JPH0681054A - Production of amorphous magnesium alloy - Google Patents

Production of amorphous magnesium alloy

Info

Publication number
JPH0681054A
JPH0681054A JP3074679A JP7467991A JPH0681054A JP H0681054 A JPH0681054 A JP H0681054A JP 3074679 A JP3074679 A JP 3074679A JP 7467991 A JP7467991 A JP 7467991A JP H0681054 A JPH0681054 A JP H0681054A
Authority
JP
Japan
Prior art keywords
cooling
molten metal
stage cooling
magnesium alloy
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3074679A
Other languages
Japanese (ja)
Other versions
JP2963225B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Akira Kato
晃 加藤
Toshisuke Shibata
利介 柴田
Hitoshi Yamaguchi
均 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
YKK Corp
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Toyota Motor Corp
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd, Toyota Motor Corp, YKK Corp, Yoshida Kogyo KK filed Critical Teikoku Piston Ring Co Ltd
Priority to JP3074679A priority Critical patent/JP2963225B2/en
Priority to EP92302005A priority patent/EP0503880B1/en
Priority to DE69222455T priority patent/DE69222455T2/en
Priority to US07/852,019 priority patent/US5250124A/en
Publication of JPH0681054A publication Critical patent/JPH0681054A/en
Application granted granted Critical
Publication of JP2963225B2 publication Critical patent/JP2963225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To relatively easily obtain a material having high specific strength as bulk material or alloys of various shapes by subjecting a molten Mg alloy whose composition and a difference between glass transition temp. and crystallization temp. are respectively specified, by means of two-stage cooling. CONSTITUTION:A molten metal which has a composition represented by MgaMbAlcXdZe and where the difference DELTAT between a glass transition temp. Tg and a crystallization temp. Tx satisfies the relation in DELTAT=Tx-Tg>10K is cooled in a molten metal passage in a first-stage cooling zone at a cooling velocity of V After the molten metal is cooled down to a temp. in the vicinity of a melting temp. Tm, the molten metal is supplied into a mold and second- stage cooling is done down to the glass transition temp. Tg at a velocity higher than that in the first-stage cooling. In the formula, M means one or more kinds among La, Ce, Mm(misch metal), and Y, X means Ni and/or Cu, Z means one or more elements among Mn, Zn, Zr, and Ti, and the symbols (a), (b), (c), (d), and (e) stand for, by atom, 70-90%, 2-15%, 1-9%, 2-15%, and 0.1-8%, respectively. Further, Vc is the cooling velocity where partial crystallization is brought about at the time of performing cooling down to the glass transition temp. at Vc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、比強度に優れた非晶質
マグネシウム合金を固化により製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an amorphous magnesium alloy having an excellent specific strength by solidification.

【0002】[0002]

【従来の技術】従来、非晶質合金は104 K/sec 以上
の冷却速度を与える片ロール装置により液体の直接冷却
により厚さ10〜30μm 、幅100mmのものとして製
造されている。より広い面積の材料をつくる方法として
は気相蒸着法があり、数μmの厚さの材料が作られてい
る。これらの方法で作られる薄い非晶質材料より厚く、
かさを有する材料(本願において「バルク材」という)
を作る方法としては片ロール法で作製したリボンを機械
的に粉砕した粉砕粉を熱間で固める方法や、あるいはガ
スアトマイズによる非晶質粉末を爆着で固める方法が行
われていた。
2. Description of the Related Art Conventionally, an amorphous alloy has been manufactured by directly cooling a liquid by a one-roll device which gives a cooling rate of 10 4 K / sec or more, to have a thickness of 10 to 30 μm and a width of 100 mm. A vapor deposition method is known as a method for producing a material having a wider area, and a material having a thickness of several μm is produced. Thicker than thin amorphous materials made by these methods,
Bulk material (referred to as "bulk material" in this application)
As a method for producing, a method of mechanically pulverizing a pulverized powder obtained by mechanically pulverizing a ribbon produced by a one-roll method, or a method of consolidating an amorphous powder by gas atomization by explosion deposition has been used.

