JPH06265103A - Discharged gas recombustion type combined cycle power generating plant - Google Patents

Discharged gas recombustion type combined cycle power generating plant

Info

Publication number
JPH06265103A
JPH06265103A JP5356893A JP5356893A JPH06265103A JP H06265103 A JPH06265103 A JP H06265103A JP 5356893 A JP5356893 A JP 5356893A JP 5356893 A JP5356893 A JP 5356893A JP H06265103 A JPH06265103 A JP H06265103A
Authority
JP
Japan
Prior art keywords
condensate
exhaust gas
deaerator
heater
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5356893A
Other languages
Japanese (ja)
Inventor
Shigeki Kawase
茂樹 川瀬
Kazuhiro Kurosawa
一浩 黒澤
Hiroshi Arase
央 荒瀬
Akihiro Kawauchi
章弘 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP5356893A priority Critical patent/JPH06265103A/en
Publication of JPH06265103A publication Critical patent/JPH06265103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent an abnormal increasing of temperature of condensed water at an outlet port of a lower pressure gas heater and further to prevent an overheating of a lower pressure gas heater itself by a method wherein a deaerator water level adjusting valve is installed at a downstream side of a merging point of the condensed water passing through the low pressure feedwater heater and the low pressure gas heater. CONSTITUTION:Condensed water passed through a low pressure feedwater heater 16 and condensed water passed through a lower pressure gas heater 7 are merged from each other, thereafter the merged water is fed into a deaerator 17 through a deaerator water level adjusting valve 29 and the water of which gas is deaerated by the deaerator 17 is fed. Then, a pressure of the feedwater from the deaerator 17 is increased by a feedwater pump 18, enters a feedwater distribution valve 19 and then the water is distributed by a feedwater distributing valve 19 into a high pressure feedwater heater 20 and a high pressure gas heater 6. With such an arrangement as above, the deaerator water level is varied due to a reduction in flow rate of the condensed water caused by a reduction of load, the deaerator water level adjusting valve is varied and even if the valve is fully closed, the condensed water can be recovered to the condensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気再燃型コンバインド
サイクル発電プラントに係り、特に、プラントの低負荷
時,脱気器水位制御,復水過熱(スチーミング)防止、及
び煙突入口でのボイラ排ガス温度制御に好適なものに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas re-combustion combined cycle power plant, and more particularly, when the plant has a low load, deaerator water level control, condensate overheating (steaming) prevention, and boiler exhaust gas at the chimney inlet. The present invention relates to those suitable for temperature control.

【0002】[0002]

【従来の技術】図2に、主にヨーロッパで用いられてい
る従来技術の排気再燃型コンバインド発電プラントのサ
イクル構成の一部を示す。ガスタービン1からの排ガス
中には13〜15%程度のO2 が残存しており、その排
ガスを蒸気発生器としてのボイラ風箱4,蒸気発生ボイ
ラ3に導入し、燃焼用空気として利用することにより、
蒸気を発生させる。蒸気発生ボイラ3からの排ガスは3
50℃程度の高温であり、蒸気タービンサイクルの高圧
給水加熱器20及び低圧給水加熱器16とパラレル(若
しくはシリーズ)に接続された高圧ガス加熱器6及び低
圧ガス加熱器7を通って熱回収されることにより、10
0〜150℃程度に冷却された後、誘引通風ファン8を
通り煙突9から大気中に放出される。
2. Description of the Related Art FIG. 2 shows a part of a cycle configuration of a conventional exhaust gas re-combustion combined power plant mainly used in Europe. About 13 to 15% of O 2 remains in the exhaust gas from the gas turbine 1, and the exhaust gas is introduced into the boiler wind box 4 as the steam generator 4 and the steam generating boiler 3 to be used as combustion air. By
Generates steam. Exhaust gas from the steam generating boiler 3 is 3
The temperature is as high as 50 ° C., and heat is recovered through the high pressure gas heater 6 and the low pressure gas heater 7 connected in parallel (or series) with the high pressure feed water heater 20 and the low pressure feed water heater 16 of the steam turbine cycle. By doing 10
After being cooled to about 0 to 150 ° C., it is discharged into the atmosphere from the chimney 9 through the induced draft fan 8.

【0003】一方、復水器10からの復水は復水ポンプ
11で昇圧され、グランド蒸気復水器12,復水流量発
信器13及び脱気器水位調整弁14を経て復水分配弁1
5に入り、分配弁15で低圧給水加熱器16側と低圧ガ
ス加熱器7側へ分配され加熱される。そして加熱された
復水は合流後、脱気器17に導かれる。
On the other hand, the condensate from the condenser 10 is boosted by the condensate pump 11, passes through the gland steam condenser 12, the condensate flow rate transmitter 13 and the deaerator water level adjusting valve 14, and the condensate distribution valve 1
5, the distribution valve 15 distributes the mixture to the low-pressure feed water heater 16 side and the low-pressure gas heater 7 side for heating. Then, the heated condensate is joined and then guided to the deaerator 17.

