efficiency than a general steam engine plant. However, in the exhaust gas re-combustion combined plant of the prior art, when the load of the steam turbine is lowered, the flow rate of the feed water flowing through the high pressure gas heater 6 and the flow rate of the condensate flowing through the low pressure gas heater 7 are also reduced. Since the decrease in the amount of heat exchange between the high-pressure gas heater 6 and the low-pressure gas heater 7 is small with respect to the decrease in the flow rate of the supplied water and the condensate, the high-pressure gas heater 6 superheats the supplied water and the low-pressure gas overheats. Bowl 7
There is a problem that the condensate is also overheated.

【0004】具体的に述べると、給水流量及び復水流量
は蒸気タービンの負荷の減少時、その減少に伴い図5に
示すように低・高圧ガス過熱器7・6及び低・高圧給水
過熱器15・16の何れも減少し、また低・高圧ガス過
熱器7・6における熱交換量も図6に示すように減少す
る。ところが、図5及び図6に示すように、給水流量及
び復水流量の減少幅に比べ、熱交換量の減少幅が小さい
ので、給水流量,復水流量が減少しても、熱交換量がそ
れに応じて減少しないこととなる結果、低圧ガス過熱器
7及び高圧ガス過熱器6を流通する復水及び給水が過熱
されてしまい、そのため、脱気器16入口における復水
の温度と脱気器内の温度との差(ΔT)を所望値に確保
することが難しくなり、脱気効果が低下すると云う問題
があるばかりでなく、脱気器16入口及びボイラ節炭器
においてスチーミングを起こす問題がある。さらに蒸気
タービン負荷の減少に応じ給水流量及び復水流量が極端
に低下した場合、低・高圧ガス加熱器7・6自体も過熱
されてしまい、特に復水系においては、脱気器の水位が
高水位となった場合、脱気器水位調整弁が一時的に閉止
することによって復水流量が激減するので、低圧ガス過
熱器7が異常に過熱されると云う問題もある。
More specifically, the feed water flow rate and the condensate water flow rate are reduced when the load on the steam turbine decreases, and as shown in FIG. 5, the low / high pressure gas superheaters 7.6 and the low / high pressure feed water superheaters are shown. Both 15 and 16 decrease, and the heat exchange amount in the low / high pressure gas superheaters 7 and 6 also decreases as shown in FIG. However, as shown in FIGS. 5 and 6, the amount of decrease in the heat exchange amount is smaller than the amount of decrease in the feed water flow rate and the condensate flow rate. As a result, the condensate and feed water flowing through the low-pressure gas superheater 7 and the high-pressure gas superheater 6 are overheated, and as a result, the temperature of the condensate at the inlet of the deaerator 16 and the deaerator are reduced. It becomes difficult to secure the difference (ΔT) with the internal temperature to a desired value, and there is not only a problem that the degassing effect decreases, but also a problem that steaming occurs at the inlet of the deaerator 16 and the boiler economizer. There is. Further, when the feed water flow rate and the condensate flow rate are extremely reduced due to the reduction of the steam turbine load, the low / high pressure gas heaters 7 and 6 themselves are also overheated, and especially in the condensate system, the water level of the deaerator is high. When the water level is reached, the deaerator water level adjustment valve is temporarily closed to drastically reduce the condensate flow rate, which causes a problem that the low-pressure gas superheater 7 is abnormally overheated.

【0005】本発明の目的は、上記事情に鑑み、ガス過
熱器を通過する復水及び給水の流量が低下した場合、そ
の復水及び給水が過熱されるのを確実に防止し得る排気
再燃型コンバインドサイクル発電プラントを提供するこ
とにある。
In view of the above circumstances, an object of the present invention is to provide an exhaust gas reburn type which can reliably prevent the condensate and the feed water from being overheated when the flow rates of the condensate and the feed water passing through the gas superheater decrease. To provide a combined cycle power plant.

【0006】[0006]

【課題を解決するための手段】本発明においては、ガス
過熱器を通過する復水及び給水の流量が低下したとき、
ガス過熱器を通過した復水及び給水を取り込み、かつ取
り込んだ復水及び給水を対応するガス過熱器に還流させ
る還流循環装置を有している。
In the present invention, when the flow rates of condensate and feed water passing through the gas superheater decrease,
It has a reflux circulation device that takes in the condensate water and feed water that have passed through the gas superheater, and recirculates the taken in condensate water and feed water to the corresponding gas superheater.

【0007】[0007]

【作用】蒸気タービン負荷の低下に伴い夫々のガス過熱
器に流れる復水及び給水の流量も低下すると、ガス過熱
器を通過する給水及び復水の温度が異常に上昇し、過熱
されようとする。しかしその場合、上述の如く還流循環
装置を有しているので、該還流循環装置によりガス過熱
器を通過した復水及び給水を取り込んで夫々のガス過熱
器に還流させるので、ガス過熱器を通過する復水及び給
水の流量が増大し、そのため、ガス過熱器の熱交換量の
減少幅が小さくとも、復水や給水が過熱するのを防止す
ることができる。
[Operation] When the steam turbine load decreases and the flow rates of the condensate water and the condensate water flowing to the respective gas superheaters also decrease, the temperatures of the condensate water and the condensate water passing through the gas superheater rise abnormally, and they tend to be overheated. . However, in that case, since the recirculation circulation device is provided as described above, since the condensate water and the feed water that have passed through the gas superheater are taken by the recirculation circulation device and recirculated to the respective gas superheaters, they pass through the gas superheaters. Therefore, the condensate and the feed water can be prevented from overheating even if the amount of heat exchange in the gas superheater is small.

【0008】[0008]

【実施例】以下、本発明の実施例を図1乃至図3により
説明する。図1は本発明による排気再燃型コンバインド
サイクル発電プラントの第一の実施例を示している。同
図に示す実施例は、ガスタービン1から排出された排ガ
スが、蒸気発生装置としてのボイラ風箱4に導かれ、ボ
イラ3内に投入された燃料と共に該ボイラ内で再燃焼さ
れる。そして、ボイラ3からの排ガスはボイラ排ガスダ
クト5を通り高圧ガス加熱器6で給水によって熱回収さ
れ、さらに低圧ガス加熱器7で復水によって熱回収され
ることにより100〜150℃程度に下げられた後、誘
引通風ファン8を経て煙突9より大気に排出される。一
方、復水器10からの復水は、復水ポンプ11により昇
圧され、グランド蒸気復水器12,脱気器水位調整弁1
3を経て復水分配弁14に入り、該復水分配弁14によ
り低圧給水加熱器15と低圧ガス加熱器7とに分配され
る。このとき、復水分配弁14は、低圧給水加熱器15
を通過した復水の温度と、低圧ガス加熱器7を通過した
復水の温度とが同一となるように分配量を調整し分配す
るが、タービン負荷が低下すると、低圧ガス過熱器7側
に送り込まれる復水の流量を増加させ、タービン負荷が
さらに低下すると、低圧給水過熱器15へ送り込む復水
流量をカットさせることによって低圧ガス過熱器7に復
水の全量を送り込み、そしてタービン負荷がよりいっそ
う低下すると、再び開くことにより低圧ガス過熱器7と
低圧給水過熱器15とに小流量を送り込むようにしてい
る。低圧給水加熱器15を通過した復水と低圧ガス加熱
器7を通過した復水とは合流後、脱気器16に送り込ま
れ、該脱気器16で脱気されたものが給水される。脱気
器16からの給水は給水ポンプ17により圧送されて給
水分配弁18に入り、該給水分配弁18により高圧給水
加熱器19と高圧ガス加熱器6とに分配される。このと
き、給水分配弁18は高圧給水加熱器19を通過した給
水の温度と、高圧ガス加熱器6とを通過した給水の温度
とが同一となるように分配量を調整し分配する。また高
圧給水加熱器19とを通過した給水と、高圧ガス加熱器
6とを通過した給水とは合流後、ボイラ3に導かれる。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows a first embodiment of an exhaust gas re-combustion combined cycle power plant according to the present invention. In the embodiment shown in the figure, the exhaust gas discharged from the gas turbine 1 is guided to a boiler wind box 4 as a steam generator and reburned in the boiler together with the fuel charged in the boiler 3. Then, the exhaust gas from the boiler 3 passes through the boiler exhaust gas duct 5 and is subjected to heat recovery by the high pressure gas heater 6 by the feed water, and further is recovered by the low pressure gas heater 7 by the condensate to be lowered to about 100 to 150 ° C. After that, it is discharged to the atmosphere from the chimney 9 through the induced draft fan 8. On the other hand, the condensate from the condenser 10 is boosted by the condensate pump 11, and the gland steam condenser 12 and the deaerator water level adjusting valve 1
After entering the condensate water distribution valve 14, the water is distributed to the low pressure feed water heater 15 and the low pressure gas heater 7 by the condensate water distribution valve 14. At this time, the condensate distribution valve 14 has the low-pressure feed water heater 15
The distribution amount is adjusted and distributed so that the temperature of the condensate that has passed through and the temperature of the condensate that has passed through the low-pressure gas heater 7 are the same, but when the turbine load decreases, it is transferred to the low-pressure gas superheater 7 side. When the flow rate of condensate to be sent is increased and the turbine load is further reduced, the condensate flow rate to be sent to the low pressure feed water superheater 15 is cut to send the entire amount of condensate to the low pressure gas superheater 7, and the turbine load is further increased. When it is further lowered, it is opened again to send a small flow rate to the low pressure gas superheater 7 and the low pressure feed water superheater 15. The condensate that has passed through the low-pressure feed water heater 15 and the condensate that has passed through the low-pressure gas heater 7 are combined and then sent to the deaerator 16, and the deaerated by the deaerator 16 is supplied. The water supply from the deaerator 16 is pumped by the water supply pump 17 into the water supply distribution valve 18, and is distributed by the water supply distribution valve 18 to the high pressure water supply heater 19 and the high pressure gas heater 6. At this time, the feed water distribution valve 18 adjusts and distributes the distribution amount so that the temperature of the feed water passing through the high pressure feed water heater 19 and the temperature of the feed water passing through the high pressure gas heater 6 are the same. Further, the feed water that has passed through the high-pressure feed water heater 19 and the feed water that has passed through the high-pressure gas heater 6 are joined and then guided to the boiler 3.

