JP3042130B2 - Method for manufacturing thin-film solar cell device - Google Patents

Method for manufacturing thin-film solar cell device

Info

Publication number
JP3042130B2
JP3042130B2 JP4015609A JP1560992A JP3042130B2 JP 3042130 B2 JP3042130 B2 JP 3042130B2 JP 4015609 A JP4015609 A JP 4015609A JP 1560992 A JP1560992 A JP 1560992A JP 3042130 B2 JP3042130 B2 JP 3042130B2
Authority
JP
Japan
Prior art keywords
solar cell
thin film
thin
manufacturing
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4015609A
Other languages
Japanese (ja)
Other versions
JPH05218471A (en
Inventor
清雄 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4015609A priority Critical patent/JP3042130B2/en
Publication of JPH05218471A publication Critical patent/JPH05218471A/en
Application granted granted Critical
Publication of JP3042130B2 publication Critical patent/JP3042130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、可とう性基板上に形成
されたアモルファスシリコン等を主成分とする薄膜半導
体を用いた太陽電池のユニットセルを直列接続してなる
薄膜太陽電池装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of a thin-film solar battery device in which solar battery unit cells each using a thin-film semiconductor mainly composed of amorphous silicon or the like formed on a flexible substrate are connected in series. About the method.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成されるアモルファス半導体薄膜は、膜を低温で
形成するために、高分子材料等の可とう性基板上に容易
に形成することができる。このため、住宅建材や自動車
のサンルーフ等の曲面を有する物の上へ設置する太陽電
池の材料として期待されている。こうしたアモルファス
太陽電池から発電した電力を効率よく取り出すために、
太陽電池の装置を、例えば図2に示すような形状とし、
ユニットセルが直列接続されるような構造が望ましい。
この構造は、透光性を有する高分子材料等の可とう性絶
縁基板1上に、SnO2 やZnO等からなる太陽電池の発電
波長領域に対し透光性と導電性とを有する第一電極層2
1、22、23を短冊状に形成し、その上に光起電力発生部
であるアモルファス半導体層31、32、33、次いで透光性
・導電性薄膜や金属薄膜からなる第二電極層41、42、43
を順に積層する。そして、一つのユニットセルの第一電
極層が隣接するユニットセルの第二電極層と一部接触す
る構造となるように両電極層およびアモルファス半導体
層のパターンを構成する。このような各層のパターンは
全面形成した薄膜をレーザパターニング法によりパター
ニングすることにより形成される。
2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a source gas or photo-CVD can be easily formed on a flexible substrate such as a polymer material because the film is formed at a low temperature. . For this reason, it is expected as a solar cell material to be installed on a curved material such as a house building material or a car sunroof. In order to efficiently extract the power generated from such amorphous solar cells,
The solar cell device is shaped, for example, as shown in FIG.
A structure in which unit cells are connected in series is desirable.
In this structure, a first electrode having a light-transmitting property and a conductive property with respect to a power generation wavelength region of a solar cell made of SnO 2 , ZnO, or the like is formed on a flexible insulating substrate 1 such as a polymer material having a light-transmitting property. Tier 2
1, 22, 23 are formed in the shape of a strip, on which the amorphous semiconductor layers 31, 32, 33 which are photovoltaic power generation sections, and then the second electrode layer 41 made of a light-transmitting / conductive thin film or a metal thin film, 42, 43
Are sequentially laminated. Then, the patterns of the two electrode layers and the amorphous semiconductor layer are configured so that the first electrode layer of one unit cell is in partial contact with the second electrode layer of an adjacent unit cell. Such a pattern of each layer is formed by patterning a thin film formed on the entire surface by a laser patterning method.

【0003】[0003]