【0003】[0003]

【発明が解決しようとする課題】従来非晶質合金はバル
ク化するためにアトマイズなどにより作製した非晶質粉
末を押出やプレスなどの加圧成形型の手段によって固め
ていたが、加圧成型条件が厳しく100%非晶質組織を
有するバルク材をつくることは困難であった。また、結
晶化温度以下で押出やプレスを行わなければならないの
で、大きな成型圧力を必要とし、製造コストが高くなり
実用的ではなかった。そこで、本発明は非晶質マグネシ
ウム合金の特性である比強度が大きい材料を比較的容易
にまた安価にバルク材として得ることができると共に、
種々の異なった形状の非晶質マグネシウム合金を作る方
法を提供することを目的とするものである。
Conventionally, in order to make an amorphous alloy into a bulk, an amorphous powder produced by atomization was solidified by means of a pressure molding die such as extrusion or press. It was difficult to produce a bulk material having strict conditions and a 100% amorphous structure. Further, since extrusion or pressing must be performed at a temperature not higher than the crystallization temperature, a large molding pressure is required, and the manufacturing cost becomes high, which is not practical. Therefore, the present invention can obtain a material having a large specific strength, which is a characteristic of an amorphous magnesium alloy, as a bulk material relatively easily and inexpensively,
It is an object of the present invention to provide a method for producing various different shaped amorphous magnesium alloys.

【0004】[0004]

【課題を解決するための手段】本発明はマグネシウム合
金溶湯供給流路において所定の温度まで冷却させ、つい
で第二段冷却を行う鋳型に導入した後、凝固させること
により、マグネシウム非晶質固化材を製造する方法であ
る。本発明のマグネシウム合金はMgab Alcd
e (式中;MはLa、Ce、Mm(ミッシュメタ
ル)、Yからなる一種または二種以上の元素、XはN
i、Cuからなる一種又は二種以上の元素であり、Zは
Mn、Zn、Zr、Tiの一種または二種以上であり、
aは70〜90at%、bは2〜15at%、cは1〜
9at%、dは2〜15at%、eは0.1〜8at%
の範囲である)からなる組成をもつ。
According to the present invention, a magnesium amorphous solidified material is obtained by cooling a magnesium alloy molten metal supply channel to a predetermined temperature, then introducing it into a mold for second-stage cooling, and then solidifying it. Is a method of manufacturing. The magnesium alloy of the present invention is Mg a M b Al c X d
Y e (in the formula; M is one or more elements consisting of La, Ce, Mm (Misch metal), Y, and X is N)
i, one or more elements consisting of Cu, Z is one or more elements of Mn, Zn, Zr, Ti,
a is 70 to 90 at%, b is 2 to 15 at%, and c is 1 to
9 at%, d is 2 to 15 at%, and e is 0.1 to 8 at%.
Range)).

【0005】先ず、本発明にかかるマグネシウム合金の
組成を説明する。Mgはベース金属であり軽量化のため
に必要なベース金属であり、MはMgの非晶質化のため
に必須な元素であり、Alは強固な酸化皮膜を作ること
でマグネシウムの防燃のために不可避元素である。Xも
Mgの非晶質化のために必須の成分である。Mは15a
t%を超えると化合物が析出し、2at%未満では非晶
質化が困難である。またAlは1at%未満では防燃の
効果が少なく、9at%を超えると非晶質化が困難にな
る。XはM元素との関係で決まるが2at%以上あれば
非晶質化が容易であり、15at%を超えると脆い非晶
質組織となる。
First, the composition of the magnesium alloy according to the present invention will be described. Mg is a base metal and a base metal necessary for weight reduction, M is an essential element for amorphization of Mg, and Al is a flame retardant agent for magnesium by forming a strong oxide film. Because of this it is an unavoidable element. X is also an essential component for making Mg amorphous. M is 15a
If it exceeds t%, the compound precipitates, and if it is less than 2 at%, it is difficult to amorphize. Further, if Al is less than 1 at%, the flame-retardant effect is small, and if it exceeds 9 at%, it becomes difficult to make amorphous. X is determined by the relationship with the M element, but if it is 2 at% or more, amorphization is easy, and if it exceeds 15 at%, a brittle amorphous structure is formed.