【0009】そして、実施例においては、低圧ガス過熱
器7を通過した復水及び高圧ガス過熱器6を通過した給
水を、夫々取り込んで低圧ガス過熱器7及び高圧ガス過
熱器6に戻すようにした還流循環装置を有している。該
還流循環装置は大別すると、低圧ガス加熱器7の入口側
と出口側とを連絡する復水用の連絡管20と、また高圧
ガス加熱器6の入口側と出口側とを連絡する給水用の連
絡管28と、低圧ガス過熱器7からの復水を該低圧ガス
過熱器7に還流させる復水用の還流循環機構(符示せ
ず)と、高圧ガス過熱器6からの給水を該高圧ガス過熱
器6に還流させる給水用の還流循環機構とを有してい
る。具体的に述べると、前記復水用の連絡管20は、一
端が復水分配弁14と低圧ガス加熱器7の入口側とを接
続する復水供給管41の途中位置に接続され、他端が低
圧ガス加熱器7の出口側と低圧給水加熱器15の出口側
とを接続する排出管42の途中位置に接続されている。
復水用の還流循環機構は、復水排出管42において低圧
ガス加熱器7寄りの位置に温度検出器25が設けられ、
該温度検出器25より下流側の位置に低流量検出器26
が設けられている。そして連絡管20には、循環ポンプ
21,復水温度調整弁22,循環水温度調整弁23,冷
却装置24,循環水温度検出器27が夫々設置されてい
る。この還流循環手段は、蒸気タービン負荷のいっそう
の低下によって低圧ガス過熱器7を通過する復水の流量
が減少すると、その復水が過熱されることによって温度
が上昇するが、その際、復水の温度が所望温度より上昇
した場合、これを温度検出器25が検出することによっ
て循環ポンプ21を駆動し、低圧ガス過熱器7からの復
水を連絡管20に取り込み、かつ復水供給管41に導く
ことにより、低圧ガス過熱器7に対し復水を循環させ、
低圧ガス過熱器7を通過する復水の流量を増加させるよ
うにしている。その場合、連絡管2を経た復水の温度が
高いと、低圧ガス過熱器7に送り込まれても、過熱する
おそれがあることから、冷却装置24を通過した復水の
温度を循環水温度検出器27が検出し、その検出に応じ
循環水温度調整弁23を絞ると共に冷却装置24で循環
復水を冷却することにより、循環復水と供給復水との温
度差を小さくさせるように調節している。さらに、復水
の通過量が極端に低下することによって脱気器16内に
おける給水の水位が上昇した場合、脱気器水位調整弁1
3が閉じ、復水分配弁14から復水供給管41に供給さ
れる復水が停止するので、低圧ガス過熱器7を通過する
復水流量が低下するが、その流量が規定量以下に下がっ
た場合、これを復水低流量検出器26が検出することに
よって循環ポンプ21の駆動力を上げると共に、温度調
整弁22をいっそう開き、復水を循環させるようにして
いる。
In the embodiment, the condensate that has passed through the low pressure gas superheater 7 and the feed water that has passed through the high pressure gas superheater 6 are respectively taken in and returned to the low pressure gas superheater 7 and the high pressure gas superheater 6. It has a reflux circulation device. The reflux circulation device is roughly classified into a condensate connecting pipe 20 that connects the inlet side and the outlet side of the low-pressure gas heater 7, and a water supply that connects the inlet side and the outlet side of the high-pressure gas heater 6. Connecting pipe 28, a reflux circulation mechanism (not shown) for condensate for returning condensate from the low pressure gas superheater 7 to the low pressure gas superheater 7, and feed water from the high pressure gas superheater 6 A high-pressure gas superheater 6 is provided with a reflux circulation mechanism for water supply. More specifically, the condensate connecting pipe 20 has one end connected to an intermediate position of the condensate supply pipe 41 connecting the condensate distribution valve 14 and the inlet side of the low-pressure gas heater 7, and the other end. Is connected to an intermediate position of the discharge pipe 42 that connects the outlet side of the low pressure gas heater 7 and the outlet side of the low pressure feed water heater 15.
In the reflux circulation mechanism for condensate, the temperature detector 25 is provided at a position near the low pressure gas heater 7 in the condensate discharge pipe 42,
A low flow rate detector 26 is provided at a position downstream of the temperature detector 25.
Is provided. A circulating pump 21, a condensate temperature adjusting valve 22, a circulating water temperature adjusting valve 23, a cooling device 24, and a circulating water temperature detector 27 are installed in the connecting pipe 20, respectively. When the flow rate of the condensed water passing through the low-pressure gas superheater 7 decreases due to the further decrease of the steam turbine load, the temperature of the reflux circulation means rises due to the overheating of the condensed water. When the temperature rises above the desired temperature, the temperature detector 25 detects the temperature and drives the circulation pump 21 to take in the condensate from the low-pressure gas superheater 7 into the connecting pipe 20 and to supply the condensate supply pipe 41. By circulating the condensate to the low pressure gas superheater 7,
The flow rate of condensed water passing through the low pressure gas superheater 7 is increased. In that case, if the temperature of the condensate that has passed through the connecting pipe 2 is high, it may be overheated even if it is sent to the low-pressure gas superheater 7. Therefore, the temperature of the condensate that has passed through the cooling device 24 is detected as the circulating water temperature. Is detected by the device 27, and the circulating water temperature adjusting valve 23 is throttled according to the detection, and the circulating condensate is cooled by the cooling device 24, so that the temperature difference between the circulating condensate and the supplied condensate is adjusted to be small. ing. Further, when the water level of the feed water in the deaerator 16 rises due to the extremely small amount of condensed water passing through, the deaerator water level adjusting valve 1
3 is closed and the condensate supplied from the condensate distribution valve 14 to the condensate supply pipe 41 is stopped, so that the condensate flow rate passing through the low-pressure gas superheater 7 decreases, but the condensate flow rate falls below the specified amount. In this case, the condensate low flow rate detector 26 detects this, thereby increasing the driving force of the circulation pump 21 and further opening the temperature adjusting valve 22 to circulate the condensate.