【発明が解決しようとする課題】図2に示すような直列
接続の薄膜太陽電池装置を製造するためには、3回のパ
ターニングが必要である。それは、透光・導電性薄膜を
短冊状に分割して電気的に分離された複数の第一電極層
を形成する第一電極パターニング、第一電極層と第二電
極層の接続できる間隙を形成するためにアモルファス半
導体薄膜を分割するアモルファスパターニングおよび第
二電極層を分割してユニットセル間で電気的に分離する
第二電極パターニングである。しかし、可とう性基板を
用いる場合、その上に第一および第二電極層あるいはア
モルファス半導体薄膜の形成により生ずる各層の応力に
より、可とう性基板の平坦性が悪くなる。図3に示すよ
うに、レーザによる加工点が基準点からレンズ方向にず
れれば加工すべき膜面におけるレーザエネルギー密度は
大きくなり、基板を支持するXYステージ側にずれれば
レーザエネルギー密度が小さくなる。従って可とう性基
板の平坦性が悪くなるとレーザパターニングの加工均一
性が低下し、各ユニットセルの寸法精度の低下、もしく
は各ユニットセル間の電気的分離あるいは電気的接続の
不完全を招く問題があった。
In order to manufacture a series-connected thin-film solar cell device as shown in FIG. 2, three patterning operations are required. It divides the light-transmitting and conductive thin film into strips and forms a plurality of electrically separated first electrode layers. The first electrode patterning forms a gap that can be connected between the first and second electrode layers. In order to achieve this, the amorphous semiconductor thin film is divided into an amorphous semiconductor thin film and the second electrode layer is divided into unit electrodes to electrically separate the unit cells. However, when a flexible substrate is used, the flatness of the flexible substrate deteriorates due to stress of each layer generated by forming the first and second electrode layers or the amorphous semiconductor thin film thereon. As shown in FIG. 3, the laser energy density on the film surface to be processed increases when the processing point by the laser deviates from the reference point in the lens direction, and decreases when the processing point deviates toward the XY stage supporting the substrate. Become. Therefore, when the flatness of the flexible substrate is deteriorated, the processing uniformity of the laser patterning is reduced, and the dimensional accuracy of each unit cell is reduced, or the electrical separation between the unit cells or the incomplete electrical connection is caused. there were.

【0004】本発明の目的は、上記の問題を解決し、各
層の成膜時の応力により平坦性を失った可とう性基板上
の薄膜のレーザによる加工を均一に行う薄膜太陽電池装
置の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to manufacture a thin-film solar cell device for uniformly processing a thin film on a flexible substrate, which has lost its flatness due to stress at the time of forming each layer, with a laser. It is to provide a method.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、可とう性絶縁基板上に成膜した薄膜を
分割することにより形成された、それぞれ第一、第二電
極層の間にアモルファス半導体層を有するユニットセル
を直列接続してなる薄膜太陽電池の製造方法において、
薄膜成膜後少なくとも一面が平滑面であり、少なくとも
一つが透光性を有する二つの矯正板の平滑面間に可とう
性絶縁基板をはさんで固定し、透光性矯正板を通してレ
ーザ光を照射し、分割することとする。もしくは、透光
性の可とう性絶縁基板上に成膜した薄膜を分割すること
により形成された、それぞれ第一、第二電極層の間にア
モルファス半導体層を有するユニットセルを直列接続し
てなる薄膜太陽電池の製造方法において、薄膜成膜後少
なくとも一面が平滑面であり、少なくとも一つが透光性
を有する二つの矯正板の平滑面間に可とう性絶縁基板を
はさんで固定し、透光性矯正板および透光性の可とう性
絶縁基板を通してレーザ光を照射し、分割することとす
る。その際、アモルファス半導体層および第二電極層を
加工するために投射するレーザ光の波長が第一電極層を
加工するために投射するレーザ光の波長より短いことが
有効である。また、レーザ光投射による加工時に可とう
性基板と矯正板をコンピュータ制御によりレーザ光投射
方向に垂直面内で移動できるXYステージ上に設置する
ことが有効である。
In order to achieve the above object, the present invention provides a first and a second electrode layer formed by dividing a thin film formed on a flexible insulating substrate, respectively. In a method for manufacturing a thin-film solar cell in which unit cells having an amorphous semiconductor layer are connected in series,
After forming the thin film, at least one surface is a smooth surface, and at least one is fixed with a flexible insulating substrate sandwiched between the smooth surfaces of two correction plates having a light-transmitting property, and laser light is transmitted through the light-correcting plate. Irradiate and divide. Alternatively, unit cells formed by dividing a thin film formed on a light-transmitting flexible insulating substrate and having an amorphous semiconductor layer between first and second electrode layers are connected in series. In the method for manufacturing a thin-film solar cell, at least one surface is a smooth surface after the thin film is formed, and at least one is fixed with a flexible insulating substrate between the smooth surfaces of two correction plates having a light-transmitting property. A laser beam is irradiated through a light-correcting plate and a light-transmitting flexible insulating substrate to be divided. At that time, it is effective that the wavelength of the laser beam projected to process the amorphous semiconductor layer and the second electrode layer is shorter than the wavelength of the laser beam projected to process the first electrode layer. Further, it is effective to place the flexible substrate and the correction plate on a XY stage that can be moved in a plane perpendicular to the laser light projection direction by computer control during processing by laser light projection.