【0006】ZrおよびTiは耐熱性を与えるが、8a
t%を超えると非晶質化を阻害する。また、Zn、Mn
は強度向上の効果があり、固溶範囲の関係からZrと同
じ成分範囲である。本発明において、冷却速度が遅い鋳
造でも肉厚の非晶質合金を作るためにはマグネシウム合
金がガラス繊維温度(Tg)をもつこと、及びガラ
ス繊維温度(Tg)とその結晶化温度(Tx)との絶対
温度差(ΔT)が10K以上であることが必要である
(図1参照)。図1中、A、Bで示された曲線の右側が
結晶生成領域である。図に示すようにΔK>10Kでは
結晶生成領域がより長時間側に移動する。
Zr and Ti provide heat resistance, but 8a
If it exceeds t%, amorphization is inhibited. In addition, Zn, Mn
Has the effect of improving strength, and is in the same component range as Zr from the relationship of solid solution range. In the present invention, the magnesium alloy has a glass fiber temperature (Tg) and a glass fiber temperature (Tg) and its crystallization temperature (Tx) in order to produce a thick amorphous alloy even in casting with a slow cooling rate. It is necessary that the absolute temperature difference (ΔT) between and is 10 K or more (see FIG. 1). In FIG. 1, the right side of the curves indicated by A and B is the crystal formation region. As shown in the figure, when ΔK> 10K, the crystal formation region moves to the longer side.

【0007】また、図2に示すように、溶融温度近傍で
の第一段冷却は、その冷却速度でTgまで冷却した時は
一部結晶化が起こる温度である。第一段冷却に続いて、
第一段冷却より冷却速度が高い第二段冷却を行う二段冷
却処理を行うことにより、結晶生成領域の通過を避けつ
つ比較的肉厚の大きな非晶質マグネシウム合金鋳造材を
得ることができる。
Further, as shown in FIG. 2, the first stage cooling in the vicinity of the melting temperature is a temperature at which partial crystallization occurs when cooled to Tg at the cooling rate. Following the first stage cooling,
By performing the two-stage cooling process in which the second stage cooling, which has a higher cooling rate than the first stage cooling, is performed, it is possible to obtain an amorphous magnesium alloy cast material having a relatively large wall thickness while avoiding passage through the crystal formation region. .

【0008】なお、第一段冷却で金属溶湯から奪う熱量
を大きくすると(図2の一点鎖線参照)、結晶生成領域
の通過を避けることができるが、このような冷却速度
は、鋳造では実現困難である。第二段冷却での非晶質化
のための冷却の負担を軽くするためには、第一段冷却の
冷却速度は102 K/sec 以上であることが好ましい。
マグネシウム合金を溶湯溜めからオリフィス状又はノズ
ル状に通路を絞った流路に流し、この流路を出た溶湯の
温度を溶融温度近傍とするように第一段冷却を行うこと
が好ましい。この場合第一段冷却速度>102 K/sec
を容易に達成することができる。続く、第二段冷却では
溶湯と冷却金型と密着させ熱伝導を良くさせることによ
り十分な冷却が行われる。
If the amount of heat taken from the molten metal in the first stage cooling is increased (see the chain line in FIG. 2), it is possible to avoid passing through the crystal formation region, but such a cooling rate is difficult to achieve in casting. Is. In order to reduce the cooling load for amorphization in the second stage cooling, the cooling rate of the first stage cooling is preferably 10 2 K / sec or more.
It is preferable that the magnesium alloy is caused to flow from a molten metal reservoir to a flow channel whose passage is narrowed in an orifice shape or a nozzle shape, and the first stage cooling is performed so that the temperature of the melt flowing out of this flow channel is near the melting temperature. In this case the first stage cooling rate> 10 2 K / sec
Can be easily achieved. In the subsequent second-stage cooling, sufficient cooling is performed by bringing the molten metal into close contact with the cooling mold to improve heat conduction.