【0010】また、前記給水用の連絡管28は、一端が
給水分配弁18と高圧ガス加熱器6の入口側とを接続す
る給水供給管43の途中位置に接続され、他端が高圧ガ
ス加熱器6の出口側と高圧給水加熱器19の出口側とを
接続する給水排出管44の途中位置に接続されている。
給水用の還流循環機構は、排出管44の高圧ガス過熱器
6寄りの位置に給水温度検出器33が設けられ、また連
絡管28には復水用の還流循環機構と同様に、循環ポン
プ29,給水温度調整弁30,循環水温度調整弁31,
冷却装置32,温度検出器34が夫々設けられている。
この還流循環機構は、タービン負荷のいっそうの低下に
よって高圧ガス過熱器6を通過する給水の流量が減少し
た場合、復水用の還流循環機構と同様に作用することに
より、高圧ガス過熱器6からの給水を冷却して循環させ
るので、以下の説明を省略する。但し、この場合、給水
温度検出器33の検出に基づいて循環ポンプ29と温度
調整弁30とが制御される。
Further, one end of the water supply connecting pipe 28 is connected to an intermediate position of the water supply supply pipe 43 which connects the water supply distribution valve 18 and the inlet side of the high pressure gas heater 6, and the other end is heated by the high pressure gas. It is connected to an intermediate position of a feed water discharge pipe 44 that connects the outlet side of the vessel 6 and the outlet side of the high-pressure feed water heater 19.
The recirculation circulation mechanism for water supply is provided with a water supply temperature detector 33 at a position near the high pressure gas superheater 6 of the discharge pipe 44, and the communication pipe 28 has a circulation pump 29 similar to the recirculation circulation mechanism for condensate. , Supply water temperature adjusting valve 30, circulating water temperature adjusting valve 31,
A cooling device 32 and a temperature detector 34 are provided respectively.
When the flow rate of the feed water passing through the high-pressure gas superheater 6 decreases due to the further reduction of the turbine load, this recirculation circulation mechanism operates similarly to the condensate recirculation circulation mechanism, so that the high-pressure gas superheater 6 Since the water supply is cooled and circulated, the following description will be omitted. However, in this case, the circulation pump 29 and the temperature adjustment valve 30 are controlled based on the detection of the feed water temperature detector 33.

【0011】次に、実施例の動作について述べる。通常
の運転時、復水器10からの復水が復水ポンプ11で昇
圧され、グランド蒸気復水器12,脱気器水位調整弁1
3を介し復水分配弁14に入り、該復水分配弁14によ
り復水が低圧ガス過熱器7側と低圧給水過熱器15側と
に分流される。従って、低圧ガス過熱器7には復水が送
り込まれるので、ボイラ3からの排ガスと熱交換される
ことによって加熱され、加熱された復水が低圧給水加熱
器15を通過した復水と合流し、脱気器16に送り込ま
れる。脱気器16において脱気された給水は、給水ポン
プ17によって昇圧され、給水分配弁18により高圧ガ
ス加熱器6側と高圧給水加熱器19側とに送り込まれ
る。従って、高圧ガス加熱器7には給水が送り込まれる
ので、ボイラ3からの排ガスと熱交換されることによっ
て加熱され、加熱された給水が高圧給水加熱器19を通
過した給水と合流し、ボイラ3に供給される。
Next, the operation of the embodiment will be described. During normal operation, the condensate from the condenser 10 is boosted by the condensate pump 11, and the gland steam condenser 12 and the deaerator water level adjusting valve 1
3 enters the condensate distribution valve 14, and the condensate distribution valve 14 divides the condensate into the low-pressure gas superheater 7 side and the low-pressure feed water superheater 15 side. Therefore, since the condensate is sent to the low-pressure gas superheater 7, it is heated by exchanging heat with the exhaust gas from the boiler 3, and the heated condensate joins the condensate that has passed through the low-pressure feed water heater 15. , Sent to the deaerator 16. The feed water deaerated in the deaerator 16 is boosted by the feed water pump 17 and sent to the high pressure gas heater 6 side and the high pressure feed water heater 19 side by the feed water distribution valve 18. Therefore, since the feed water is sent to the high-pressure gas heater 7, it is heated by exchanging heat with the exhaust gas from the boiler 3, and the heated feed water joins the feed water that has passed through the high-pressure feed water heater 19, and the boiler 3 Is supplied to.

【0012】上記運転時、蒸気タービン負荷が低下する
と、該負荷に応じ復水及び給水の流量が減少するが、そ
の減少幅に比較し、高・低圧ガス加熱器6・7の熱交換
量の減少幅が小さいことから、高・低圧ガス加熱器6・
7を通過する復水と給水が加熱するおそれがある。この
場合、復水分配弁14が低圧ガス加熱器7側に送り込む
復水の流量を増加させると共に、給水分配弁18が高圧
ガス加熱器6側に送り込む給水の流量を増加させること
により、復水及び給水が過熱されるのを防止する。そし
て、蒸気タービン負荷がさらに低下すると、復水分配弁
14,給水分配弁18の双方は、低圧給水過熱器15側
への復水をカットすると共に、高圧給水過熱器19側へ
の給水をカットし、低圧ガス過熱器7及び高圧ガス過熱
器6に流れる復水及び給水の流量を増加させることによ
り、復水及び給水を過熱防止する。その後、蒸気タービ
ン負荷がいっそう低下すると、それに伴い復水流量及び
給水流量もいっそう低下し、そのため、高・低圧ガス過
熱器6・7を通過する給水及び復水の温度が異常に上昇
し、過熱されようとする。しかしその場合、還流循環装
置を有し、低圧ガス過熱器7を通過した復水の温度を復
水温度検出器25が検出し、その温度に基づき循環ポン
プ21が駆動されることにより、低圧ガス過熱器7を通
過した復水は復水用の連絡管20に取り込まれ、供給管
41の復水と合流して低圧ガス過熱器7に還流される。
従って、還流循環装置により低圧ガス過熱器7を通過し
た復水が還流するので、低圧ガス過熱器7を通過する復
水の流量が増大し、低圧ガス過熱器の熱交換量の減少幅
が小さくとも、復水が過熱するのを防止することができ
る。しかも、連絡管20を通過する復水は、循環水温度
検出器27によって温度が検出され、その検出に基づい
て循環水流量温度調整弁23の開度が調節されると共
に、冷却装置24によって冷却調節されるので、循環復
水の温度と合流すべき復水の温度との差を極力小さくす
ることができる。従って、低圧ガス過熱器7を通過した
復水の温度が上昇しても、冷却装置24によって冷却さ
れるので、低圧ガス過熱器7を通過する復水の過熱防止
を確実に行える。
In the above operation, when the steam turbine load decreases, the flow rates of the condensate water and the supply water decrease according to the load. Compared with the decrease amount, the heat exchange amount of the high and low pressure gas heaters 6 and 7 High / low pressure gas heater 6 ・
Condensate and water passing through 7 may heat up. In this case, the condensate distribution valve 14 increases the flow rate of the condensate sent to the low-pressure gas heater 7 side, and the feed water distribution valve 18 increases the flow rate of the feed water sent to the high-pressure gas heater 6 side. And prevent the water supply from overheating. Then, when the steam turbine load further decreases, both the condensate water distribution valve 14 and the feed water distribution valve 18 cut the condensate water to the low pressure water supply superheater 15 side and cut the water supply to the high pressure water supply superheater 19 side. However, the condensate water and the feed water are prevented from overheating by increasing the flow rates of the condensate water and the feed water flowing through the low pressure gas superheater 7 and the high pressure gas superheater 6. After that, when the steam turbine load further decreases, the condensate flow rate and the feed water flow rate further decrease, and the temperature of the feed water and the condensate water passing through the high / low pressure gas superheaters 6 and 7 abnormally rises, resulting in overheating. Trying to be done. In that case, however, the condensate temperature detector 25 has a reflux circulation device, and the condensate temperature detector 25 detects the temperature of the condensate that has passed through the low-pressure gas superheater 7, and the circulation pump 21 is driven based on that temperature, so that the low-pressure gas Condensate that has passed through the superheater 7 is taken into the condensate connecting pipe 20, merges with the condensate in the supply pipe 41, and is returned to the low-pressure gas superheater 7.
Therefore, since the condensate that has passed through the low-pressure gas superheater 7 is recirculated by the reflux circulation device, the flow rate of the condensate that passes through the low-pressure gas superheater 7 increases, and the reduction amount of the heat exchange amount of the low-pressure gas superheater is small. Together, it is possible to prevent the condensate from overheating. Moreover, the temperature of the condensate passing through the connecting pipe 20 is detected by the circulating water temperature detector 27, the opening degree of the circulating water flow rate temperature adjusting valve 23 is adjusted based on the detection, and the condensate is cooled by the cooling device 24. Since the temperature is adjusted, the difference between the temperature of the circulating condensate and the temperature of the condensate to be combined can be minimized. Therefore, even if the temperature of the condensate that has passed through the low pressure gas superheater 7 rises, it is cooled by the cooling device 24, so that the condensate that passes through the low pressure gas superheater 7 can be reliably prevented from being overheated.