【0006】[0006]

【作用】可とう性基板を可とう性基板に接する面に平滑
面を有したガラス等の透光性矯正板と平滑面を有した矯
正板により、 両側から挟み固定することにより、可と
う性基板の平坦度を改善し、これにより矯正板を通じて
投射されるレーザ光によるレーザパターニングの加工均
一性が向上する。
The flexible substrate is fixed by sandwiching and fixing the flexible substrate from both sides with a translucent correcting plate such as glass having a smooth surface on a surface in contact with the flexible substrate and a correcting plate having a smooth surface. The flatness of the substrate is improved, thereby improving the processing uniformity of laser patterning by the laser light projected through the correction plate.

【0007】[0007]

【実施例】次に、本発明の実施例を図2と共通の部分に
同一の符号を付した図面に基づいて説明する。図1は、
可とう性基板上の薄膜をレーザパターニングする際のX
Yステージへの取付け方法を示したものである。これ以
前の工程で高分子材料等の可とう性絶縁基板1の上に第
一電極層21、22、23としてZnO膜を1μmの厚さに形成
し、次にアモルファス半導体 (アモルファスシリコン)
層31、32、33を0.4μmの厚さで形成する。この第一電
極層とアモルファス半導体層については従来と同様のレ
ーザスクライブ法によりパターニングを行った。第一電
極層21、22、23のパターニング用のレーザ光源として
は、波長1.06μmのYAG:Naレーザを、アモルファ
ス半導体層31、32、33のパターニング用の光源としては
波長0.53μmのYAG:Ndレーザをそれぞれ使用し、
可とう性基板1の側から投射した。次いで、その上に第
二電極層のための銀薄膜40を0.2μmの厚さに成膜し
た。そして、図に示すように矯正用ガラス板51、52によ
って両面から挟むことにより平坦性が悪くなっていた可
とう性基板1を平坦になるように固定し、XYステージ
6の上に設置した。パターニングの際には、このXYス
テージ6がコンピュータ制御により任意の座標をとる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to the drawings in which the same parts as those in FIG. FIG.
X for laser patterning of thin film on flexible substrate
It shows a method of attaching to a Y stage. In the previous process, a ZnO film having a thickness of 1 μm is formed as the first electrode layers 21, 22, and 23 on the flexible insulating substrate 1 such as a polymer material, and then an amorphous semiconductor (amorphous silicon) is formed.
The layers 31, 32, 33 are formed with a thickness of 0.4 μm. The first electrode layer and the amorphous semiconductor layer were patterned by the same laser scribe method as in the related art. As a laser light source for patterning the first electrode layers 21, 22, and 23, a YAG: Na laser having a wavelength of 1.06 μm is used. As a light source for patterning the amorphous semiconductor layers 31, 32, and 33, YAG: Nd having a wavelength of 0.53 μm is used. Using each laser,
The projection was performed from the side of the flexible substrate 1. Next, a silver thin film 40 for the second electrode layer was formed thereon to a thickness of 0.2 μm. Then, as shown in the figure, the flexible substrate 1, which had been poor in flatness by being sandwiched between the correction glass plates 51 and 52 from both sides, was fixed so as to be flat, and was set on the XY stage 6. In patterning, the XY stage 6 takes arbitrary coordinates under computer control.

【0008】レーザ光源としては波長0.53μmのYA
G:Ndレーザを使用し、やはり可とう性基板1側から
レーザ光7を入射する。この場合、レーザ光7は透明な
矯正用ガラス板51および可とう性基板1を透過し、波長
が短いので第一電極層21、22、23には吸収されず、銀薄
膜40に吸収されてこの膜の材料を蒸発させるので、XY
ステージ6の移動の制御により図に点線で示した部分8
が除去される。
YA having a wavelength of 0.53 μm is used as a laser light source.
G: An Nd laser is used, and a laser beam 7 is also incident from the flexible substrate 1 side. In this case, the laser beam 7 is transmitted through the transparent correcting glass plate 51 and the flexible substrate 1, and is not absorbed by the first electrode layers 21, 22, and 23 because of its short wavelength, but is absorbed by the silver thin film 40. Since the material of this film is evaporated, XY
The part 8 indicated by a dotted line in the figure by controlling the movement of the stage 6
Is removed.