【0009】金型やその他の材質で熱伝導の良好な材料
で作った鋳型は、水冷することが望ましい。第一段で充
分に過冷却されたマグネシウム合金溶湯を第二段冷却に
おいて加圧鋳造あるいは好ましくは重力加速度50G以
上で遠心鋳造すると、高い冷却速度を得ることができ
る。本発明法で製造できるバルク材は、板厚1〜5mmの
ものである。又、その形状は鋳型の形状を変更すること
により、種々の形状をした非晶質マグネシウム合金が製
造できる。かかるバルク材はアルミ合金との複合材の補
強材として使用できる。
It is desirable to cool the mold and other molds made of a material having good heat conduction with water. A high cooling rate can be obtained by pressure casting or centrifugal casting at a gravitational acceleration of 50 G or more in the second stage cooling of the magnesium alloy molten metal sufficiently supercooled in the first stage. The bulk material that can be produced by the method of the present invention has a plate thickness of 1 to 5 mm. Also, by changing the shape of the mold, various shapes of amorphous magnesium alloys can be manufactured. Such a bulk material can be used as a reinforcing material for a composite material with an aluminum alloy.

【0010】[0010]

【作用】本発明において第1段冷却ゾーンの役割は、第
2段冷却ゾーンで冷却する際に放熱すべき熱量の負担を
軽減させることにあり、従って、過冷却状態の溶湯を第
2段冷却ゾーンへ供給することができる。
In the present invention, the role of the first-stage cooling zone is to reduce the burden of the amount of heat to be dissipated when cooling in the second-stage cooling zone. Can be fed to the zone.

【0011】以下、図により説明する。図2の1〜2間
は第1段冷却ゾーンで、2〜3は第2段冷却ゾーンであ
る。第2段冷却ゾーンで温度勾配を大きくできるのは第
1段冷却ゾーンが放熱すべき熱量の一部を溶湯より奪っ
たためである。
A description will be given below with reference to the drawings. 2 is a first-stage cooling zone, and 2-3 is a second-stage cooling zone. The reason why the temperature gradient can be increased in the second-stage cooling zone is that a part of the amount of heat to be dissipated in the first-stage cooling zone is taken from the molten metal.

【0012】第2段冷却ゾーンで放熱すべき熱量を少な
くできたことから第2段冷却ゾーンにおける冷却速度が
速くなり、結晶化を起こすノーズにかからず冷却でき
る。その結果、肉厚が厚いものでもアモルファス化でき
る。なお第1段冷却ゾーンでは、できるだけTmの下
方、即ち図2のTm2 近傍まで下げることが望ましい
が、放熱容量が小さい薄物についてはTm1 で示される
温度から第2段急冷ゾーンの冷却が開始されてもよい。
また、図2の中のグラフA−Bは第1段冷却ゾーンを持
たないときの冷却速度の模式図である。
Since the amount of heat to be radiated in the second-stage cooling zone can be reduced, the cooling rate in the second-stage cooling zone is increased, and cooling can be performed without the nose causing crystallization. As a result, even a thick material can be made amorphous. In the first-stage cooling zone, it is desirable to lower it as much as possible below Tm, that is, near Tm 2 in FIG. 2, but for thin materials with a small heat dissipation capacity, cooling of the second-stage quenching zone starts from the temperature indicated by Tm 1. May be done.
Graph AB in FIG. 2 is a schematic diagram of the cooling rate when the first-stage cooling zone is not provided.

【0013】鋳造品の体積が大きいとき、金型のもつ放
熱速度は通常鋳造後の時間経過と共に遅くなることから
図のように結晶化のノーズ(N)にかかってしまい、結
晶化することを示している。一例としてはTm(Tm
1 、Tm2 を含む)±20Kである。第二段冷却では鋳
型内で上記ノーズと交叉しないような冷却を行う。以上
のような二段冷却法により非晶質Mg合金の鋳物を作る
ことができる。以下、実施例により本発明を説明する。
When the volume of the cast product is large, the heat dissipation rate of the die is usually slowed with the lapse of time after casting, and as shown in the figure, the nose (N) of crystallization is applied to cause crystallization. Shows. As an example, Tm (Tm
1 , including Tm 2 ) ± 20K. In the second stage cooling, cooling is performed so as not to cross the nose in the mold. A casting of an amorphous Mg alloy can be produced by the two-step cooling method as described above. Hereinafter, the present invention will be described with reference to examples.

【0014】[0014]

【実施例】【Example】

実施例1 この実施例ではMg79Ni105 Al5 Zn1 の組成を
もつ厚さ2mm、幅30mm、長さ30mmの非晶質マグネシ
ウム合金を作った。鋳造装置は図3に示す金型鋳造装置
である。図中、1は溶解と加圧を行うるつぼ、2はヒー
ターコイル、3はプランジャー4を案内する湯溜り、5
はノズル、6は金型、7はダイキャビティ、10はマグ
ネシウム合金溶湯である。
Example 1 In this example, an amorphous magnesium alloy having a composition of Mg 79 Ni 10 Y 5 Al 5 Zn 1 and having a thickness of 2 mm, a width of 30 mm and a length of 30 mm was prepared. The casting apparatus is the mold casting apparatus shown in FIG. In the figure, 1 is a crucible for melting and pressurizing, 2 is a heater coil, 3 is a pool for guiding a plunger 4, 5
Is a nozzle, 6 is a mold, 7 is a die cavity, and 10 is a magnesium alloy melt.

【0015】この装置全体は真空雰囲気及び不活性雰囲
気が自由に作れるようにボックスの中にある。マグネシ
ウム合金原料をそれぞれ秤量したのち、カルシア製るつ
ぼ1に入れ、ヒーターコイル2により高周波溶解した。
合金の融点より100℃高温に保たれたマグネシウム合
金溶湯10に、るつぼの上部に開口してあるノズルによ
りガスを導入し、該溶湯10を0.5kg/cm2 で加圧
することにより、湯溜り3に湯を導入しその後、プラン
ジャー4により300kg/cm2 で加圧し、金型6のダ
イキャビティ7に導入した。ノズル5の長さは10mmで
あり、通常のダイカスト(長さ5mm)に比べて長く設計
して降温を大きくした。金型6中に装入した熱電対での
測温結果よりノズル5内のマグネシウム合金溶湯はほぼ
融点であることが分かった。したがって、第一段冷却は
ノズル5の出口で完了した。その後、溶湯は第二段冷却
部である金型で凝固され金型との熱交換が続けられた。
十分冷却した後、金型から製品を取り出した。塗型剤と
し鉱物油などを薄く金型に塗布すると製品の取り出しが
容易になった。製品からサンプルを切り出し、組織を調
査したところ非晶質特有のハローパターンのX線回折図
が得られた。また、強度は硬さで比較したところリボン
材と同等であった。
The entire apparatus is in a box so that a vacuum atmosphere and an inert atmosphere can be created freely. After weighing each magnesium alloy raw material, it was placed in a calcia crucible 1 and subjected to high-frequency melting by a heater coil 2.
Gas is introduced into the magnesium alloy melt 10 kept at a temperature 100 ° C. higher than the melting point of the alloy by a nozzle opened at the upper part of the crucible, and the melt 10 is pressurized at 0.5 kg / cm 2 to form a pool Hot water was introduced into No. 3 and then pressurized by the plunger 4 at 300 kg / cm 2 , and introduced into the die cavity 7 of the mold 6. The length of the nozzle 5 is 10 mm, which is designed to be longer than the usual die casting (length 5 mm) to increase the temperature drop. From the temperature measurement result of the thermocouple charged in the die 6, it was found that the magnesium alloy melt in the nozzle 5 had almost the melting point. Therefore, the first stage cooling was completed at the outlet of the nozzle 5. After that, the molten metal was solidified in the mold, which is the second-stage cooling section, and heat exchange with the mold was continued.
After cooling sufficiently, the product was taken out from the mold. Applying a thin layer of mineral oil or the like as a mold coating agent made it easier to remove the product. When a sample was cut out from the product and examined for its structure, an X-ray diffraction pattern of a halo pattern peculiar to amorphous was obtained. Further, the strength was equivalent to that of the ribbon material when compared in hardness.