【0013】一方、還流循環装置においては、高圧ガス
過熱器6を通過した給水の温度を給水温度検出器33が
検出し、その温度に基づき循環ポンプ29が駆動される
と共に、給水温度調整弁30が開かれることにより、高
圧ガス過熱器6を通過した給水が給水用の連絡管28に
取り込まれ、供給管43の給水と合流して高圧ガス過熱
器6に還流される。従って、高圧ガス過熱器6を通過し
た給水が還流することにより、該過熱器6を通過する給
水の流量が増大するので、高圧ガス過熱器6の熱交換量
の減少幅が小さくとも、復水と同様に給水が過熱するの
を防止することができる。また、連絡管28を通過する
給水は、循環水温度検出器34によって温度が検出さ
れ、その検出に基づいて循環推量温度調整弁31の開度
が調節されると共に、冷却装置32によって冷却される
ので、循環給水の温度と合流すべき給水の温度との差を
極力小さくすることができる。従って、高圧ガス過熱器
6を通過した給水の温度が上昇しても、冷却装置24に
よって冷却されるので、給水の過熱防止も確実に実現で
きる。その結果、復水及び給水の過熱を防止できるの
で、脱気器16入口の復水の温度と脱気器内の温度との
差(ΔT)を容易に確保することができ、そのため、脱
気器16による脱気効果が低下するのを防止できると共
に、脱気器入口及び節炭器におけるスチーミングを防止
できる。
On the other hand, in the reflux circulation device, the feed water temperature detector 33 detects the temperature of the feed water that has passed through the high-pressure gas superheater 6, the circulating pump 29 is driven based on the temperature, and the feed water temperature adjusting valve 30 is also provided. Is opened, the feed water that has passed through the high pressure gas superheater 6 is taken into the water supply connecting pipe 28, merges with the feed water in the supply pipe 43, and is returned to the high pressure gas superheater 6. Therefore, the flow rate of the feed water passing through the high pressure gas superheater 6 is increased by the reflux of the feed water passing through the high pressure gas superheater 6, so that the condensate water is condensed even if the decrease amount of the heat exchange amount of the high pressure gas superheater 6 is small. As with the above, it is possible to prevent the water supply from overheating. Further, the temperature of the supply water passing through the connecting pipe 28 is detected by the circulating water temperature detector 34, the opening degree of the circulating estimated temperature adjusting valve 31 is adjusted based on the detection, and the cooling water is cooled by the cooling device 32. Therefore, the difference between the temperature of the circulating supply water and the temperature of the supply water to be joined can be minimized. Therefore, even if the temperature of the feed water that has passed through the high-pressure gas superheater 6 rises, it is cooled by the cooling device 24, so that overheating of the feed water can be reliably prevented. As a result, it is possible to prevent overheating of the condensate water and the feed water, and thus it is possible to easily secure a difference (ΔT) between the temperature of the condensate water at the inlet of the deaerator 16 and the temperature in the deaerator, and therefore the deaeration It is possible to prevent the degassing effect of the device 16 from decreasing and prevent steaming at the deaerator inlet and the economizer.

【0014】さらに、蒸気タービン負荷の極端な低下に
よって脱気器16ないの水位が上昇し、脱気器水位調整
弁13が閉止することにより、低圧ガス過熱器7側の復
水の流量が規定量以下に下がると、該過熱器7を通過し
た復水の流量を低流量検出器26が検出し、その検出に
基づき循環ポンプ21が駆動されると共に、温度調整弁
の開度が調整され、復水を再び循環させる。従って、脱
気器水位調整弁13の閉止によって復水量が少なくなっ
ても、その復水を循環させるので、低圧ガス過熱器7が
過熱するのを防止することができる。なお、脱気器水位
調整弁13が閉止すると、脱気器16には給水されない
こととなるが、水位上昇した給水が脱気器16,給水ポ
ンプ17,給水分配弁18を介し高圧ガス過熱器6に送
り込まれるので、高圧ガス過熱器6を通過する給水が過
熱することはない。
Further, the water level in the deaerator 16 rises due to the extreme decrease in the steam turbine load, and the deaerator water level adjusting valve 13 closes, so that the flow rate of the condensate on the low pressure gas superheater 7 side is regulated. When the flow rate falls below the amount, the low flow rate detector 26 detects the flow rate of the condensate that has passed through the superheater 7, the circulation pump 21 is driven based on the detection, and the opening degree of the temperature adjustment valve is adjusted. Circulate the condensate again. Therefore, even if the amount of condensed water decreases due to the closing of the deaerator water level adjustment valve 13, the condensed water is circulated, so that the low pressure gas superheater 7 can be prevented from overheating. When the deaerator water level adjustment valve 13 is closed, the deaerator 16 will not be supplied with water, but the water whose level has risen is passed through the deaerator 16, the water supply pump 17, and the water supply distribution valve 18 to the high pressure gas superheater. Since it is sent to 6, the feed water passing through the high pressure gas superheater 6 will not be overheated.

【0015】図2は本発明による排気再燃型コンバイン
ドサイクル発電プラントの第二の実施例を示している。
この実施例において前記第一の実施例と異なるのは、還
流循環装置の循環水冷却装置の代わりに復水器10を使
用し、該復水器10により循環水を冷却するようにした
点にある。詳しく述べると、この還流循環装置は、低圧
ガス過熱器7からの復水を復水器10に導く連絡管20
と、復水器10によって冷却された復水を復水供給管4
1に導く循環水戻り管36とを有している。また、復水
排出管42における低圧ガス過熱器7寄りの位置には温
度検出器25が設けられ、連絡管20の途中位置には循
環水流量検出器35が設けられると共に、その下流側の
位置には温度調整弁22が設けられている。さらに、循
環水戻り管36の途中位置に循環ポンプ21が設けられ
ると共に、その下流側に循環水流量調整弁37が設けら
れている。復水排出管42における連絡管20との合流
部より下流側には低流量検出器26が設けられている。
そして、蒸気タービン負荷がいっそう低下し、復水の流
量が減少することによて低圧ガス過熱器7を通過する復
水の温度が上昇すると、それを温度検出器25が検出
し、その検出に基づき温度調整弁22の開度を調節する
ことにより、低圧ガス過熱器7を通過した復水を復水器
10に導き、該復水器10で熱交換されることによって
冷却する一方、循環ポンプ21が駆動されることによ
り、復水器10からの冷却された復水が循環戻り管36
を経て低圧ガス過熱器7に導く。その際、連絡管20を
通過する復水の流量を循環水流量検出器35が検出し、
その検出に基づいて循環水流量調節弁37の開度を調節
することにより、連絡管20を通過する復水の量と、循
環水戻り管36を通過する復水の量とが同じになるよう
にしている。また、高圧ガス過熱器6からの給水を復水
器10に導く連絡管28と、復水器10によって冷却さ
れた復水を給水供給管43に導く循環水戻り管39とを
有している。さらに、給水排出管44における高圧ガス
過熱器6寄りの位置には温度検出器33が設けられ、連
絡管28の途中位置には循環水流量検出器38,温度調
整弁30が夫々設けられ、循環水戻り管39の途中位置
に循環ポンプ29,循環水流量調整弁40が夫々設けら
れている。そして、蒸気タービン負荷がいっそう低下
し、給水の流量が減少することによって高圧ガス過熱器
6を通過する給水の温度が上昇すると、それを温度検出
器33が検出し、その検出に基づき温度調整弁30の開
度を調節することにより、高圧ガス過熱器6を通過した
給水を復水器10に導き、該復水器10で熱交換される
ことによって冷却する一方、循環ポンプ29が駆動され
ることにより、復水器10からの冷却された復水が循環
水戻り管39を経て高圧ガス過熱器6に導く、その際、
連絡管28を通過する給水の流量を循環水流量検出器3
8が検出し、その検出に基づいて循環水流量調整弁40
の開度を調節することにより、連絡管28を通過する給
水の量と、循環水戻り管39を通過する復水の量とが同
じになるようにしている。
FIG. 2 shows a second embodiment of an exhaust gas reburn type combined cycle power plant according to the present invention.
This embodiment differs from the first embodiment in that a condenser 10 is used instead of the circulating water cooling device of the reflux circulation device, and the circulating water is cooled by the condenser 10. is there. More specifically, this reflux circulation device is a connection pipe 20 that guides the condensed water from the low-pressure gas superheater 7 to the condenser 10.
And the condensate cooled by the condenser 10 to the condensate supply pipe 4
1 to the circulating water return pipe 36. A temperature detector 25 is provided at a position near the low-pressure gas superheater 7 in the condensate discharge pipe 42, a circulating water flow rate detector 35 is provided at an intermediate position of the connecting pipe 20, and a position on the downstream side thereof is provided. A temperature control valve 22 is provided in the. Further, the circulating pump 21 is provided at an intermediate position of the circulating water return pipe 36, and the circulating water flow rate adjusting valve 37 is provided on the downstream side thereof. A low flow rate detector 26 is provided on the downstream side of a confluent portion of the condensate discharge pipe 42 with the connecting pipe 20.
When the steam turbine load further decreases and the flow rate of the condensate decreases, the temperature of the condensate passing through the low-pressure gas superheater 7 rises, which is detected by the temperature detector 25. The condensate that has passed through the low-pressure gas superheater 7 is guided to the condenser 10 by adjusting the opening degree of the temperature control valve 22 based on the condensate 10, and is cooled by heat exchange in the condenser 10, while the circulation pump is used. 21 is driven, the cooled condensed water from the condenser 10 is circulated.
Through the low pressure gas superheater 7. At that time, the circulating water flow rate detector 35 detects the flow rate of the condensed water passing through the connecting pipe 20,
By adjusting the opening degree of the circulating water flow rate control valve 37 based on the detection, the amount of condensed water passing through the connecting pipe 20 and the amount of condensed water passing through the circulating water return pipe 36 become the same. I have to. Further, it has a connecting pipe 28 that guides the feed water from the high-pressure gas superheater 6 to the condenser 10, and a circulating water return pipe 39 that guides the condensate cooled by the condenser 10 to the feed water supply pipe 43. . Further, a temperature detector 33 is provided at a position near the high-pressure gas superheater 6 in the feed water discharge pipe 44, and a circulating water flow rate detector 38 and a temperature adjusting valve 30 are provided at intermediate positions of the communication pipe 28 to circulate. A circulating pump 29 and a circulating water flow rate adjusting valve 40 are provided in the middle of the water return pipe 39, respectively. When the steam turbine load is further reduced and the flow rate of the feed water is reduced to raise the temperature of the feed water passing through the high pressure gas superheater 6, the temperature detector 33 detects it and the temperature control valve is detected based on the detection. By adjusting the opening degree of 30, the feed water that has passed through the high-pressure gas superheater 6 is guided to the condenser 10 and cooled by heat exchange in the condenser 10, while the circulation pump 29 is driven. Thereby, the condensed condensate from the condenser 10 is guided to the high-pressure gas superheater 6 through the circulating water return pipe 39, at that time.
The flow rate of the supply water passing through the connecting pipe 28 is determined by the circulating water flow rate detector 3
8 detects the circulating water flow rate adjusting valve 40 based on the detection.
The amount of water supply passing through the connecting pipe 28 and the amount of condensate water passing through the circulating water return pipe 39 are adjusted to be the same by adjusting the opening degree.

【0016】従って、この実施例によれば、復水器10
を利用することによって高・低圧ガス過熱器6・7を通
過した復水及び給水を冷却するので、前述した第一の実
施例と同様の効果を得ることができるのに加え、第一の
実施例に比較すると、専用の冷却系統を用いることが不
要になるので、それだけコストダウンを図り得る。
Therefore, according to this embodiment, the condenser 10
Since the condensate water and the feed water that have passed through the high / low pressure gas superheaters 6 and 7 are cooled by utilizing the above, the same effect as that of the first embodiment described above can be obtained, and in addition, the first embodiment Compared with the example, it is not necessary to use a dedicated cooling system, so that the cost can be reduced accordingly.

【0017】図3は本発明による排気再燃型コンバイン
ドサイクル発電プラントのさらに他の実施例を示してい
る。これまでの実施例では、高・低圧ガス過熱器6・7
の熱交換率が夫々同等の割合に設定されたものを示した
が、本実施例においては、高圧ガス過熱器6の熱交換率
に比較し、低圧ガス過熱器7の熱交換率が高いものに適
用している。即ち、この実施例において、低圧ガス過熱
器7側では図2に示す実施例と同様に、連絡管20,温
度検出器25,復水温度調整弁22,循環水戻り管3
6,循環ポンプ21,循環水流量検出器35,循環水流
量調整弁37,復水低流量検出器36が設けられること
によって還流循環装置を構成している。その場合、前記
循環水戻り管36の上流側を復水ポンプ11の吐出側に
接続し、該ポンプ11から吐出される復水の一部を、脱
気器水位調整弁13,復水分配弁14に関係なく強制的
に低圧ガス過熱器7に導き、これによって低圧ガス過熱
器7を通過する復水が過熱するのを防止できるようにし
たものである。
FIG. 3 shows still another embodiment of the exhaust gas re-combustion combined cycle power plant according to the present invention. In the above embodiments, the high / low pressure gas superheaters 6 and 7 are used.
The heat exchange rate of the low pressure gas superheater 7 is higher than that of the high pressure gas superheater 6 in the present embodiment. Applied to. That is, in this embodiment, on the low pressure gas superheater 7 side, as in the embodiment shown in FIG. 2, the connecting pipe 20, the temperature detector 25, the condensate temperature adjusting valve 22, the circulating water return pipe 3 are provided.
6, the circulation pump 21, the circulating water flow rate detector 35, the circulating water flow rate adjusting valve 37, and the condensate low flow rate detector 36 are provided to constitute a reflux circulation device. In that case, the upstream side of the circulating water return pipe 36 is connected to the discharge side of the condensate pump 11, and a part of the condensate discharged from the pump 11 is supplied to the deaerator water level adjusting valve 13 and the condensate distribution valve. It is possible to prevent the condensate water passing through the low pressure gas superheater 7 from being overheated by forcibly guiding it to the low pressure gas superheater 7 regardless of the number 14.

【0018】一般に、低圧ガス過熱器7の熱交換率が高
圧ガス過熱器のそれより大きい場合、低圧ガス過熱器7
側を通過する復水が過熱されるおそれがあるが、上述の
実施例の如く、低圧ガス過熱器7に復水を常に強制的に
導くことによって過熱を防止できる。しかも、低圧ガス
過熱器側にだけ還流循環装置を設ければ良いので、それ
だけ部品点数を大幅に低減できる。なお上述の実施例で
は、何れもタービン負荷が低負荷時の場合に還流循環装
置を利用する述べた例を示したが、本発明においては、
それにのみ限定されるものではなく、例えば蒸気原動機
プラントの起動運転時、無負荷運転時などの場合であっ
て、復水及び給水の流量が低流量となったときにも十分
適用することができるのは勿論である。
Generally, when the heat exchange rate of the low pressure gas superheater 7 is higher than that of the high pressure gas superheater, the low pressure gas superheater 7
Condensate passing through the side may be overheated, but overheating can be prevented by always forcing the condensate to the low-pressure gas superheater 7 as in the above-described embodiment. Moreover, since it is sufficient to provide the reflux circulation device only on the low-pressure gas superheater side, the number of parts can be greatly reduced. Incidentally, in the above-mentioned embodiments, in each case, the example in which the reflux circulation device is used when the turbine load is low is shown, but in the present invention,
The present invention is not limited to this, and can be sufficiently applied even when the steam engine plant is in a start-up operation or a no-load operation, and the condensate and feed water flow rates are low. Of course.

【0019】[0019]

【発明の効果】以上述べたように、本発明の請求項1に
よれば、負荷の低下によってガス過熱器を通過する給水
量及び復水量が減少しても、ガス過熱器を通過する給水
及び復水を循環させることによって給水量及び復水量を
増やすようにしたので、ガス過熱器によって給水及び復
水が過熱するのを確実に防止できる結果、それだけ信頼
性を高め得る効果がある。請求項2によれば、還流循環
装置が給水用連絡管,復水用連絡管と還流循環手段とを
有して構成したので、請求項1と同様の効果があり、請
求項3によれば、請求項2の効果に加え、ガス過熱器を
通過した給水及び復水を冷却調節して循環させるので、
給水及び復水の過熱防止を確実に達成し、しかも脱気効
果が低下するのを防ぐと共に、脱気器入口及び節炭器に
おけるスチーミングを防止でき、実用上有益な効果があ
り、請求項4によれば、請求項3の効果に加え、流量調
整手段により循環水の流量を調節するので、ガス過熱器
に復水器からの復水が供給されなくなった場合であって
も、ガス過熱器が過熱するおそれのない効果がある。請
求項5によれば、復水器を利用することによって給水及
び復水の過熱防止を確実に達成することができ、請求項
3と同様の効果があり、しかも復水器を利用することに
より、専用の冷却装置を用いることも不要になる効果が
あり、請求項6によれば、請求項5の効果に加え、ガス
過熱器を通過する復水が激減しても、復水が過熱される
のを防止できるので、請求項4と同様の効果がある。請
求項7によれば、低圧ガス過熱器側の熱交換率が高い場
合、低圧ガス過熱器側に還流循環装置を設けるだけで、
過熱防止を実施できるので、構成の簡素化を図れる効果
もある。
As described above, according to the first aspect of the present invention, even if the feed water amount and the condensate amount passing through the gas superheater decrease due to the reduction of the load, the feed water passing through the gas superheater and Since the amount of water supply and the amount of condensate water are increased by circulating the condensate water, it is possible to reliably prevent the water supply and the condensate water from being overheated by the gas superheater. According to claim 2, since the reflux circulation device is configured to have the water supply connection pipe, the condensate connection pipe, and the circulation circulation means, the same effect as that of claim 1 can be obtained, and according to claim 3, In addition to the effect of claim 2, since the feed water and the condensate that have passed through the gas superheater are cooled and circulated,
Achieving overheat prevention of water supply and condensate without fail and preventing the degassing effect from decreasing, and also preventing steaming at the deaerator inlet and economizer, there is a practically useful effect. According to claim 4, in addition to the effect of claim 3, since the flow rate of the circulating water is adjusted by the flow rate adjusting means, even if the condensate from the condenser is no longer supplied to the gas superheater, the gas superheat It has the effect of not overheating the vessel. According to claim 5, by using the condenser, it is possible to surely achieve the prevention of overheating of the water supply and the condensate, and there is the same effect as in claim 3, and moreover, by using the condenser. The use of a dedicated cooling device is also unnecessary. According to claim 6, in addition to the effect of claim 5, the condensate is overheated even if the condensate passing through the gas superheater is drastically reduced. Since this can be prevented, the same effect as in claim 4 can be obtained. According to claim 7, when the heat exchange rate on the low-pressure gas superheater side is high, only by providing the reflux circulation device on the low-pressure gas superheater side,
Since overheat can be prevented, there is also an effect that the configuration can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による排気再燃型コンバインドサイクル
発電プラントの第一の実施例を示す配管図である。
FIG. 1 is a piping diagram showing a first embodiment of an exhaust gas re-combustion combined cycle power plant according to the present invention.

【図2】同じく他の実施例を示す配管図である。FIG. 2 is a piping diagram showing another embodiment of the present invention.

【図3】同じくさらに他の実施例を示す配管図である。FIG. 3 is a piping diagram showing still another embodiment of the present invention.

【図4】従来例を示す配管図である。FIG. 4 is a piping diagram showing a conventional example.

【図5】蒸気タービンの負荷と給水・復水流量と関係を
示す説明図である。
FIG. 5 is an explanatory diagram showing the relationship between the load of the steam turbine and the feed water / condensate flow rate.

【図6】蒸気タービン負荷とガス過熱器交換熱量との関
係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between a steam turbine load and a gas superheater exchange heat quantity.

【符号の説明】[Explanation of symbols]

1…ガスタービン、3,4…蒸気発生器、6…高圧ガス
過熱器、7…低圧ガス過熱器、10…復水器、20…復
水用の連絡管、21…循環ポンプ、22…復水温度調整
弁、23…循環水流量温度調整弁、24…冷却装置、2
5…復水温度検出器、26…復水低流量検出器、27…
循環水温度検出器、28…給水用の連絡管、29…循環
水ポンプ、30…給水温度調整弁、31…循環水温度調
整弁、32…冷却装置、33…給水温度検出器、34…
循環水温度検出器、35…循環水流量検出器、36…循
環水戻り管、37…循環水流量調整弁、38…循環水流
量検出器、39…循環水戻り管、40…循環水流量調整
弁、41…復水供給管、42…復水排出管、43…給水
供給管、44…給水排出管。
DESCRIPTION OF SYMBOLS 1 ... Gas turbine, 3, 4 ... Steam generator, 6 ... High pressure gas superheater, 7 ... Low pressure gas superheater, 10 ... Condenser, 20 ... Condensate connecting pipe, 21 ... Circulation pump, 22 ... Condenser Water temperature control valve, 23 ... Circulating water flow rate temperature control valve, 24 ... Cooling device, 2
5 ... Condensate temperature detector, 26 ... Condensate low flow rate detector, 27 ...
Circulating water temperature detector, 28 ... Connection pipe for water supply, 29 ... Circulating water pump, 30 ... Water supply temperature adjusting valve, 31 ... Circulating water temperature adjusting valve, 32 ... Cooling device, 33 ... Water supply temperature detector, 34 ...
Circulating water temperature detector, 35 ... Circulating water flow rate detector, 36 ... Circulating water return pipe, 37 ... Circulating water flow rate adjusting valve, 38 ... Circulating water flow rate detector, 39 ... Circulating water return pipe, 40 ... Circulating water flow rate adjustment A valve, 41 ... Condensate supply pipe, 42 ... Condensate discharge pipe, 43 ... Water supply pipe, 44 ... Water discharge pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川内 章弘 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Kawauchi 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンと、該ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、蒸
気発生器からの蒸気によって駆動する蒸気タービンと、
復水及び給水を夫々流通させ、かつ蒸気発生器からの排
ガスにより復水及び給水を夫々加熱するガス加熱器とを
有する排気再燃型コンバインドサイクル発電プラントに
おいて、ガス過熱器を通過する復水及び給水の流量が低
下したとき、ガス過熱器を通過した復水及び給水を取り
込み、かつ取り込んだ復水及び給水を対応するガス過熱
器に還流させる還流循環装置を有することを特徴とする
排気再燃型コンバインドサイクル発電プラント。
1. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to reburn it, and a steam turbine driven by steam from the steam generator,
Condensate and feedwater that passes through a gas superheater in an exhaust gas recombustion combined cycle power plant that has a gas heater that circulates condensate and feedwater, respectively, and that heats condensate and feedwater by exhaust gas from a steam generator. When the flow rate of the exhaust gas decreases, the exhaust gas reheat type combined with the condensate water and the feed water that have passed through the gas superheater, and the recirculation circulation device that returns the condensate water and the supplied water to the corresponding gas superheater. Cycle power plant.
【請求項2】 ガスタービンと、該ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、蒸
気発生器からの蒸気によって駆動する蒸気タービンと、
復水及び給水を夫々流通させ、かつ蒸気発生器からの排
ガスにより復水及び給水を夫々加熱するガス加熱器とを
有する排気再燃型コンバインドサイクル発電プラントに
おいて、ガス過熱器を通過した復水及び給水を取り込
み、かつ取り込んだ復水及び給水を対応するガス過熱器
に還流させる還流循環装置を有し、該還流循環装置は、
ガス過熱器の入口側と出口側とを連絡する給水用連絡管
及び復水用連絡管と、ガス過熱器を通過する給水及び復
水の流量が低下したとき、ガス過熱器からの給水及び復
水を、前記対応する夫々の連絡管を介し取り込んでガス
発生器に戻す還流循環機構とを具えることを特徴とする
排気再燃型コンバインドサイクル発電プラント。
2. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to reburn the steam, and a steam turbine driven by steam from the steam generator.
Condensate and feedwater that have passed through a gas superheater in an exhaust gas re-combustion combined cycle power plant that has a gas heater that circulates condensate and feedwater, respectively, and that heats condensate and feedwater by exhaust gas from a steam generator. Having a reflux circulation device that takes in and recirculates the condensate water and the feed water that have been taken in to the corresponding gas superheater.
When the flow rate of feed water and condensate connecting the gas superheater between the inlet side and the outlet side and the flow rate of the feed water and condensate passing through the gas superheater decrease, the water supply and return from the gas superheater An exhaust gas re-combustion combined cycle power plant, comprising a reflux circulation mechanism that takes in water through the respective corresponding connecting pipes and returns it to the gas generator.
【請求項3】 ガスタービンと、該ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、蒸
気発生器からの蒸気によって駆動する蒸気タービンと、
復水及び給水を夫々流通させ、かつ蒸気発生器からの排
ガスにより復水及び給水を夫々加熱するガス加熱器とを
有する排気再燃型コンバインドサイクル発電プラントに
おいて、ガス過熱器を通過した復水及び給水を取り込
み、かつ取り込んだ復水及び給水をガス過熱器に還流さ
せる還流循環装置を有し、該還流循環装置は、ガス過熱
器の入口側と出口側とを連絡する給水用連絡管及び復水
用連絡管と、ガス過熱器を通過する給水及び復水の流量
が低下したとき、ガス過熱器からの給水及び復水を、前
記対応する夫々の連絡管を介し取り込んでガス発生器に
戻す還流循環機構とを具え、該還流循環機構は、夫々の
連絡管を通る給水及び復水と、各連絡管を通る給水及び
復水を冷却調節する温度調整手段を有することを特徴と
する排気再燃型コンバインドサイクル発電プラント。
3. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to reburn the gas, and a steam turbine driven by steam from the steam generator.
Condensate and feedwater that have passed through a gas superheater in an exhaust gas re-combustion combined cycle power plant that has a gas heater that circulates condensate and feedwater, respectively, and that heats condensate and feedwater by exhaust gas from a steam generator. Has a reflux circulation device that recycles the condensate water and the feed water that have been taken in to the gas superheater, and the reflux circulation device includes a water supply connecting pipe and a condensate water that connect the inlet side and the outlet side of the gas superheater. When the flow rate of feed water and condensate passing through the connecting pipe and the gas superheater decreases, the feedwater and condensate from the gas superheater are taken in through the corresponding connecting pipes and returned to the gas generator. And a recirculation mechanism, wherein the recirculation mechanism has water supply and condensate water passing through respective connecting pipes, and temperature adjusting means for cooling and controlling the water supply and condensate water passing through each connecting pipe. Con India cycle power plant.
【請求項4】 ガスタービンと、該ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、蒸
気発生器からの蒸気によって駆動する蒸気タービンと、
復水及び給水を夫々流通させ、かつ蒸気発生器からの排
ガスにより復水及び給水を夫々加熱するガス加熱器とを
有する排気再燃型コンバインドサイクル発電プラントに
おいて、ガス過熱器を通過した復水及び給水を取り込
み、かつ取り込んだ復水及び給水をガス過熱器に還流さ
せる還流循環装置を有し、該還流循環装置は、ガス過熱
器の入口側と出口側とを連絡する給水用連絡管及び復水
用連絡管と、ガス過熱器を通過する給水及び復水の流量
が低下したとき、ガス過熱器からの給水及び復水を、前
記対応する夫々の連絡管を介し取り込んでガス発生器に
戻す還流循環機構とを具え、該還流循環機構は、夫々の
連絡管を通る給水及び復水を冷却調節する温度調整手段
と、ガス過熱器を通過した復水の流量がさらに規定量以
下に低下した時点で、復水用連絡管を通過する循環水の
流量を調節する流量調整手段とを有することを特徴とす
る排気再燃型コンバインドサイクル発電プラント。
4. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to reburn it, and a steam turbine driven by steam from the steam generator,
Condensate and feedwater that have passed through a gas superheater in an exhaust gas re-combustion combined cycle power plant that has a gas heater that circulates condensate and feedwater, respectively, and that heats condensate and feedwater by exhaust gas from a steam generator. Has a reflux circulation device that recycles the condensate water and the feed water that have been taken in to the gas superheater, and the reflux circulation device includes a water supply connecting pipe and a condensate water that connect the inlet side and the outlet side of the gas superheater. When the flow rate of feed water and condensate passing through the connecting pipe and the gas superheater decreases, the feedwater and condensate from the gas superheater are taken in through the corresponding connecting pipes and returned to the gas generator. The reflux circulation mechanism comprises a temperature adjusting means for cooling and controlling the feed water and the condensate passing through the respective connecting pipes, and a point at which the flow rate of the condensate passing through the gas superheater further falls below a specified amount. so Repowering-shaft combined cycle power plant, characterized in that it comprises a flow rate adjusting means for adjusting the flow rate of the circulating water passing through the condensate for connecting pipe.
【請求項5】 ガスタービンと、該ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、蒸
気発生器からの蒸気によって駆動する蒸気タービンと、
復水及び給水を夫々流通させ、かつ蒸気発生器からの排
ガスにより復水及び給水を夫々加熱するガス加熱器とを
有する排気再燃型コンバインドサイクル発電プラントに
おいて、ガス過熱器を通過した復水及び給水を取り込
み、かつ取り込んだ復水及び給水をガス過熱器に還流さ
せる還流循環装置を有し、該還流循環装置は、ガス過熱
器を通過した給水及び復水を復水器に夫々導く給水用連
絡管及び復水用連絡管と、復水器からの冷却水をガス過
熱器の入口側に夫々導く循環水戻り管と、ガス過熱器を
通過する給水及び復水の流量が低下したとき、ガス過熱
器からの給水及び復水を、前記対応する夫々の連絡管を
介し復水器に導いて冷却すると共に、該復水器からの冷
却水を対応する夫々の循環水戻り管を介しガス過熱器に
夫々導き、かつ連絡管を通る給水及び復水と循環水戻り
管を通る冷却水とを同一流量にする手段とを具えること
を特徴とする排気再燃型コンバインドサイクル発電プラ
ント。
5. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to reburn the steam, and a steam turbine driven by steam from the steam generator,
Condensate and feedwater that have passed through a gas superheater in an exhaust gas re-combustion combined cycle power plant that has a gas heater that circulates condensate and feedwater, respectively, and that heats condensate and feedwater by exhaust gas from a steam generator. Has a recirculation circulation device that recycles the condensate water and the condensate water that have been captured to the gas superheater, and the recirculation circulation device guides the water supply and the condensate water that have passed through the gas superheater to the condenser, respectively. Pipe and condensate connecting pipe, circulating water return pipes that respectively guide the cooling water from the condenser to the inlet side of the gas superheater, and when the flow rate of feed water and condensate passing through the gas superheater decreases, The water supply and the condensate from the superheater are guided to the condenser via the respective corresponding connecting pipes to be cooled, and the cooling water from the condenser is superheated to the gas via the respective circulating water return pipes. Guide and contact each one Water and repowering-shaft combined cycle power plant, characterized in that it comprises a means for the same flow rate and cooling water through the condenser and circulating water return pipe through.
【請求項6】 ガスタービンと、該ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、蒸
気発生器からの蒸気によって駆動する蒸気タービンと、
復水及び給水を夫々流通させ、かつ蒸気発生器からの排
ガスにより復水及び給水を夫々加熱するガス加熱器とを
有する排気再燃型コンバインドサイクル発電プラントに
おいて、ガス過熱器を通過した復水及び給水を取り込
み、かつ取り込んだ復水及び給水をガス過熱器に還流さ
せる還流循環装置を有し、該還流循環装置は、ガス過熱
器を通過した給水及び復水を復水器に夫々導く給水用連
絡管及び復水用連絡管と、復水器からの冷却水をガス過
熱器の入口側に夫々導く循環水戻り管と、ガス過熱器を
通過する給水及び復水の流量が低下したとき、ガス過熱
器からの給水及び復水を、前記対応する夫々の連絡管を
介し復水器に導いて冷却すると共に、該復水器からの冷
却水を対応する夫々の循環水戻り管を介しガス過熱器に
夫々導き、かつ連絡管を通る給水及び復水と循環水戻り
管を通る冷却水とを同一流量にする手段と、ガス過熱器
を通過した復水の流量がさらに規定量以下に低下した時
点で、復水用連絡管を通過する循環水の流量を調節する
流量調整手段とを具えることを特徴とする排気再燃型コ
ンバインドサイクル発電プラント。
6. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to reburn the gas, and a steam turbine driven by steam from the steam generator,
Condensate and feedwater that have passed through a gas superheater in an exhaust gas re-combustion combined cycle power plant that has a gas heater that circulates condensate and feedwater, respectively, and that heats condensate and feedwater by exhaust gas from a steam generator. Has a recirculation circulation device that recycles the condensate water and the condensate water that have been captured to the gas superheater, and the recirculation circulation device guides the water supply and the condensate water that have passed through the gas superheater to the condenser, respectively. Pipe and condensate connecting pipe, circulating water return pipes that respectively guide the cooling water from the condenser to the inlet side of the gas superheater, and when the flow rate of feed water and condensate passing through the gas superheater decreases, The water supply and the condensate from the superheater are guided to the condenser via the respective corresponding connecting pipes to be cooled, and the cooling water from the condenser is superheated to the gas via the respective circulating water return pipes. Guide and contact each one A means for making the feed water and condensate through the circulating water return pipe and the cooling water through the circulating water return pipe have the same flow rate, and at the time when the flow rate of the condensate water passing through the gas superheater further falls below the specified amount, the condensate connecting pipe An exhaust gas re-combustion combined cycle power plant, comprising: a flow rate adjusting means for adjusting a flow rate of circulating water passing through the exhaust gas.
【請求項7】 ガスタービンと、該ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、蒸
気発生器からの蒸気によって駆動する蒸気タービンと、
復水を流通させて該復水を過熱する低圧ガス過熱器と、
給水を流通させて該給水を夫々加熱する高圧ガス加熱器
と、復水器の下流側に脱気器の水位を調整する脱気器水
位調整弁とを有する排気再燃型コンバインドサイクル発
電プラントにおいて、ガス過熱器を復水を取り込み、か
つ取り込んだ復水をガス過熱器に還流させる還流循環装
置を有し、該還流循環装置は、低圧ガス過熱器からの復
水を復水器に導く連絡管と、復水器及び脱気器水位調整
弁間に一端が連結されると共に、他端が低圧ガス過熱器
の入口側に連結された循環水戻り管と、低圧ガス過熱器
を通過する復水の流量が低下したとき、低圧ガス過熱器
を通過した復水を連絡管を介し復水器に導いて冷却する
と共に、復水器からの冷却水を循環水戻り管を介し強制
的にガス過熱器に導く手段とを具えることを特徴とする
排気再燃型コンバインドサイクル発電プラント。
7. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to recombust, and a steam turbine driven by steam from the steam generator,
A low-pressure gas superheater for circulating the condensate to superheat the condensate;
In an exhaust gas re-combustion combined cycle power plant having a high-pressure gas heater that circulates feed water to heat the feed water, and a deaerator water level adjustment valve that adjusts the water level of the deaerator on the downstream side of the condenser, The gas superheater has a recirculation circulation device that takes in condensate and recirculates the condensate that has been taken in to the gas superheater. The recirculation circulation device is a connecting pipe that guides the condensate from the low-pressure gas superheater to the condenser. And a circulating water return pipe whose one end is connected between the condenser and the deaerator water level adjusting valve and the other end is connected to the inlet side of the low pressure gas superheater, and the condensate that passes through the low pressure gas superheater. When the flow rate decreases, the condensate that has passed through the low-pressure gas superheater is guided to the condenser via a connecting pipe to cool it, and the cooling water from the condenser is forced to gas superheat through the circulating water return pipe. Exhaust reburning type converter characterized in that Command cycle power plant.
JP7417392A 1992-03-30 1992-03-30 Full fired heat recovery combined cycle power plant Pending JPH0682003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7417392A JPH0682003A (en) 1992-03-30 1992-03-30 Full fired heat recovery combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7417392A JPH0682003A (en) 1992-03-30 1992-03-30 Full fired heat recovery combined cycle power plant