【0009】このように矯正用ガラス板51、52を用いる
ことにより、可とう性基板の問題点である平坦度を図3
にAで示す±500 μm以内に制御した。この結果、加工
時のレーザエネルギー密度のばらつきを±0.1以内にで
き、均一性の良いレーザパターニングが行えるようにな
った。これにより、可とう性を有した高性能な直列接続
型薄膜太陽電池を得ることができた。
By using the straightening glass plates 51 and 52 as described above, the flatness which is a problem of the flexible substrate can be reduced as shown in FIG.
Was controlled within ± 500 μm indicated by A. As a result, variations in laser energy density during processing can be made within ± 0.1, and laser patterning with good uniformity can be performed. As a result, a high-performance series-connected thin-film solar cell having flexibility was obtained.

【0010】上記の実施例では、第二電極層をパターニ
ングする時にのみ矯正用ガラス板を用いたが、第一電極
層あるいはアモルファス半導体層成膜後の可とう性基板
の平坦性の程度によっては、第一電極層のパターニング
時、あるいはアモルファス半導体層のパターニング時に
も矯正用ガラス板で挟むことが有効である。
In the above embodiment, the correction glass plate is used only when the second electrode layer is patterned. However, depending on the degree of flatness of the flexible substrate after the formation of the first electrode layer or the amorphous semiconductor layer. Also, it is effective to sandwich the first electrode layer or the amorphous semiconductor layer between the correction glass plates at the time of patterning.

【0011】[0011]

【発明の効果】本発明によれば、上記の方法を採用した
結果、レーザパターニングの加工均一性が向上し、精度
のよいパターニングを行うことができた。これにより高
性能で曲面上に設置できる薄膜太陽電池装置の製造が可
能になる。
According to the present invention, as a result of employing the above method, the processing uniformity of the laser patterning is improved, and accurate patterning can be performed. This makes it possible to manufacture a thin-film solar cell device that can be installed on a curved surface with high performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における第二電極層パターニ
ング工程時の断面図
FIG. 1 is a cross-sectional view during a second electrode layer patterning step according to an embodiment of the present invention.

【図2】図1に示した工程を経て製造される薄膜太陽電
池装置の断面図
FIG. 2 is a cross-sectional view of the thin-film solar cell device manufactured through the process shown in FIG.

【図3】レーザ加工の際の加工点の基準点からのずれと
加工点におけるレーザエネルギー密度の関係曲線図
FIG. 3 is a relationship curve diagram of a deviation of a processing point from a reference point during laser processing and a laser energy density at the processing point.

【符号の説明】[Explanation of symbols]

1 可とう性絶縁基板 21 第一電極層 22 第二電極層 23 第三電極層 31 アモルファス半導体層 32 アモルファス半導体層 33 アモルファス半導体層 40 銀薄膜 41 第二電極層 42 第二電極層 43 第二電極層 51 矯正用ガラス板 52 矯正用ガラス板 6 XYステージ 7 レーザ光 8 レーザ加工部 REFERENCE SIGNS 1 flexible insulating substrate 21 first electrode layer 22 second electrode layer 23 third electrode layer 31 amorphous semiconductor layer 32 amorphous semiconductor layer 33 amorphous semiconductor layer 40 silver thin film 41 second electrode layer 42 second electrode layer 43 second electrode Layer 51 Glass plate for correction 52 Glass plate for correction 6 XY stage 7 Laser beam 8 Laser processing part