【0004】脱気器17では、ボイラなどが腐食するの
を防止するため、復水中の溶存酸素及び炭酸ガスを除去
し、除去された復水が給水ポンプ18で昇圧され、給水
として給水分配弁19によって高圧給水加熱器20側と
高圧ガス加熱器6側へ分配される。この場合、一方では
高圧給水加熱器20により加熱され、他方では高圧ガス
加熱器6により加熱された給水は合流し、蒸気発生ボイ
ラ3に導かれることにより蒸気を発生させる。
In the deaerator 17, dissolved oxygen and carbon dioxide gas in the condensate are removed in order to prevent the boiler or the like from being corroded, and the removed condensate is boosted by the feed water pump 18 and is used as a feed water distribution valve. It is distributed to the high-pressure feed water heater 20 side and the high-pressure gas heater 6 side by 19. In this case, the feed water heated by the high pressure feed water heater 20 on the one hand and the feed water heated by the high pressure gas heater 6 on the other hand join together and are guided to the steam generating boiler 3 to generate steam.

【0005】また、復水ポンプ11及びグランド蒸気復
水器12のミニマムフロー運転では復水流量発信器13
で復水流量を検出し復水再循環弁21により、復水ポン
プ11及びグランド蒸気復水器12のミニマムフローを
復水再循環ライン22により復水器へ回収する。
In the minimum flow operation of the condensate pump 11 and the gland steam condenser 12, the condensate flow rate transmitter 13 is used.
The condensate flow rate is detected by the condensate recirculation valve 21, and the minimum flow of the condensate pump 11 and the gland steam condenser 12 is recovered by the condensate recirculation line 22 to the condenser.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記に示す
従来技術は、蒸気発生ボイラ3からの排ガスが高圧ガス
加熱器6で給水に熱回収され、また低圧ガス加熱器7で
は復水に熱回収されることにより、一般の蒸気原動機プ
ラントより高い熱効率を有している。
In the prior art described above, the exhaust gas from the steam generating boiler 3 is recovered by the high pressure gas heater 6 into the feed water, and the low pressure gas heater 7 is recovered into the condensate. By doing so, it has higher thermal efficiency than a general steam engine plant.

【0007】しかし、従来技術の排気再燃型コンバイン
ドプラントでは、蒸気タービンの負荷の降下時、低圧ガ
ス加熱器7を通水する復水量は低下するものの、その復
水量の低下幅に対し、低圧ガス加熱器7の熱交換量の低
下幅が小さいため、低圧ガス加熱器7によって復水が過
熱されてしまう問題がある。
However, in the exhaust gas re-combustion type combined plant of the prior art, when the load of the steam turbine is lowered, the amount of condensed water passing through the low pressure gas heater 7 is reduced, but the low pressure gas Since the amount of decrease in the amount of heat exchange of the heater 7 is small, there is a problem that the low pressure gas heater 7 overheats the condensate.

【0008】具体的に述べると、復水流量は蒸気タービ
ンの負荷の減少時、その減少に伴い図3に示すように低
圧ガス加熱器7側及び低圧給水加熱器16側の何れも減
少し、また低圧ガス加熱器7における交換熱量も図4に
示すように減少する。ところが、図3及び図4に示すよ
うに、復水流量の減少幅に比べ、低圧ガス加熱器7の交
換熱量の減少幅が小さいので、復水流量が減少しても、
交換熱量がそれに応じて減少しない結果、低圧ガス加熱
器7を通水する復水が過熱されてしまい、そのため、脱
気器17の入口における復水の温度と脱気器17内の温
度との差(ΔT)を所望値に確保することが難しくなり、
脱気効果が低下すると云う問題があり、脱気器17の入
口でスチーミングを起こす問題がある。さらに蒸気ター
ビン負荷の減少に応じ給水流量及び復水流量が極端に低
下した場合、ガス加熱器自体も過熱されてしまい、特に
復水系では、脱気器の水位が高水位となった場合、脱気
器水位調整弁が一時的に閉止することによって復水流量
が激減するので、低圧ガス加熱器7が異常に過熱される
と云う問題もある。
More specifically, when the steam turbine load decreases, the condensate flow rate decreases on both the low pressure gas heater 7 side and the low pressure feed water heater 16 side, as shown in FIG. Further, the amount of heat exchanged in the low-pressure gas heater 7 also decreases as shown in FIG. However, as shown in FIGS. 3 and 4, the amount of decrease in the amount of heat exchanged by the low-pressure gas heater 7 is smaller than the amount of decrease in the condensate flow rate.
As a result of the amount of heat exchanged not decreasing accordingly, the condensate passing through the low-pressure gas heater 7 is overheated, so that the temperature of the condensate at the inlet of the deaerator 17 and the temperature inside the deaerator 17 are increased. It becomes difficult to secure the difference (ΔT) at the desired value,
There is a problem that the deaeration effect decreases, and there is a problem that steaming occurs at the inlet of the deaerator 17. Furthermore, if the feedwater flow rate and condensate flow rate are extremely reduced due to the decrease in steam turbine load, the gas heater itself will also be overheated, and especially in the condensate system, if the water level of the deaerator becomes high, degassing will occur. There is also a problem that the low-pressure gas heater 7 is abnormally overheated because the condensate flow rate is drastically reduced by temporarily closing the air level control valve.