Publications (1)

Publication Number Publication Date
JPH0682003A true JPH0682003A (en) 1994-03-22

Family

ID=13539507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7417392A Pending JPH0682003A (en) 1992-03-30 1992-03-30 Full fired heat recovery combined cycle power plant

Country Status (1)

Country Link
JP (1) JPH0682003A (en)

Similar Documents

Publication Publication Date Title
JP5450642B2 (en) Operation method of exhaust heat recovery boiler
JP2005534883A (en) Waste heat steam generator
JP2003161164A (en) Combined-cycle power generation plant
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP2007248018A (en) Control system for supply water preheater of reheat boiler
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
JP5320013B2 (en) Boiler unit and power generation system
JPH09209715A (en) Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant
JPH0682003A (en) Full fired heat recovery combined cycle power plant
JP2002106831A (en) Pulverized coal fired boiler facility
JP3089108B2 (en) Exhaust system for exhaust reburn cycle
JP2021046989A (en) Feedwater heating system, power generation plant equipped with the same, and operation method of feedwater heating system
JP4325307B2 (en) Boiler reheater protection method and apparatus
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
JP3047194B2 (en) Gas turbine cogeneration system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2003336807A (en) System for supplying high temperature low pressure superheated steam
JPH09112807A (en) Deaerator protection device for exhaust gas recombustion system
JP2002081613A (en) Condensate recovering mechanism
JP2002227611A (en) Pressure fluidized bed boiler power generation plant and its controlling method
JP2708406B2 (en) Startup control method for thermal power plant
RU2100619C1 (en) Combined-cycle plant
JPH06265103A (en) Discharged gas recombustion type combined cycle power generating plant
JPH05322105A (en) Device for heating feedwater for boiler