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可とう性絶縁基板上に成膜した薄膜を分割
することにより形成された、それぞれ第一、第二電極層
の間にアモルファス半導体層を有するユニットセルを直
列接続してなる薄膜太陽電池の製造方法において、薄膜
成膜後少なくとも一面が平滑面であり、少なくとも一つ
が透光性を有する二つの矯正板の平滑面間に可とう性絶
縁基板をはさんで固定し、透光性矯正板を通してレーザ
光を照射し、分割することを特徴とする薄膜太陽電池装
置の製造方法。
A thin film formed by dividing a thin film formed on a flexible insulating substrate and formed by serially connecting unit cells each having an amorphous semiconductor layer between first and second electrode layers. In the method of manufacturing a solar cell, at least one surface is a smooth surface after the thin film is formed, and at least one is fixed with a flexible insulating substrate sandwiched between the smooth surfaces of two correction plates having a light-transmitting property. A method for manufacturing a thin-film solar cell device, comprising irradiating a laser beam through a straightening plate and dividing the laser beam.
【請求項2】透光性の可とう性絶縁基板上に成膜した薄
膜を分割することにより形成された、それぞれ第一、第
二電極層の間にアモルファス半導体層を有するユニット
セルを直列接続してなる薄膜太陽電池の製造方法におい
て、薄膜成膜後少なくとも一面が平滑面であり、少なく
とも一つが透光性を有する二つの矯正板の平滑面間に可
とう性絶縁基板をはさんで固定し、透光性矯正板および
透光性の可とう性絶縁基板を通してレーザ光を照射し、
分割することを特徴とする薄膜太陽電池装置の製造方
法。
2. A series connection of unit cells each having an amorphous semiconductor layer between first and second electrode layers formed by dividing a thin film formed on a light-transmitting flexible insulating substrate. In the method for manufacturing a thin-film solar cell, at least one surface is a smooth surface after the thin film is formed, and at least one is fixed with a flexible insulating substrate sandwiched between the smooth surfaces of two straightening plates having translucency. And irradiating the laser beam through a translucent correction plate and a translucent flexible insulating substrate,
A method for manufacturing a thin-film solar cell device, which comprises dividing.
【請求項3】アモルファス半導体層および第二電極層を
加工するために投射するレーザ光の波長が第一電極層を
加工するために投射するレーザ光の波長より短い請求項
1あるいは2記載の薄膜太陽電池装置の製造方法。
3. The thin film according to claim 1, wherein the wavelength of the laser beam projected for processing the amorphous semiconductor layer and the second electrode layer is shorter than the wavelength of the laser beam projected for processing the first electrode layer. A method for manufacturing a solar cell device.
【請求項4】レーザ光投射による加工時に可とう性基板
と矯正板をコンピュータ制御によりレーザ光投射方向に
垂直面内で移動できるXYステージ上に設置する請求項
1、2あるいは3記載の薄膜太陽電池装置の製造方法。
4. The thin-film solar cell according to claim 1, wherein the flexible substrate and the correction plate are mounted on an XY stage which can be moved in a plane perpendicular to the laser light projection direction by computer control during processing by laser light projection. A method for manufacturing a battery device.
JP4015609A 1992-01-31 1992-01-31 Method for manufacturing thin-film solar cell device Expired - Fee Related JP3042130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4015609A JP3042130B2 (en) 1992-01-31 1992-01-31 Method for manufacturing thin-film solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4015609A JP3042130B2 (en) 1992-01-31 1992-01-31 Method for manufacturing thin-film solar cell device

Publications (2)

Publication Number Publication Date
JPH05218471A JPH05218471A (en) 1993-08-27
JP3042130B2 true JP3042130B2 (en) 2000-05-15

Family

ID=11893453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4015609A Expired - Fee Related JP3042130B2 (en) 1992-01-31 1992-01-31 Method for manufacturing thin-film solar cell device

Country Status (1)

Country Link
JP (1) JP3042130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805889B2 (en) 1997-06-20 2006-08-09 株式会社カネカ Solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05218471A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
US4783421A (en) Method for manufacturing electrical contacts for a thin-film semiconductor device
AU2004204637B8 (en) Transparent thin-film solar cell module and its manufacturing method
JPS63232376A (en) Manufacture of photovoltaic device
EP0195148A1 (en) Photovoltaic device and method of manufacture
US4854974A (en) Electrical contacts for a thin-film semiconductor device
JPH0449272B2 (en)
JPH0851229A (en) Integrated solar battery and its manufacture
JP4379560B2 (en) Thin film solar cell and manufacturing method thereof
JP3042130B2 (en) Method for manufacturing thin-film solar cell device
EP0911880B1 (en) Method of manufacturing an integrated thin film solar cell battery
JP2586654B2 (en) Manufacturing method of thin film solar cell
JPS62142368A (en) Manufacture of thin film semiconductor device
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
JP2001119048A (en) Method for manufacturing integrated thin-film solar cell
JPH11191630A (en) Manufacture of photovoltaic device and photovoltaic device thereof
JPH02224278A (en) Manufacture of photovoltaic device
JPS62205668A (en) Manufacture of integrated type solar battery
JPH0758351A (en) Manufacture of thin film solar cell
JPH0243776A (en) Manufacture of thin film solar cell
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JP2001237442A (en) Solar cell and its manufacturing method
JP2000261020A (en) Integrated thin-film solar battery
JPH03151673A (en) Manufacture of photovoltaic device
JPS61234574A (en) Photocell unit and manufacture thereof
JPS6265480A (en) Thin film solar battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees