JPH0680836B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method

Info

Publication number
JPH0680836B2
JPH0680836B2 JP61161018A JP16101886A JPH0680836B2 JP H0680836 B2 JPH0680836 B2 JP H0680836B2 JP 61161018 A JP61161018 A JP 61161018A JP 16101886 A JP16101886 A JP 16101886A JP H0680836 B2 JPH0680836 B2 JP H0680836B2
Authority
JP
Japan
Prior art keywords
electrode layer
layer
semiconductor layer
gap
electrode layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61161018A
Other languages
Japanese (ja)
Other versions
JPS6316677A (en
Inventor
精一 木山
秀記 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61161018A priority Critical patent/JPH0680836B2/en
Publication of JPS6316677A publication Critical patent/JPS6316677A/en
Publication of JPH0680836B2 publication Critical patent/JPH0680836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として時計等の電源として用いる光起電力装
置の製造方法に関するものである。
The present invention relates to a method of manufacturing a photovoltaic device mainly used as a power source for a timepiece or the like.

〔技術的背景〕[Technical background]

複数の光起電力素子を外部直列接続する場合、通常は第
7図に示す如く構成されている。第7図は従来の光起電
力装置を示す模式的平面図、第8図は第7図のVIII-VII
I線による断面図であり、ステンレス等の基板上に高分
子化合物製の絶縁性膜を設けて構成した絶縁性基板21,
メタルマスクを用いて絶縁性基板21の周縁側に延在する
延長部分22p,22q,22rを備えた複数の金属電極層22a,22
b,22cを相互の間に間隙26ab,26bcを隔てて形成し、次い
でこれら金属電極層22a,22b,22c及びこれらの間隙22ab,
22bcにわたって光活性層を有する半導体層23を積層形成
し、更にこの半導体層23の表面にメタルマスクを用いて
夫々絶縁性基板21の周縁側に延在する延長部分24p,24q,
24rを備える透明電極層24a,24b,24cを形成し、透明電極
層24a,24bの延長部分24p,24qは相隣する透明電極24b,24
c下に位置する金属電極層22b,22cの延長部分22q,22rと
重畳させてある。これによって夫々共通の半導体層23を
各金属電極層22a,22b,22cと透明電極層24a,24b,24cとで
挟んだ3個の光起電力素子を直列接続し、金属電極層22
aの延長部分22p,透明電極層24cの延長部分22rを夫々端
子とする光起電力装置を製造するようになっている。
When a plurality of photovoltaic elements are externally connected in series, they are usually constructed as shown in FIG. Fig. 7 is a schematic plan view showing a conventional photovoltaic device, and Fig. 8 is VIII-VII in Fig. 7.
Is a cross-sectional view by the line I, an insulating substrate 21, which is formed by providing an insulating film made of a polymer compound on a substrate such as stainless steel,
A plurality of metal electrode layers 22a, 22 provided with extended portions 22p, 22q, 22r extending to the peripheral side of the insulating substrate 21 using a metal mask
b, 22c are formed with gaps 26ab, 26bc between them, and then these metal electrode layers 22a, 22b, 22c and the gaps 22ab,
A semiconductor layer 23 having a photoactive layer is laminated over 22bc, and further extended portions 24p, 24q, which extend to the peripheral side of the insulating substrate 21 by using a metal mask on the surface of the semiconductor layer 23, respectively.
The transparent electrode layers 24a, 24b, 24c having 24r are formed, and the extended portions 24p, 24q of the transparent electrode layers 24a, 24b are adjacent transparent electrodes 24b, 24.
The extended portions 22q and 22r of the metal electrode layers 22b and 22c located under c are overlapped. As a result, three photovoltaic elements sandwiching the common semiconductor layer 23 between the metal electrode layers 22a, 22b, 22c and the transparent electrode layers 24a, 24b, 24c are connected in series, and the metal electrode layer 22
A photovoltaic device having the extended portion 22p of a and the extended portion 22r of the transparent electrode layer 24c as terminals is manufactured.

ところで上述した如き従来の製造方法にあっては金属電
極層22a,22b,22c、並びに透明電極層24a,24b,24cを夫々
メタルマスクを用いて分離した態様で形成するが、メタ
ルマスクを用いた場合は、金属電極層22a,22b,22c間の
間隙26ab,26bcは0.3mm程度の、また透明電極層24a,24b,
24c間の間隙は材料の回り込みを防止するため0.6mm程度
の幅となるのを避けられない。
By the way, in the conventional manufacturing method as described above, the metal electrode layers 22a, 22b, 22c, and the transparent electrode layers 24a, 24b, 24c are formed in a mode in which they are separated by using a metal mask, but a metal mask is used. In this case, the gaps 26ab, 26bc between the metal electrode layers 22a, 22b, 22c are about 0.3 mm, and the transparent electrode layers 24a, 24b,
It is unavoidable that the gap between 24c has a width of about 0.6 mm to prevent the material from wrapping around.

このような間隙は基板の有効面積を高めるうえでの大き
な障害となることは勿論、このような光起電力装置を、
例えば腕時計用電極とするため、文字盤に適用したとき
は上述した光起電力素子間の間隙が目立って時計自体の
意匠的効果を損なう結果となる等の問題があった。
Such a gap is of course a major obstacle to increasing the effective area of the substrate.
For example, since it is used as a wristwatch electrode, when it is applied to a dial, there is a problem that the above-mentioned gaps between the photovoltaic elements are conspicuous, resulting in impairing the design effect of the timepiece itself.

〔従来技術〕[Prior art]

このため従来にあってはフォトリソグラフィ法にて透明
電極等の分離形成を行う方法、或いは予め一体に形成し
た後レーザビームにてスクライブする方法が行われてい
る。
For this reason, conventionally, a method of separately forming a transparent electrode or the like by a photolithography method or a method of scribing with a laser beam after integrally forming in advance has been performed.

レーザビームによるスクライブ加工法を用いる場合につ
いてその具体的内容を示すと第9,10図の如くである。
The specific contents of the case of using the scribing method using a laser beam are as shown in FIGS.

第9,10図はレーザビームによるスクライブ加工法を用い
る場合の光起電力装置の製造工程を示す模式図であり、
絶縁性基板31上に金属電極層32、半導体層33、透明電極
層34をこの順序に積層形成する。なお、金属電極層32,
透明電極層34には夫々一定間隔で絶縁性基板31の周縁側
に延在する延長部分32p,32q,32r,32s、34p,34q,34r,34s
を夫々形成し、延長部分32p,32q,32rを相隣する延長部
分34q,34r,34sと重畳せしめておく。ついで第10図に示
す如く相互に重畳する延長部分32pと34q、32qと34r、32
rと34sとの間において各金属電極層32、半導体層33、透
明電極層34をレーザビームを用いてスクライブし、夫々
を4個に分割加工して4個の光起電力素子を直接接続し
た状態の光起電力装置を製造している。
FIGS. 9 and 10 are schematic views showing a manufacturing process of a photovoltaic device when using a scribing method using a laser beam,
A metal electrode layer 32, a semiconductor layer 33, and a transparent electrode layer 34 are laminated in this order on an insulating substrate 31. Incidentally, the metal electrode layer 32,
The transparent electrode layer 34 has extended portions 32p, 32q, 32r, 32s, 34p, 34q, 34r, 34s extending at the peripheral side of the insulating substrate 31 at regular intervals.
Are formed respectively, and the extension portions 32p, 32q, 32r are overlapped with the adjacent extension portions 34q, 34r, 34s. Then, as shown in Fig. 10, the extension parts 32p and 34q, 32q and 34r, 32 which overlap each other are shown.
Between r and 34s, the metal electrode layer 32, the semiconductor layer 33, and the transparent electrode layer 34 were scribed by using a laser beam, and each was divided into four pieces to be directly connected to the four photovoltaic elements. Manufacture a photovoltaic device in the state.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで上述した如き従来方法のうちフォトリソグラフ
ィ法は光起電力素子間の間隙を0.3mm程度までは縮小で
きるが、製造工数が多く、製品コストの上昇が避けられ
ないという問題点がある。これに対してレーザスクライ
ブ加工法は相互の間隙を20〜100μm程度とすることが
出来る利点を有するが、その反面加工時に形成された溶
融垂れ等の残留物が金属電極層、透明電極層に接触して
短絡状態を形成する外、半導体層がレーザビームによる
アニーリング作用を受けてこの部分が微結晶化、或いは
結晶化して低抵抗部分が形成され、同様に短絡状態が発
生する等の問題があった。
By the way, among the conventional methods as described above, the photolithography method can reduce the gap between the photovoltaic elements to about 0.3 mm, but there is a problem that the number of manufacturing steps is large and an increase in product cost cannot be avoided. On the other hand, the laser scribing method has an advantage that the mutual gap can be set to about 20 to 100 μm, but on the other hand, the residue such as melt dripping formed during the processing contacts the metal electrode layer and the transparent electrode layer. In addition to forming a short circuit state, there is a problem that the semiconductor layer is annealed by the laser beam and this portion is crystallized or crystallized to form a low resistance portion, which similarly causes a short circuit state. It was

更に、レーザビームによる加工にあっては、照射位置を
正確に制御すると共に、レーザビームを発するレーザ装
置のオン、オフ制御を正確に行う必要があることから、
このための加工は非常に煩雑なものとなっていた。
Furthermore, in processing with a laser beam, it is necessary to accurately control the irradiation position and to accurately control the on / off of the laser device that emits the laser beam.
Processing for this has been very complicated.

本発明はかかる事情に鑑みなされたものであって、その
目的とすることろは各光起電力素子内における短絡状態
の発生を防止し、しかも工数が少なく、製造コストの低
減が図れる光起電力装置の製造方法を提供するにある。
The present invention has been made in view of such circumstances, and its purpose is to prevent the occurrence of a short-circuit state in each photovoltaic element, and to reduce the number of man-hours and reduce the manufacturing cost. A method of manufacturing a device is provided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法にあっては絶縁性基板の表面に、基板の周縁
側に延在させた延長部分を有すると共に、相互間で所要
の間隔を隔てるように隣接配置された第1電極層と、前
記延長部分を除く第1電極層の表面、及び第1電極層の
間隙部の表面が露出するような開口部を備えたマスク
を、上記第1電極層側に配置することに因り、その露出
部分に形成された光活性層を含む半導体層と、前記各第
1電極層と対応する位置から基板の周縁側に延在され、
第1電極間の間隙部の延長上に前記絶縁性基板表面が露
出する領域を介在させて相隣する他の第1電極層の延長
部分と重畳する延長部分を有する第2電極層とをこの順
序で積層形成し、前記第2電極層、又はこれと前記半導
体層とに、前記第1電極層間の間隙に相当する部分に沿
ってエネルギービームを照射することにより、これらを
分断すると共に、その分断にあたっては上記マスクを、
上記半導体層形成時と同様の位置に配置することで、上
記エネルギービームの照射による分断が上記開口部内の
前記第2電極層、又はこれと前記半導体層とに限られる
ことを特徴とすることにある。
According to the method of the present invention, the surface of the insulating substrate has an extended portion extending toward the peripheral edge of the substrate, and the first electrode layers are arranged adjacent to each other with a required space between them, By disposing a mask having an opening for exposing the surface of the first electrode layer excluding the extended portion and the surface of the gap portion of the first electrode layer on the side of the first electrode layer, the exposed portion A semiconductor layer including a photoactive layer formed on the first electrode layer, and extending from a position corresponding to each of the first electrode layers to the peripheral side of the substrate,
A second electrode layer having an extended portion that overlaps an extended portion of another adjacent first electrode layer with an area where the surface of the insulating substrate is exposed being interposed on the extension of the gap between the first electrodes. The layers are formed in order, and the second electrode layer, or the semiconductor layer and the second electrode layer are irradiated with an energy beam along a portion corresponding to a gap between the first electrode layers to divide them, and at the same time, When dividing, use the above mask,
By disposing at the same position as when forming the semiconductor layer, the division by the irradiation of the energy beam is limited to the second electrode layer in the opening, or the second electrode layer and the semiconductor layer in the opening. is there.

〔作用〕[Action]

本発明方法にあってはエネルギビームによって分割加工
を施しても短絡状態が生じることが少なく、また各分割
線は細くて目立ない状態とすることが可能となる。
In the method of the present invention, a short-circuit state is less likely to occur even if division processing is performed with an energy beam, and each division line can be made thin and inconspicuous.

更に、本発明方法では、エネルギービームの照射によっ
て、第2電極層、または半導体層を分断するに際して、
上記マスクを使用することで、その照射は上記開口部に
よって露出する部分、即ち半導体層が形成され得る部分
に限られることから、エネルギービームの照射につい
て、不所望な部分への照射をそのマスクにより容易に防
止できることとなり、加えて、煩雑なレーザのオン、オ
フを低減することが可能となる。
Furthermore, in the method of the present invention, when the second electrode layer or the semiconductor layer is divided by irradiation with an energy beam,
By using the mask, the irradiation is limited to the part exposed by the opening, that is, the part where the semiconductor layer can be formed. This can be easily prevented, and in addition, it is possible to reduce complicated on / off of the laser.

〔実施例〕〔Example〕

以下本発明方法を腕時計用光起電力装置の製造に適用し
た場合につき図面に基づき具体的に説明する。第1,2,3,
4図は本発明方法による製造工程を示す模式的平面図で
あり、図中1はステンレス板の表面に高分子化合物製の
絶縁材等を被覆形成して構成した絶縁性基板を示してい
る。このような絶縁性基板1の表面に先ず第1図に示す
如くメタルマスクを用いて4分割された第1電極層たる
金属電極層2a,2b,2c,2d、並びにこれらから独立した端
子部2eを1000〜5000Åの厚さに例えば真空蒸着法、或い
はスパッタリング法等にて形成する。金属電極層2a,2b,
2c,2dはいずれも本体部分は矩形状をなし、2個ずつ2
列に平行に並べて相隣する対向辺間に一定の間隔lを隔
てた状態で形成されている。
The case where the method of the present invention is applied to the manufacture of a photovoltaic device for a wristwatch will be specifically described below with reference to the drawings. 1st, 2nd, 3rd,
FIG. 4 is a schematic plan view showing a manufacturing process according to the method of the present invention. In the figure, reference numeral 1 shows an insulating substrate formed by coating an insulating material made of a polymer compound on the surface of a stainless plate. First, metal electrode layers 2a, 2b, 2c, 2d, which are first electrode layers divided into four parts by using a metal mask as shown in FIG. 1, on the surface of such an insulating substrate 1 and a terminal portion 2e independent of them. Is formed to a thickness of 1000 to 5000Å by, for example, a vacuum vapor deposition method or a sputtering method. Metal electrode layers 2a, 2b,
Both 2c and 2d have a rectangular shape in the main body, and each 2
They are formed in parallel with each other and are formed in a state in which a constant space 1 is provided between the opposing sides adjacent to each other.

絶縁性基板1の中央部側に位置させた各金属電極層2a,2
b,2c,2dの一隅部はいずれも1/4円弧状に欠除してあり、
また絶縁性基板1の周縁部側に位置する各金属電極層2
a,2b,2c,2dの周方向の同側に位置する他の隅部からは夫
々絶縁性基板1の周縁部側に向けて延在する延長部分2
p,2q,2r,2sが形成されている。各延長部分2p,2q,2rはい
ずれも平面視でL形に形成されており、各金属電極層2
a,2b,2cにおける周方向の同側に位置する隅部から絶縁
性基板1の周縁部に向けて延在し、途中から相隣する他
の金属電極層2b,2c,2dの外周に沿うようこれとの間に一
定の間隔lを隔てて屈折して形成されている。
Each metal electrode layer 2a, 2 located on the central side of the insulating substrate 1
All corners of b, 2c, 2d are cut out in 1/4 arc shape,
In addition, each metal electrode layer 2 located on the peripheral side of the insulating substrate 1
Extension portions 2 extending from the other corners located on the same side in the circumferential direction of a, 2b, 2c, 2d toward the peripheral edge side of the insulating substrate 1 respectively.
p, 2q, 2r, 2s are formed. Each of the extended portions 2p, 2q, 2r is formed in an L shape in plan view, and each metal electrode layer 2
a, 2b, 2c extends from the corners located on the same side in the circumferential direction toward the peripheral edge of the insulating substrate 1, and extends along the outer circumference of other adjacent metal electrode layers 2b, 2c, 2d from the middle. It is formed so as to be refracted at a constant interval l from this.

なお、延長部分2sは他の延長部分2p等よりも広幅で金属
電極層2dの一隅部から絶縁性基板1の周辺に向けて直線
的に延在せしめてあり、この側方であって金属電極層2a
の外方にこれとの間に間隙lを隔てて端子部2eが形成さ
れている。
The extended portion 2s is wider than the other extended portions 2p and the like and linearly extends from one corner of the metal electrode layer 2d toward the periphery of the insulative substrate 1. Layer 2a
A terminal portion 2e is formed on the outer side of this with a gap 1 therebetween.

金属電極層2a,2b,及び端子部2eの形成が終了すると、前
記延長部分2p,2q,2r,2sを除く金属電極層の表面、及び
金属電極層の間隙部の表面が露出するような開口部を備
えたメタルマスクをその金属電極層上を覆うように配置
することで、第2図に示す如くアモルファス半導体等の
光活性層を有する半導体層3を4000〜6000Åの厚さに形
成する。この半導体層3の形成或は延長部分2p〜2sの先
端側過半部を除く、4個の金属電極層2a〜2d及びこの間
に形成されている間隙の全体に渡り、且つ金属電極層2a
〜2dの外周縁よりも外方に若干ははみ出した状態で矩形
状に形成されるが、その周縁部と金属電極層2a〜2cの延
長部分2p,2q,2rのうち相隣する他の金属電極層2b,2c,2d
の外周に沿うよう屈折形成されている部分との間には絶
縁性基板1が露出する間隙mが残されるようにしてあ
る。
When the formation of the metal electrode layers 2a, 2b and the terminal portion 2e is completed, the surface of the metal electrode layer excluding the extended portions 2p, 2q, 2r, 2s and the opening of the gap portion of the metal electrode layer are exposed. By disposing a metal mask having a portion so as to cover the metal electrode layer, a semiconductor layer 3 having a photoactive layer such as an amorphous semiconductor is formed to a thickness of 4000 to 6000Å as shown in FIG. Except for the formation or extension of the semiconductor layer 3 or the upper half of the extended portions 2p to 2s, the four metal electrode layers 2a to 2d and the entire gap formed therebetween, and the metal electrode layer 2a.
~ 2d is formed in a rectangular shape slightly protruding outward from the outer peripheral edge of the metal electrode layers 2a to 2c, and other adjacent metal of the extended portions 2p, 2q, 2r of the metal electrode layers 2a to 2c. Electrode layers 2b, 2c, 2d
A gap m for exposing the insulating substrate 1 is left between the portion and the portion that is bent and formed along the outer periphery of the insulating substrate 1.

次いでこの半導体層3の表面に第2電極層たる透明電極
層4を第3図に示す如くメタルマスクを用いて500〜200
0Åの厚さに形成する。
Then, a transparent electrode layer 4 as a second electrode layer is formed on the surface of the semiconductor layer 3 by using a metal mask as shown in FIG.
Form to a thickness of 0Å.

この透明電極層4の形成或は半導体層3の表面であっ
て、前記延長部分2p,2q,2r,2s及び端子部2eを除く金属
電極層2a,2b,2c,2dの全面及びこれらの間に形成される
間隙の全面にわたって矩形状に形成され、且つ各金属電
極層2a,2b,2c,2dと対応する部分であって、延長部分2p,
2q,2r,2sを形成した隅部とは間隔lを隔てて反対側に位
置する他の隅部と対応する位置夫々から絶縁性基板1の
周縁部側に向けて直線状の延長部分4p,4q,4r,4sを延在
させ、その先端部を前記金属電極2a,2b,2cの延長部分2
p,2q,2r及び端子部2eと重畳せしめてある。
On the surface of the transparent electrode layer 4 or the surface of the semiconductor layer 3, the metal electrode layers 2a, 2b, 2c, 2d except for the extension portions 2p, 2q, 2r, 2s and the terminal portion 2e and between them. Formed in a rectangular shape over the entire surface of the gap formed in, and a portion corresponding to each metal electrode layer 2a, 2b, 2c, 2d, the extended portion 2p,
2q, 2r, 2s is formed in a linear extended portion 4p toward the peripheral edge of the insulating substrate 1 from positions corresponding to other corners located on the opposite side with a distance 1 between them. 4q, 4r, 4s extend, the tip portion of the extended portion 2 of the metal electrodes 2a, 2b, 2c
It is superposed on p, 2q, 2r and the terminal portion 2e.

これによって延長部分2p,2q,2rとこれと重畳する延長部
分4q,4r,4sと半導体層3とで囲われる部分には夫々金属
電極層2a〜2d間の間隙lの延長上に位置して絶縁性基板
1の表面が露出する領域1a,1b,1cが形成され、また延長
部分2sと延長部分4pとの間隙の延長上に位置して絶縁性
基板1の表面が露出する領域1dが形成された状態となっ
ている。
As a result, the portions surrounded by the extended portions 2p, 2q, 2r and the extended portions 4q, 4r, 4s and the semiconductor layer 3 which overlap with each other are located on the extension of the gap l between the metal electrode layers 2a to 2d, respectively. Regions 1a, 1b, 1c where the surface of the insulating substrate 1 is exposed are formed, and a region 1d where the surface of the insulating substrate 1 is exposed is formed on the extension of the gap between the extension portion 2s and the extension portion 4p. It is in the state of being

次に第4図に示す如くレーザビームを用いて各金属電極
層2a〜2d間の間隔lの幅方向中央に沿って前記した絶縁
性基板1の露出領域1aから1cに、また1bから1dにわたる
よう十文字状にスクライブ加工を行う。この加工には先
に半導体層3を積層形成するときに用いたメタルマスク
を半導体層3を形成する際に設定したのと同じ位置に設
定する。これによって、レーザビームはメタルマスクの
開口部内に露出した透明電極層及び半導体層の領域のみ
をスクライブできることとなる。即ち、レーザビームに
よる照射が不所望な、半導体層が形成されていない部分
についての照射を抑圧することができることとなる。更
には、レーザビームはレーザ装置のオン、オフ制御によ
ってスクライブ加工位置を決める煩わしさがなく、オン
状態のままメタルマスク上を移動させてスクライブ加工
位置に移し順次連続的に行うことが出来る。
Next, as shown in FIG. 4, a laser beam is used to cover the exposed regions 1a to 1c of the insulating substrate 1 and 1b to 1d along the widthwise center of the space 1 between the metal electrode layers 2a to 2d. Scribing into a cross shape. For this processing, the metal mask used when forming the semiconductor layer 3 in advance is set at the same position as that set when forming the semiconductor layer 3. As a result, the laser beam can scribe only the regions of the transparent electrode layer and the semiconductor layer exposed in the opening of the metal mask. That is, it is possible to suppress the irradiation of the portion where the semiconductor layer is not formed, in which the irradiation with the laser beam is undesired. Further, the laser beam does not have to be troublesome to determine the scribing position by controlling the on / off of the laser device, and can be moved on the metal mask in the on state and moved to the scribing position for continuous and sequential operation.

このスクライブ加工深さは少なくとも透明電極層4を4
分割し得る深さであればよいが、透明電極層4及び半導
体層3ともに分割するよう加工を施してもよい。
The scribing depth is at least 4 for the transparent electrode layer 4.
The depth may be such that it can be divided, but the transparent electrode layer 4 and the semiconductor layer 3 may be processed so as to be divided.

レーザビームとしてはQスイッチ付YAGレーザ装置(波
長:1.06μm又は0.53μm)等が用いられ出力0.05〜0.2
W、走査速度を20mm/秒〜100mm/秒程度に設定して行われ
る。
As the laser beam, a YAG laser device with a Q switch (wavelength: 1.06 μm or 0.53 μm) is used, and the output is 0.05 to 0.2.
W, scanning speed is set to about 20 mm / sec to 100 mm / sec.

これによって金属電極層2a,2b,2c,2dと透明電極層4a,4
b,4c,4dとの間に半導体層3a,3b,3c,3dを挟んだ態様の4
個の光起電力素子が直列接続され、延長部分2s、4pを夫
々端子とする光起電力装置が構成されることとなる。
Thereby, the metal electrode layers 2a, 2b, 2c, 2d and the transparent electrode layers 4a, 4
4 of the mode in which the semiconductor layers 3a, 3b, 3c, 3d are sandwiched between b, 4c, 4d
The photovoltaic elements are connected in series, and a photovoltaic device having the extension portions 2s and 4p as terminals is configured.

レーザスクライブ加工された分割面には加工残留物が形
成され、また半導体層3に微結晶化、結晶化した部分が
生じるが、金属電極層2a,2b,2c,2d間はメタルマスクを
用いてその間隔が0.3mm程度に設定されているのに対
し、レーザスクライブにより分割された部分の間隙は20
〜100μm程度であり、分割面が金属電極層2a〜2dと接
触することがなく、短絡は生じない。
A processing residue is formed on the laser-scribed dividing surface, and a microcrystallized or crystallized portion is generated in the semiconductor layer 3. A metal mask is used between the metal electrode layers 2a, 2b, 2c, 2d. The gap is set to about 0.3 mm, while the gap of the part divided by laser scribing is 20 mm.
It is about 100 μm, the divided surface does not come into contact with the metal electrode layers 2a to 2d, and a short circuit does not occur.

なお第2図に示す半導体層3の形成時に、その表面積を
広くするため第5図に示す如く半導体層3の周縁が金属
電極層2a〜2dの外周縁をはみ出してその延長部分2p,2q,
2r,2sにおける周方向に屈折している部分にわたるよう
形成することも考えられる。この場合は第6図に示す如
く透明電極層4を形成してレーザスクライブによる透明
電極層4,半導体層3を分割すれば構造的には前記第4図
に示した場合と同様に4個の光起電力素子を直列接続し
た光起電力装置を構成することが可能である。ただこの
場合はレーザスクライブ加工による半導体層3の分割面
が金属電極層2a,2b,2cの延長部分2p,2q,2rと直接接触す
ることとなるため、半導体層3の分断面と金属電極層2
a、2b、2cの延長部分2p、2q、2rを通じて透明電極層4a,
4b,4cと金属電極層2a,2b,2cとが短絡状態となることが
あり、機能上望ましくない状態となる。
When the semiconductor layer 3 shown in FIG. 2 is formed, the peripheral edge of the semiconductor layer 3 protrudes from the outer peripheral edges of the metal electrode layers 2a to 2d and its extended portions 2p, 2q,
It is also conceivable to form it so as to cover the portion of 2r, 2s that is bent in the circumferential direction. In this case, if the transparent electrode layer 4 is formed as shown in FIG. 6 and the transparent electrode layer 4 and the semiconductor layer 3 by laser scribing are divided, structurally, as in the case shown in FIG. It is possible to configure a photovoltaic device in which photovoltaic elements are connected in series. However, in this case, the divided surface of the semiconductor layer 3 by the laser scribing process comes into direct contact with the extended portions 2p, 2q, 2r of the metal electrode layers 2a, 2b, 2c. 2
Transparent electrode layers 4a, 2b, 2c through the extension 2p, 2q, 2r
The 4b, 4c and the metal electrode layers 2a, 2b, 2c may be in a short circuit state, which is a functionally undesirable state.

〔効果〕〔effect〕

以上の如く本発明方法にあっては、第1電極層の延長部
分と第2電極層の延長部分とは第1電極層間の間隙の延
長上に絶縁性基板表面が露出する領域を介在させて相互
に重畳せしめるように第1電極,第2電極を形成するか
ら第1電極層間の間隙に沿って第2電極層又はこれと半
導体層とを分断したとき、半導体層の分断面がいずれの
延長部分とも接することがなく、半導体層の微結晶化に
よる電気的損失が少なくて済み、またその半導体層の微
結晶化に基づく短絡状態を抑圧することができる。更に
はエネルギービームを用いて分断を行うとき半導体層の
形成に用いたメタルマスクを用いることが可能となって
エネルギビームの操作が容易となり、製造能率の向上が
図れるなど本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, the extended portion of the first electrode layer and the extended portion of the second electrode layer are provided with an area where the surface of the insulating substrate is exposed on the extension of the gap between the first electrode layers. Since the first electrode and the second electrode are formed so as to be overlapped with each other, when the second electrode layer or the semiconductor layer is separated from the second electrode layer along the gap between the first electrode layers, the divided section of the semiconductor layer is any extension. There is no contact with the portion, electrical loss due to microcrystallization of the semiconductor layer is small, and a short-circuit state due to microcrystallization of the semiconductor layer can be suppressed. Further, when the division is performed using the energy beam, the metal mask used for forming the semiconductor layer can be used, the operation of the energy beam is facilitated, and the manufacturing efficiency can be improved. It plays.

【図面の簡単な説明】[Brief description of drawings]

第1,2,3,4図は本発明方法による製造工程を示す模式
図、第5,6図は本発明の方法の工程上望ましくない場合
の例を示す模式図、第7図は従来方法で製造した光起電
力装置の模式的平面図、第8図は第7図のVIII-VIII線
による断面図、第9,10図は従来方法のレーザビームによ
るスクライブ加工工程を示す模式図である。 1…絶縁性基板、2a,2b,2c,2d…金属電極層、2e…端子
部、2p,2q,3r,2s…延長部分、3…半導体層、3a,3b,3c,
3d…分割半導体層、4…透明電極層、4a,4b,4c,4d…分
割透明電極層、4p,4q,4r,4s…延長部分
1, 2, 3, 4 are schematic diagrams showing the manufacturing process by the method of the present invention, FIGS. 5, 6 are schematic diagrams showing an example in the case where the process of the present invention is not desirable, and FIG. 7 is a conventional method. Fig. 8 is a schematic plan view of the photovoltaic device manufactured in Fig. 8, Fig. 8 is a cross-sectional view taken along the line VIII-VIII in Fig. 7, and Figs. 9 and 10 are schematic views showing a scribing process using a laser beam of a conventional method. . 1 ... Insulating substrate, 2a, 2b, 2c, 2d ... Metal electrode layer, 2e ... Terminal part, 2p, 2q, 3r, 2s ... Extension part, 3 ... Semiconductor layer, 3a, 3b, 3c,
3d ... divided semiconductor layer, 4 ... transparent electrode layer, 4a, 4b, 4c, 4d ... divided transparent electrode layer, 4p, 4q, 4r, 4s ... extended portion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板の表面に、基板の周縁側に延在
させた延長部分を有すると共に、相互間で所要の間隔を
隔てるように隣接配置された第1電極層と、 前記延長部分を除く第1電極層の表面、及び第1電極層
の間隙部の表面が露出するような開口部を備えたマスク
を、上記第1電極層側に配置することに因り、その露出
部分に形成された光活性層を含む半導体層と、 前記各第1電極層と対応する位置から基板の周縁側に延
在され、第1電極間の間隙部の延長上に前記絶縁性基板
表面が露出する領域を介在させて相隣する他の第1電極
層の延長部分と重畳する延長部分を有する第2電極層と
をこの順序で積層形成し、 前記第2電極層、又はこれと前記半導体層とに、前記第
1電極層間の間隙に相当する部分に沿ってエネルギービ
ームを照射することにより、これらを分断すると共に、
その分断にあたっては上記マスクを、上記半導体層形成
時と同様の位置に配置することで、上記エネルギービー
ムの照射による分断が上記開口部内の前記第2電極層、
又はこれと前記半導体層とに限られることを特徴とする
光起電力装置の製造方法。
1. An insulative substrate having a first electrode layer having an extended portion extending to the peripheral side of the substrate on the surface thereof, the first electrode layer being adjacently disposed so as to be spaced apart from each other by a required distance, and the extended portion. Except that the mask having an opening for exposing the surface of the first electrode layer and the surface of the gap of the first electrode layer is formed on the exposed portion due to the arrangement on the first electrode layer side. The semiconductor layer including the exposed photoactive layer and the first electrode layer, and the first electrode layer and the first electrode layer are extended to the peripheral side of the substrate, and the surface of the insulating substrate is exposed on the extension of the gap between the first electrodes. A second electrode layer having an extended portion that overlaps an extended portion of another first electrode layer adjacent to each other with a region interposed therebetween is formed in this order, and the second electrode layer or the second electrode layer and the semiconductor layer The energy beam along the portion corresponding to the gap between the first electrode layers. By, as well as disrupt them,
In dividing the mask, the mask is arranged at the same position as in the formation of the semiconductor layer, so that the dividing by the irradiation of the energy beam causes the second electrode layer in the opening to be separated,
Alternatively, it is limited to this and the semiconductor layer, and a method for manufacturing a photovoltaic device.
JP61161018A 1986-07-08 1986-07-08 Photovoltaic device manufacturing method Expired - Lifetime JPH0680836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161018A JPH0680836B2 (en) 1986-07-08 1986-07-08 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161018A JPH0680836B2 (en) 1986-07-08 1986-07-08 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JPS6316677A JPS6316677A (en) 1988-01-23
JPH0680836B2 true JPH0680836B2 (en) 1994-10-12

Family

ID=15727017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161018A Expired - Lifetime JPH0680836B2 (en) 1986-07-08 1986-07-08 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JPH0680836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2024662A1 (en) * 1989-09-08 1991-03-09 Robert Oswald Monolithic series and parallel connected photovoltaic module
TW387152B (en) 1996-07-24 2000-04-11 Tdk Corp Solar battery and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120180A (en) * 1979-03-09 1980-09-16 Sanyo Electric Co Ltd Fabricating method of photovoltaic device
JPS5935487A (en) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd Manufacture of photo semiconductor device
JPS5955079A (en) * 1982-09-22 1984-03-29 Fuji Electric Corp Res & Dev Ltd Thin film semiconductor device
JPS59108373A (en) * 1982-12-14 1984-06-22 Semiconductor Energy Lab Co Ltd Photoelectric converter

Also Published As

Publication number Publication date
JPS6316677A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
US5332680A (en) Method of making photoelectric conversion device
US4954181A (en) Solar cell module and method of manufacture
JPH0680836B2 (en) Photovoltaic device manufacturing method
US6605774B2 (en) Photovoltaic device and a method of manufacturing thereof
JP2586654B2 (en) Manufacturing method of thin film solar cell
JP2877328B2 (en) Method for manufacturing photovoltaic device
JP2808005B2 (en) Manufacturing method of amorphous solar cell
JP3155459B2 (en) Manufacturing method of integrated amorphous semiconductor solar cell and integrated amorphous semiconductor solar cell
JPH07105511B2 (en) Photovoltaic device manufacturing method
JPS62232176A (en) Photovoltaic device
JP2752187B2 (en) Method for manufacturing photovoltaic device
JPH0551190B2 (en)
JPH03250771A (en) Manufacture of photovoltaic device
JP3513032B2 (en) Integrated thin-film solar cell and method of manufacturing the same
JPS6191971A (en) Manufacture of solar battery device
JPH06268241A (en) Thin-film solar cell and manufacture thereof
JP2550697B2 (en) Thin film solar cell
JPH0582816A (en) Photovoltaic device and its manufacture
JPH08330591A (en) Thin film transistor
JPS62195184A (en) Manufacture of solar battery device
JP3042130B2 (en) Method for manufacturing thin-film solar cell device
JP3625565B2 (en) Method for manufacturing substrate for photovoltaic device
JP2589122B2 (en) Method for manufacturing photovoltaic device
JPH07105512B2 (en) Photovoltaic device
JP2883371B2 (en) Photovoltaic device and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term