【0016】実施例2 Mg85Ni5 La5 Al4 Zr1 の組成になるようにそ
れぞれの元素を図4の溶解部のるつぼにセットした。融
点より100℃高い温度で溶湯をノズルより流出させ、
300rpm で回転する直径102mmの金型6に注湯し、
断面2mm×2mm、中心直径100mmの円柱材を作成し
た。
Example 2 Each element was set in the crucible of the melting part shown in FIG. 4 so that the composition was Mg 85 Ni 5 La 5 Al 4 Zr 1 . The molten metal is discharged from the nozzle at a temperature 100 ° C higher than the melting point
Pour into a mold 6 with a diameter of 102 mm that rotates at 300 rpm,
A columnar material having a cross section of 2 mm × 2 mm and a central diameter of 100 mm was prepared.

【0017】実施例3 表1、表2の合金を実施例2の方法で鋳造し、ガラス化
温度(Tg)、結晶化温度(Tx)を測定し、表3、表
4のΔT(=Tx−Tg)値を得た。比較例の鋳造品は
結晶化していたので105 K/sec 以上の冷却速度が得
られる片ロール法によりリボンを作りTg、Txを測定
した。その結果、Tx−Tg=ΔTの値が10K以上の
とき鋳造品は非晶質組織となっていることが分かる。
Example 3 The alloys of Tables 1 and 2 were cast by the method of Example 2, the vitrification temperature (Tg) and the crystallization temperature (Tx) were measured, and ΔT (= Tx) of Tables 3 and 4 was measured. -Tg) value was obtained. Since the cast product of the comparative example was crystallized, a ribbon was prepared by a single roll method capable of obtaining a cooling rate of 10 5 K / sec or more, and Tg and Tx were measured. As a result, it can be seen that the cast product has an amorphous structure when the value of Tx−Tg = ΔT is 10K or more.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表】4 [Table] 4

【0022】[0022]

【発明の効果】本発明により、鋳造で非晶質マグネシウ
ム合金バルク材が得られるようになるので、強度・軽量
化に優れた材料が安価に提供できる。
According to the present invention, since an amorphous magnesium alloy bulk material can be obtained by casting, a material excellent in strength and weight saving can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続冷却曲線の説明図である。FIG. 1 is an explanatory diagram of a continuous cooling curve.

【図2】二段冷却を説明する連続冷却曲線の説明図であ
る。
FIG. 2 is an explanatory diagram of a continuous cooling curve for explaining two-stage cooling.

【図3】加圧装置をもつ鋳造機の図である。FIG. 3 is a view of a casting machine with a pressure device.

【図4】遠心鋳造装置をもつ鋳造機の図である。FIG. 4 is a view of a casting machine having a centrifugal casting device.

【符合の説明】[Description of sign]

1 るつぼ 2 ヒーターコイル 3 湯溜り 4 プランジャー 5 ノズル 6 金型 10 マグネシウム合金溶湯 1 crucible 2 heater coil 3 hot water pool 4 plunger 5 nozzle 6 mold 10 magnesium alloy melt

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 45/00 C22F 1/06 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8−22 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 加藤 晃 宮城県仙台市太白区八木山本町2−36−1 サクセス 26 B101 (72)発明者 柴田 利介 宮城県仙台市青葉区米ケ袋1丁目5番12号 (72)発明者 山口 均 東京都中央区八重洲1丁目9番9号 帝国 ピストンリング株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location C22C 45/00 C22F 1/06 (72) Inventor Ken Masumoto 3-8 Uesugi, Aoba-ku, Sendai City, Miyagi Prefecture −22 (72) Inventor Akihisa Inoue Kawauchi Nobunchi, Aoba-ku, Sendai City, Miyagi Prefecture 11-806 (72) Inventor Akira Kato 2-36-1, Yagiyamamotocho, Taihaku-ku, Sendai City, Miyagi Prefecture 26 B101 (72) Inventor Ryosuke Shibata 1-5-12 Yonegabukuro, Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Inventor Hitoshi Yamaguchi 1-9-9 Yaesu, Chuo-ku, Tokyo Inside Teikoku Piston Ring Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mgab Alcde (式中;Mは
La、Ce、Mm(ミッシュメタル)、Y(イットリウ
ム)の一種または二種以上の元素であり、XはNi、C
uの一種又は二種以上の元素であり、ZはMn、Zn、
Zr、Tiの一種または二種以上であり、aは70〜9
0at%、bは2〜15at%、cは1〜9at%、d
は2〜15at%、eは0.1〜8at%であり、かつ
ガラス遷移温度(Tg)と結晶化温度(Tx)の差ΔT
=Tx−Tg>10Kである)組成をもつ溶湯を溶湯流
路において冷却速度Vcで冷却する第一段冷却ゾーンを
設け溶融温度近傍まで冷却した後、該溶湯を鋳型内に供
給し、ガラス遷移温度(Tg)まで第一段冷却よりも高
速で第二段冷却を行うことを特徴とする非晶質マグネシ
ウム合金の製造方法。但し、Vcは、Vcでガラス化遷
移温度まで冷却したときは一部結晶化が起こる冷却速度
である。
1. Mg a M b Al c X d Z e (wherein M is one or more elements of La, Ce, Mm (Misch metal), Y (yttrium), and X is Ni, C
u is one or more elements of z, and Z is Mn, Zn,
One or more of Zr and Ti, and a is 70 to 9
0 at%, b is 2 to 15 at%, c is 1 to 9 at%, d
Is 2 to 15 at%, e is 0.1 to 8 at%, and the difference ΔT between the glass transition temperature (Tg) and the crystallization temperature (Tx) is ΔT.
= Tx-Tg> 10K), a molten metal having a composition is provided with a first-stage cooling zone for cooling at a cooling rate Vc in a molten metal flow path, and after cooling to near the melting temperature, the molten metal is supplied into a mold to make a glass transition. A method for producing an amorphous magnesium alloy, characterized in that the second stage cooling is performed at a higher speed than the first stage cooling to a temperature (Tg). However, Vc is a cooling rate at which partial crystallization occurs when cooled to the vitrification transition temperature at Vc.
【請求項2】 第一段冷却において102 K/sec 以上
の冷却速度で冷却することを特徴とする請求項1記載の
非晶質マグネシウム合金の製造方法。
2. The method for producing an amorphous magnesium alloy according to claim 1, wherein the cooling is performed at a cooling rate of 10 2 K / sec or more in the first stage cooling.
【請求項3】 第一段冷却を行う溶湯流路がノズル形状
であり鋳型直前に設置されていることを特徴とする請求
項1記載の非晶質マグネシウム合金の製造方法。
3. The method for producing an amorphous magnesium alloy according to claim 1, wherein the molten metal flow path for the first-stage cooling has a nozzle shape and is installed immediately before the mold.
【請求項4】 プランジャー加圧により溶湯を溶湯流路
から鋳型に圧入することを特徴とする請求項1記載の非
晶質マグネシウム合金の製造方法。
4. The method for producing an amorphous magnesium alloy according to claim 1, wherein the molten metal is pressed into the mold from the molten metal flow path by pressing the plunger.
【請求項5】 鋳型を高速回転させ、溶湯に重力加速度
50G以上の遠心力を与えて加圧することを特徴とする
請求項1記載の非晶質マグネシウム合金の製造方法。
5. The method for producing an amorphous magnesium alloy according to claim 1, wherein the mold is rotated at a high speed, and the molten metal is pressurized by applying a centrifugal force of 50 G or more to a gravity acceleration.
JP3074679A 1991-03-14 1991-03-14 Manufacturing method of amorphous magnesium alloy Expired - Fee Related JP2963225B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3074679A JP2963225B2 (en) 1991-03-14 1991-03-14 Manufacturing method of amorphous magnesium alloy
EP92302005A EP0503880B1 (en) 1991-03-14 1992-03-10 Amorphous magnesium alloy and method for producing the same
DE69222455T DE69222455T2 (en) 1991-03-14 1992-03-10 Amorphous magnesium-based alloy and process for producing this alloy
US07/852,019 US5250124A (en) 1991-03-14 1992-03-16 Amorphous magnesium alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074679A JP2963225B2 (en) 1991-03-14 1991-03-14 Manufacturing method of amorphous magnesium alloy

Publications (2)

Publication Number Publication Date
JPH0681054A true JPH0681054A (en) 1994-03-22
JP2963225B2 JP2963225B2 (en) 1999-10-18