【0009】また、給・復水量の減少に伴い低圧ガス加
熱器7での復水の熱回収量が小さくなることからボイラ
排ガスは高温のまま煙突から大気へ排出され環境規制上
問題がある。
Further, since the heat recovery amount of the condensed water in the low-pressure gas heater 7 becomes smaller as the supply / condensed water amount decreases, the boiler exhaust gas is discharged from the chimney to the atmosphere at a high temperature, which causes a problem in environmental regulation.

【0010】この対策として低圧ガス加熱器7の出口に
復水の一部を復水器10へ回収するラインを設ける方法
があるが、図2に示す復水回収ライン34は脱気器水位
調整弁14の下流側に設置されているため、復水回収弁
33を開いても所要回収量が流れない問題があった。
As a countermeasure for this, there is a method of providing a line for recovering a part of the condensate to the condenser 10 at the outlet of the low-pressure gas heater 7. The condensate recovery line 34 shown in FIG. Since it is installed on the downstream side of the valve 14, there is a problem that the required recovery amount does not flow even if the condensate recovery valve 33 is opened.

【0011】本発明の目的は、低圧ガス加熱器7を通過
する復水の流量が低下した場合、その復水が所望値以上
に過熱されてしまうことを防止し、また煙突入口のボイ
ラ排ガス温度を煙突の最高使用温度,環境規制温度以上
で大気へ排出することを確実に防止でき、且つ脱気器水
位制御に好適な排気再燃型コンバインドサイクル発電プ
ラントを提供することにある。
An object of the present invention is to prevent the condensate from being overheated to a desired value or more when the flow rate of the condensate passing through the low-pressure gas heater 7 decreases, and to prevent the temperature of the boiler exhaust gas at the chimney inlet. (EN) An exhaust gas re-combustion combined cycle power plant capable of reliably preventing the exhaust gas from being discharged into the atmosphere at the maximum operating temperature of the chimney or above the environmental regulation temperature and being suitable for the deaerator water level control.

【0012】[0012]

【課題を解決するための手段】本発明では、低圧ガス加
熱器7を通過する復水の流量が低下したとき、低圧ガス
加熱器7を通過した復水の所望値以上の過熱及び環境規
制値以上でボイラ排ガスを煙突から大気へ排出すること
を確実に防止するため、復水の一部を復水器へ円滑に回
収可能なよう低圧ガス加熱器7出口に復水再循環及び脱
気器水位調整弁を設置している。
According to the present invention, when the flow rate of condensate passing through the low pressure gas heater 7 decreases, overheating and environmental regulation values exceeding a desired value of the condensate passing through the low pressure gas heater 7 are achieved. As described above, in order to reliably prevent the exhaust gas of the boiler from being emitted from the chimney to the atmosphere, condensate recirculation and deaerator at the outlet of the low-pressure gas heater 7 so that part of the condensate can be smoothly collected in the condenser. A water level adjustment valve is installed.

【0013】[0013]

【作用】蒸気タービン負荷の低下に伴い低圧ガス加熱器
7に流れる復水の流量も低下すると、低圧ガス加熱器7
を通過する復水の温度が異常に過熱されようとし、さら
にボイラ排ガス温度が煙突の最高使用温度以下に抑えら
れなくなる。
When the flow rate of the condensate flowing through the low pressure gas heater 7 decreases as the steam turbine load decreases, the low pressure gas heater 7
The temperature of the condensate that passes through will be overheated abnormally, and the temperature of the exhaust gas from the boiler cannot be suppressed below the maximum operating temperature of the chimney.

【0014】ここで、脱気器水位調整弁29を復水再循
環ライン27以降に設置することにより、上述のように
低圧ガス加熱器7の出口復水を一部又は全量復水器へ回
収(還流循環)し、低圧ガス加熱器7に流れる復水量を
制御することにより復水の過熱を防止でき、また煙突の
耐温上、ボイラ排ガス温度の低温化を図る際にボイラ排
ガス温度を所望値まで低下可能である。さらに脱気器水
位が変動し脱気器水位調整弁29の開度が変動し全閉し
ても、復水器への復水の安定した回収が可能であり、且
つ、復水器への復水回収量が変動しても脱気器水位制御
へ外乱を与えることはない。
Here, by installing the deaerator water level adjusting valve 29 after the condensate recirculation line 27, a part or all of the outlet condensate of the low-pressure gas heater 7 is recovered to the condenser as described above. (Recirculation circulation) and by controlling the amount of condensate flowing to the low-pressure gas heater 7, it is possible to prevent condensate from overheating. Also, in order to withstand the temperature of the chimney, the boiler exhaust gas temperature is desired to be lowered. It can be reduced to the value. Further, even if the deaerator water level fluctuates and the opening degree of the deaerator water level adjustment valve 29 fluctuates and is fully closed, stable recovery of the condensate to the condenser is possible, and further, to the condenser. Even if the amount of recovered condensate fluctuates, it does not disturb the deaerator water level control.

【0015】[0015]

【実施例】以下、本発明による排気再燃型コンバインド
サイクル発電プラントの実施例を図1により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of an exhaust gas reburn type combined cycle power plant according to the present invention will be described below with reference to FIG.

【0016】同図に示す実施例は、ガスタービン1から
排出された排ガスが、蒸気発生装置としてのボイラ風箱
4に導かれ、蒸気発生ボイラ3内に投入された燃料と共
に蒸気発生ボイラ3内で再燃焼される。そして、蒸気発
生ボイラ3からの排ガスはボイラ排ガスダクト5を通り
高圧ガス加熱器6で給水によって熱回収され、さらに低
圧ガス加熱器7で復水によって熱回収されることにより
100〜150℃程度に下げられた後、誘引通風ファン
8を経て煙突9より大気に排出される。
In the embodiment shown in the figure, the exhaust gas discharged from the gas turbine 1 is guided to a boiler wind box 4 as a steam generator, and inside the steam generating boiler 3 together with the fuel charged into the steam generating boiler 3. Will be burned again. Then, the exhaust gas from the steam generating boiler 3 passes through the boiler exhaust gas duct 5 and is heat-recovered by the high-pressure gas heater 6 by the feed water, and is further recovered by the low-pressure gas heater 7 by the condensate, so that the temperature is about 100 to 150 ° C. After being lowered, it is discharged to the atmosphere from the chimney 9 through the induction draft fan 8.

【0017】また、復水器10からの復水は、復水ポン
プ11により昇圧され、グランド蒸気復水器12,復水
流量発信器13を経て復水分配弁15に入り、復水分配
弁15により低圧給水加熱器16側と低圧ガス加熱器7
側に分配される。このとき、復水分配弁15は、復水合
流点における熱応力の低減を図るため低圧給水加熱器1
6を通過した復水の温度と、低圧ガス加熱器7を通過し
た復水の温度とが同一となるように復水を分配する。タ
ービン負荷が低下すると、低圧ガス加熱器7側への復水
流量分配比は増加し、タービン負荷がさらに低下する
と、低圧ガス加熱器7に復水の全量を通水する。
Condensate from the condenser 10 is boosted by the condensate pump 11, passes through the gland steam condenser 12 and the condensate flow rate transmitter 13, enters the condensate distribution valve 15, and is condensed. 15, the low-pressure feed water heater 16 side and the low-pressure gas heater 7
Distributed to the side. At this time, the condensate distribution valve 15 is provided in the low-pressure feed water heater 1 in order to reduce thermal stress at the confluent confluence.
Condensate is distributed so that the temperature of the condensate that has passed through 6 and the temperature of the condensate that has passed through the low-pressure gas heater 7 are the same. When the turbine load decreases, the condensate flow rate distribution ratio to the low-pressure gas heater 7 side increases, and when the turbine load further decreases, the entire amount of condensate is passed through the low-pressure gas heater 7.

【0018】低圧給水加熱器16を通過した復水と低圧
ガス加熱器7を通過した復水とは合流後、脱気器水位調
整弁29を介し脱気器17に送り込まれ、脱気器17で
脱気されたものが給水される。そして、脱気器17から
の給水は給水ポンプ18により昇圧されて給水分配弁1
9に入り、給水分配弁19により高圧給水加熱器20と
高圧ガス加熱器6とに分配される。このとき、給水分配
弁19は高圧給水加熱器20を通過した給水の温度と、
高圧ガス加熱器6とを通過した給水の温度とが同一とな
るように分配量を調整し分配する。また高圧給水加熱器
20を通過した給水と、高圧ガス加熱器6を通過した給
水は合流後、蒸気発生ボイラ3に導かれる。
The condensate that has passed through the low-pressure feed water heater 16 and the condensate that has passed through the low-pressure gas heater 7 are combined and then sent to the deaerator 17 via the deaerator water level adjusting valve 29, and the deaerator 17 Water degassed in. Then, the water supply from the deaerator 17 is increased in pressure by the water supply pump 18 and the water supply distribution valve 1
9, the water is distributed to the high-pressure water heater 20 and the high-pressure gas heater 6 by the water supply distribution valve 19. At this time, the feed water distribution valve 19 determines the temperature of the feed water that has passed through the high-pressure feed water heater 20,
The distribution amount is adjusted and distributed so that the temperature of the feed water that has passed through the high-pressure gas heater 6 becomes the same. Further, the feed water that has passed through the high-pressure feed water heater 20 and the feed water that has passed through the high-pressure gas heater 6 are combined and then guided to the steam generation boiler 3.

【0019】また、脱気器の水位を調節する脱気器水位
調整弁29は、低圧給水加熱器16と低圧ガス加熱器7
出口の復水合流後に設置されており、低圧ガス加熱器7
を通水した復水を復水器10へ回収する復水再循環ライ
ン27を有している。復水再循環ライン27上には、復
水再循環弁28が設けられており、復水再循環弁28に
て復水再循環量を調節する。
The deaerator water level adjusting valve 29 for adjusting the water level of the deaerator includes a low pressure feed water heater 16 and a low pressure gas heater 7.
The low-pressure gas heater 7 is installed after the condensate confluence at the outlet.
It has a condensate recirculation line 27 for collecting the condensate that has passed through to the condenser 10. A condensate recirculation valve 28 is provided on the condensate recirculation line 27, and the condensate recirculation valve 28 adjusts the amount of condensate recirculation.

【0020】この復水再循環弁28は選択器26により
開度を選定されるが、選択器26には、低圧ガス加熱器
7の出口側復水系の復水温度検出器23,復水流量発信
器13、及び低圧ガス加熱器7出口のボイラ排ガス温度
検出器30からの信号が各々の演算器を通り接続されて
いる。
The degree of opening of the condensate recirculation valve 28 is selected by the selector 26. The selector 26 includes the condensate temperature detector 23 of the outlet side condensate system of the low pressure gas heater 7 and the condensate flow rate. Signals from the transmitter 13 and the boiler exhaust gas temperature detector 30 at the outlet of the low-pressure gas heater 7 are connected through the respective arithmetic units.

【0021】次に動作について述べる。Next, the operation will be described.

【0022】プラント起動時(水漲完了後)、まずは復
水ポンプ11を起動するが脱気器水位調整弁29は閉状
態であり、復水流量発信器13で復水量を検出し演算器
25で復水ポンプ11及びグランド蒸気復水器12の所
要ミニマムフロ−を確保するよう復水再循環弁28を開
制御する。またこの時、脱気器17の器内温度と低圧ガ
ス加熱器7の出口復水温度差(ΔT)が脱気器17の良
好な脱気性能を維持するための所要温度差となるよう復
水温度検出器23,脱気器温度検出器32からの信号を
演算器24で演算し復水再循環弁28を開制御しようと
するが、脱気器17は運転していないため低圧ガス加熱
器7の出口復水温度制御の必要性が無いことから、復水
ポンプ11及びグランド蒸気復水器12の所要ミニマム
フローを確保するよう復水流量発信器13からの信号を
選択器26で選択する。
When the plant is started (after the completion of water filling), first, the condensate pump 11 is started, but the deaerator water level adjusting valve 29 is in a closed state, and the condensate flow rate transmitter 13 detects the amount of condensed water and the calculator 25. Then, the condensate recirculation valve 28 is controlled to open so as to secure the required minimum flow of the condensate pump 11 and the gland steam condenser 12. At this time, the temperature difference between the internal temperature of the deaerator 17 and the outlet condensate temperature (ΔT) of the low-pressure gas heater 7 is set to be the required temperature difference for maintaining good deaerating performance of the deaerator 17. Signals from the water temperature detector 23 and the deaerator temperature detector 32 are calculated by the calculator 24 to open the condensate recirculation valve 28, but the deaerator 17 is not in operation, so low pressure gas heating is performed. Since there is no need to control the outlet condensate temperature of the condenser 7, the signal from the condensate flow transmitter 13 is selected by the selector 26 so as to secure the required minimum flow of the condensate pump 11 and the gland steam condenser 12. To do.

【0023】ガスタービン1の点火時に、脱気器17の
器内圧力は補助蒸気により所定の圧力に設定されてい
る。ここで、低圧ガス加熱器7でガスタービン1の排ガ
スと復水の熱交換開始により、図5に示すように低圧ガ
ス加熱器7の出口復水温度は復水許容温度以上に上昇す
るため、脱気器17の器内温度と低圧ガス加熱器7の出
口復水温度差が減少し、さらに復水温度が上昇するとス
チ−ミングを発生するため、脱気器17の良好な脱気性
能を維持するための所要温度差となるよう演出器24に
より復水再循環調整弁28を制御し、図1に示す復水再
循環運転を開始し復水温度を低下させる。なお、この時
演算器24及び演算器25の信号の内、大きい方を選択
器26で選択し復水再循環弁28を制御する。
At the time of ignition of the gas turbine 1, the internal pressure of the deaerator 17 is set to a predetermined pressure by the auxiliary steam. Here, since the low-pressure gas heater 7 starts heat exchange between the exhaust gas of the gas turbine 1 and the condensate, the outlet condensate temperature of the low-pressure gas heater 7 rises above the condensate allowable temperature as shown in FIG. Since the difference between the temperature inside the deaerator 17 and the condensate temperature at the outlet of the low-pressure gas heater 7 decreases and steaming occurs when the condensate temperature further rises, good deaeration performance of the deaerator 17 is obtained. The effector 24 controls the condensate recirculation adjusting valve 28 so that the required temperature difference for maintaining the condensate recirculation operation is started, and the condensate recirculation operation shown in FIG. 1 is started to lower the condensate temperature. At this time, the larger one of the signals from the calculator 24 and the calculator 25 is selected by the selector 26 to control the condensate recirculation valve 28.

【0024】また、負荷急変時等に脱気器水位調整弁2
9開度が変動しても、脱気器水位調整弁29を低圧ガス
加熱器7と低圧給水加熱器を通過する復水の合流後に設
置し、また、復水再循環ライン27を脱気器水位調整弁
29上流側より取りだしているため、復水再循環流量制
御に大きな外乱を与えることはない。
Further, the deaerator water level adjusting valve 2 when the load changes suddenly.
9 Even if the opening degree fluctuates, the deaerator water level adjusting valve 29 is installed after the condensate confluent passing through the low pressure gas heater 7 and the low pressure feed water heater is installed, and the condensate recirculation line 27 is provided in the deaerator. Since it is taken out from the upstream side of the water level adjusting valve 29, no great disturbance is given to the condensate recirculation flow rate control.

【0025】負荷が上昇するにつれ蒸気タービン排気量
が増加するため、脱気器17の器内圧力・温度が上昇
し、また復水流量が増加する。そのため、図5に示すよ
うに低圧ガス加熱器7の出口復水温度上昇に対し、脱気
器17の器内温度の増加幅が大きくなるため、復水器へ
の復水再循環量は減少し、さらに負荷上昇に伴い、脱気
器17の器内温度と低圧ガス加熱器7の出口復水温度差
(ΔT)が所要値以上となるため、復水再循環弁28は閉
じ、低圧ガス加熱器7の出口から復水器へ回収する復水
再循環が停止する。また、負荷の上昇につれ復水は復水
ポンプ11及びグランド蒸気復水器12の図3に示すミ
ニマムフロー以上の流量が確保できているため、復水再
循環は必要が無くなり、グランド蒸気復水器12の出口
側に設けられている復水流量発信器13からの信号によ
り復水再循環弁28は閉じる。
Since the displacement of the steam turbine increases as the load increases, the internal pressure / temperature of the deaerator 17 increases and the condensate flow rate increases. Therefore, as shown in FIG. 5, as the temperature of the outlet condensate of the low-pressure gas heater 7 rises, the increase in the temperature inside the deaerator 17 increases, and the amount of condensate recirculation to the condenser decreases. However, as the load increases, the difference between the internal temperature of the deaerator 17 and the outlet condensate temperature of the low-pressure gas heater 7
Since (ΔT) becomes equal to or greater than the required value, the condensate recirculation valve 28 is closed, and the condensate recirculation collected from the outlet of the low pressure gas heater 7 to the condenser is stopped. In addition, as the load increases, the condensate pump 11 and the gland steam condenser 12 are able to secure a flow rate greater than the minimum flow shown in FIG. The condensate recirculation valve 28 is closed by a signal from the condensate flow rate transmitter 13 provided on the outlet side of the device 12.

【0026】一方、ボイラ排ガス温度が環境規制及び煙
突の耐温上、問題が生じる場合には、低圧ガス加熱器7
のボイラ排ガス系統出口側に設置されているボイラ排ガ
ス温度検出器30で検出された信号から演算器31,選
択器26で復水再循環制御を行い、ボイラ排ガス温度の
低温化を図ることが可能である。
On the other hand, when the boiler exhaust gas temperature causes problems due to environmental regulations and the temperature resistance of the chimney, the low pressure gas heater 7
It is possible to reduce the boiler exhaust gas temperature by performing condensate recirculation control with the calculator 31 and the selector 26 based on the signal detected by the boiler exhaust gas temperature detector 30 installed on the outlet side of the boiler exhaust gas system. Is.

【0027】[0027]

【発明の効果】本発明の請求項1,2及び3によれば負
荷の低下による復水流量減少から脱気器水位が変動し、
脱気器水位調整弁が変動し全閉しても復水器への復水回
収が可能であり、また復水器への復水回収量が変動して
も脱気器水位制御への外乱を与えることはないため、そ
れだけ信頼性を高める効果がある。
According to the first, second and third aspects of the present invention, the deaerator water level fluctuates due to a decrease in the condensate flow rate due to a decrease in load,
Even if the deaerator water level control valve fluctuates and is fully closed, it is possible to recover the condensate to the condenser, and even if the amount of condensate recovered to the condenser fluctuates, disturbance to the deaerator water level control Because it does not give, it has the effect of increasing reliability.

【0028】請求項4によれば請求項2及び3の復水再
循環系統により低圧ガス加熱器での復水の過熱による脱
気効果の低下、及び脱気器入口におけるスチーミングを
防止でき、また復水ポンプ及びグランド蒸気復水器のミ
ニマムフロ−を確保できる。請求項5によれば、請求項
4の効果に加えボイラ排ガス温度を煙突の最高使用温度
内に押えることが確実に出来るため安全性及び保守性を
高める効果がある。
According to claim 4, the condensate recirculation system according to claims 2 and 3 can prevent the degassing effect from being reduced due to the overheating of the condensate in the low pressure gas heater, and the steaming at the deaerator inlet can be prevented. Also, the minimum flow of the condensate pump and the gland steam condenser can be secured. According to the fifth aspect, in addition to the effect of the fourth aspect, it is possible to surely suppress the boiler exhaust gas temperature within the maximum operating temperature of the chimney, so that there is an effect of improving safety and maintainability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による排気再燃型コンバインドサイクル
発電プラントの実施例を示す系統図。
FIG. 1 is a system diagram showing an embodiment of an exhaust gas re-combustion combined cycle power plant according to the present invention.

【図2】従来例を示す系統図。FIG. 2 is a system diagram showing a conventional example.

【図3】蒸気タービン負荷と復水流量の関係を示す説明
図。
FIG. 3 is an explanatory diagram showing a relationship between a steam turbine load and a condensate flow rate.

【図4】蒸気タービン負荷と低圧ガス加熱器交換熱量の
関係を示す説明図。
FIG. 4 is an explanatory diagram showing the relationship between steam turbine load and low-pressure gas heater exchange heat quantity.

【図5】蒸気タ−ビン負荷と低圧ガス給水加熱器廻りの
温度関係を示す説明図。
FIG. 5 is an explanatory view showing a temperature relationship around a steam turbine load and a low-pressure gas feed water heater.

【符号の説明】[Explanation of symbols]

1…ガスタービン、2…ガスタービン排ガスダクト、3
…ボイラ風箱、4…蒸気発生ボイラ、5…ボイラ排ガス
ダクト、6…高圧ガス加熱器、7…低圧ガス加熱器、8
…誘引通風ファン、9…煙突、10…復水器、11…復
水ポンプ、12…グランド蒸気復水器、13…復水流量
発信器、14…脱気器水位調整弁、15…復水分配弁、
16…低圧給水加熱器、17…脱気器、18…給水ポン
プ、19…給水分配弁、20…高圧給水加熱器、21…
復水再循環ライン、22…復水再循環弁、23…復水温
度検出器、24,25,31…演算器、26…選択器、
27…復水再循環弁ライン、28…復水再循環弁、29
…脱気器水位調整弁、30…ボイラ排ガス温度検出器、
32…脱気器温度検出器。
1 ... Gas turbine, 2 ... Gas turbine exhaust gas duct, 3
... Boiler wind box, 4 ... Steam generating boiler, 5 ... Boiler exhaust gas duct, 6 ... High pressure gas heater, 7 ... Low pressure gas heater, 8
… Induction draft fan, 9… Chimney, 10… Condenser, 11… Condensate pump, 12… Grand steam condenser, 13… Condensate flow transmitter, 14… Deaerator water level control valve, 15… Condensate Distribution valve,
16 ... Low-pressure feed water heater, 17 ... Deaerator, 18 ... Water feed pump, 19 ... Water feed distribution valve, 20 ... High pressure feed water heater, 21 ...
Condensate recirculation line, 22 ... Condensate recirculation valve, 23 ... Condensate temperature detector, 24, 25, 31 ... Arithmetic unit, 26 ... Selector,
27 ... Condensate recirculation valve line, 28 ... Condensate recirculation valve, 29
… Deaerator water level control valve, 30… Boiler exhaust gas temperature detector,
32 ... Deaerator temperature detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒瀬 央 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 川内 章弘 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Hiroshi Arase 3-2-1, Saiwaicho, Hitachi, Ibaraki Hitachi Engineering Co., Ltd. (72) Inventor, Akihiro Kawauchi 3-chome, Saiwaicho, Hitachi, Ibaraki No. 1 Stock company Hitachi Ltd. Hitachi factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンと、前記ガスタービンからの
排ガスに燃料を投入して再燃焼させる蒸気発生器と、前
記蒸気発生器からの蒸気によって駆動する蒸気タービン
と、復水及び給水を夫々流通させ、前記蒸気発生器から
の排ガスにより復水及び給水を夫々加熱するガス加熱器
とを有する排気再燃型コンバインドサイクル発電プラン
トにおいて、脱気器の水位を調節する脱気器水位調整弁
を低圧給水加熱器と低圧ガス加熱器を通過する復水の合
流後に設置したことを特徴とする排気再燃型コンバイン
ドサイクル発電プラント。
1. A gas turbine, a steam generator for injecting fuel into exhaust gas from the gas turbine to reburn the steam, a steam turbine driven by steam from the steam generator, and a condensate and a feed water, respectively. In the exhaust gas re-combustion combined cycle power plant having a gas heater for heating the condensate and the feed water respectively by the exhaust gas from the steam generator, a deaerator water level adjusting valve for adjusting the water level of the deaerator is supplied at a low pressure. An exhaust gas re-combustion combined cycle power plant, which is installed after the condensate water passing through the heater and the low-pressure gas heater is joined.
【請求項2】請求項1において、低圧ガス加熱器又は、
低圧給水加熱器と前記脱気器水位調整弁との間に復水の
一部又は全量を復水器へ回収させる復水再循環ラインを
設置した排気再燃型コンバインドサイクル発電プラン
ト。
2. The low pressure gas heater according to claim 1, or
An exhaust gas re-combustion combined cycle power plant in which a condensate recirculation line for recovering a part or all of the condensate to a condenser is installed between the low-pressure feed water heater and the deaerator water level adjusting valve.
【請求項3】請求項2において、前記復水再循環ライン
上に流量調整装置を設置した排気再燃型コンバインドサ
イクル発電プラント。
3. The exhaust gas re-combustion combined cycle power plant according to claim 2, wherein a flow rate adjusting device is installed on the condensate recirculation line.
【請求項4】復水の異常温度上昇防止と復水ポンプ及び
グランド蒸気復水器のミニマムフロー確保、及び煙突入
口でのボイラ排ガス温度の制御を目的として復水再循環
ラインを使用するための制御装置を設けたことを特徴と
する排気再燃型コンバインドサイクル発電プラント。
4. A condensate recirculation line is used for the purpose of preventing abnormal temperature rise of condensate, ensuring a minimum flow of condensate pump and gland steam condenser, and controlling boiler exhaust gas temperature at the chimney inlet. An exhaust gas re-combustion combined cycle power plant characterized by having a control device.
【請求項5】煙突入口においてボイラ排ガス温度の低下
を図るため、低圧ガス加熱器出口側のボイラ排ガス系統
に温度検出器を設置し、ボイラ排ガス温度制御を行うこ
とを特徴とする排気再燃型コンバインドサイクル発電プ
ラント。
5. An exhaust gas reburning type combined reactor, characterized in that a temperature detector is installed in the boiler exhaust gas system on the outlet side of the low pressure gas heater to control the boiler exhaust gas temperature in order to lower the boiler exhaust gas temperature at the chimney inlet. Cycle power plant.
JP5356893A 1993-03-15 1993-03-15 Discharged gas recombustion type combined cycle power generating plant Pending JPH06265103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5356893A JPH06265103A (en) 1993-03-15 1993-03-15 Discharged gas recombustion type combined cycle power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5356893A JPH06265103A (en) 1993-03-15 1993-03-15 Discharged gas recombustion type combined cycle power generating plant

Publications (1)

Publication Number Publication Date
JPH06265103A true JPH06265103A (en) 1994-09-20

Family

ID=12946438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5356893A Pending JPH06265103A (en) 1993-03-15 1993-03-15 Discharged gas recombustion type combined cycle power generating plant

Country Status (1)

Country Link
JP (1) JPH06265103A (en)

Similar Documents

Publication Publication Date Title
US7509794B2 (en) Waste heat steam generator
CA2262722C (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JP3774487B2 (en) Combined cycle power plant
US6651440B2 (en) Steam cooling apparatus for gas turbine
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JPH06265103A (en) Discharged gas recombustion type combined cycle power generating plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP4325307B2 (en) Boiler reheater protection method and apparatus
JPH07109905A (en) Method and apparatus for controlling steam temperature in composite power generation plant
JP2766687B2 (en) Combined power plant
JPS61108814A (en) Gas-steam turbine composite facility
JP3047194B2 (en) Gas turbine cogeneration system
JP3089108B2 (en) Exhaust system for exhaust reburn cycle
JP2000161606A (en) Steaming prevention control method nd apparatus for coal saving apparatus
JP3745419B2 (en) Waste heat recovery boiler
JPH09112807A (en) Deaerator protection device for exhaust gas recombustion system
JPH0682003A (en) Full fired heat recovery combined cycle power plant
JP2971629B2 (en) Waste heat recovery boiler
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system
JP3117392B2 (en) Start-up method of an exhaust gas re-combustion complex plant
JPS61118508A (en) Control device for recirculating flow of feed pump
JP2002081613A (en) Condensate recovering mechanism
JPH05240402A (en) Method of operating waste heat recovery boiler
JPH08166105A (en) Deaeration structure
JPH07208112A (en) Exhaust afterburning type combined plant operating method and exhaust heat recovering system