Family

ID=13554155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074679A Expired - Fee Related JP2963225B2 (en) 1991-03-14 1991-03-14 Manufacturing method of amorphous magnesium alloy

Country Status (1)

Country Link
JP (1) JP2963225B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083964A1 (en) * 2001-04-11 2002-10-24 Yonsei University Quasi-crystalline phase hardened magnesium alloy with excellent hot formability and method for preparing the same
WO2006095999A1 (en) * 2005-03-08 2006-09-14 Dong-Hyun Bae Mg alloys containing misch metal, manufacturing method of wrought mg alloys containing misch metal, and wrought mg alloys thereby
KR100671195B1 (en) * 2005-03-08 2007-01-25 주식회사 지알로이테크놀로지 High temperature structural Mg alloys containing misch metal
WO2007111342A1 (en) * 2006-03-20 2007-10-04 National University Corporation Kumamoto University High-strength high-toughness magnesium alloy and method for producing the same
CN100430501C (en) * 2003-09-16 2008-11-05 沈阳工业大学 Method for crude magnesium refining, alloying, magnesium alloy continuous casting and smelting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083964A1 (en) * 2001-04-11 2002-10-24 Yonsei University Quasi-crystalline phase hardened magnesium alloy with excellent hot formability and method for preparing the same
CN100430501C (en) * 2003-09-16 2008-11-05 沈阳工业大学 Method for crude magnesium refining, alloying, magnesium alloy continuous casting and smelting
WO2006095999A1 (en) * 2005-03-08 2006-09-14 Dong-Hyun Bae Mg alloys containing misch metal, manufacturing method of wrought mg alloys containing misch metal, and wrought mg alloys thereby
KR100671195B1 (en) * 2005-03-08 2007-01-25 주식회사 지알로이테크놀로지 High temperature structural Mg alloys containing misch metal
WO2007111342A1 (en) * 2006-03-20 2007-10-04 National University Corporation Kumamoto University High-strength high-toughness magnesium alloy and method for producing the same
US8333924B2 (en) 2006-03-20 2012-12-18 National University Corporation Kumamoto University High-strength and high-toughness magnesium alloy and method for manufacturing same
JP5239022B2 (en) * 2006-03-20 2013-07-17 国立大学法人 熊本大学 High strength and high toughness magnesium alloy and method for producing the same

Also Published As

Publication number Publication date
JP2963225B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
US5250124A (en) Amorphous magnesium alloy and method for producing the same
JP2815215B2 (en) Manufacturing method of amorphous alloy solidified material
EP1499461B1 (en) Thermoplastic casting of amorphous alloys
CN101543885B (en) Device and method for continuous block metal glass shaping
WO2000032833A1 (en) High-ductility nano-particle dispersion metallic glass and production method therefor
JP2002256401A (en) Amorphous copper base alloy
CN104942271A (en) Beryllium-aluminum alloy sheet and manufacturing method thereof
JP3479444B2 (en) Zirconium-based amorphous alloy
JP3392509B2 (en) Manufacturing method of amorphous alloy coated member
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP2963225B2 (en) Manufacturing method of amorphous magnesium alloy
KR101225123B1 (en) Method for manufacturing plate article made of armophous alloy or armophous composite
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
US20220118511A1 (en) Robust ingot for the production of components made of metallic solid glasses
US3445920A (en) Aluminum base alloy production
JPS6072646A (en) Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
JP3776069B2 (en) Method for producing magnesium rapidly solidified alloy products
US3713477A (en) Method of manufacturing metallic short fibers
KR101193065B1 (en) Method for fabricating plate of amorphous metal by using Strip Casting process and the device thereof
Bakkal et al. Manufacturing techniques of bulk metallic glasses
KR100660225B1 (en) Fabrication method of bulk amorphous and crystalline structure composit plate and the device thereof
CN111496199A (en) Device for increasing cooling speed of cast ingot and application method thereof
KR100498569B1 (en) Ni-based Amorphous Alloy Compositions
KR100633255B1 (en) Ni-based amorphous alloys containing multi-components
JPS63123550A (en) Continuous cast block for berylium-copper alloy and its continuous casting method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees