JPH0679488B2 - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0679488B2
JPH0679488B2 JP61192288A JP19228886A JPH0679488B2 JP H0679488 B2 JPH0679488 B2 JP H0679488B2 JP 61192288 A JP61192288 A JP 61192288A JP 19228886 A JP19228886 A JP 19228886A JP H0679488 B2 JPH0679488 B2 JP H0679488B2
Authority
JP
Japan
Prior art keywords
voltage
battery
positive
conductive polymer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61192288A
Other languages
Japanese (ja)
Other versions
JPS6348750A (en
Inventor
修弘 古川
晃治 西尾
正久 藤本
泰浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61192288A priority Critical patent/JPH0679488B2/en
Publication of JPS6348750A publication Critical patent/JPS6348750A/en
Publication of JPH0679488B2 publication Critical patent/JPH0679488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、導電性ポリマーを電極として用いる二次電
池に関するものである。
Description: <Industrial field of application> The present invention relates to a secondary battery using a conductive polymer as an electrode.

〈従来の技術〉 近年、ポリアセチレン,ポリピロール,ポリチオフェン
などの導電性ポリマーを電極材料とした二次電池が提案
されている。
<Prior Art> In recent years, secondary batteries using conductive polymers such as polyacetylene, polypyrrole, and polythiophene as electrode materials have been proposed.

上記の導電性ポリマーは、各種のドーパントをドーピン
グ並びにアンドーピングすることが可能であり、ドーピ
ング,アンドーピングを電気化学的に可逆的に行なうこ
とにより充放電可能な電池が構成される。
The conductive polymer described above can be doped and undoped with various dopants, and a battery that can be charged and discharged is configured by electrochemically and reversibly performing doping and undoping.

これらの導電性ポリマーを使用した二次電池は、軽量で
エネルギー密度が大きく、しかも無公害であるという特
長のある電池として期待が大きい。このような導電性ポ
リマーのうち、ポリピロールやポリチオフェンなどは、
化学的にも電気化学的にも重合することが可能である。
電気化学的に重合(電解重合)した導電性ポリマーとし
ては、例えば特開昭60−216470号公報に開示されている
ように、定電流または定電圧でモノマーを電気分解し、
電解電極上にフィルム状に合成して得たものが従来知ら
れている。
Secondary batteries using these conductive polymers are expected to be lightweight, have high energy density, and are non-polluting. Among such conductive polymers, polypyrrole and polythiophene are
It is possible to polymerize both chemically and electrochemically.
As a conductive polymer that is electrochemically polymerized (electrolytically polymerized), for example, as disclosed in JP-A-60-216470, a monomer is electrolyzed at a constant current or a constant voltage,
A film obtained by synthesizing the film on the electrolytic electrode is conventionally known.

〈発明が解決しようとする問題点〉 しかしながら、上記のように電解重合によって電解電極
上に導電性ポリマーを大量に生成させた場合、生成した
導電性ポリマーの各部における性状が均一性を欠き、こ
れを電池の電極に用いた場合、電池反応が電極の一部に
集中して生じることから、充電電圧が早期に上昇し易
く、電池の充放電容量の低下を招き、また電池のサイク
ル寿命が短くなるといった問題がある。
<Problems to be solved by the invention> However, when a large amount of a conductive polymer is generated on the electrolytic electrode by electrolytic polymerization as described above, the properties of each part of the generated conductive polymer lack uniformity, and When used as an electrode of a battery, the battery reaction concentrates on a part of the electrode, so that the charging voltage easily rises early, leading to a decrease in the charge and discharge capacity of the battery, and a short cycle life of the battery. There is a problem such as.

〈問題点を解決するための手段〉 この発明の二次電池は、電圧値が時間と共に正を負との
間を交互に反復して変化し且つ正電圧値である期間が大
なる非対称電圧を印加した電解重合によって合成してな
る導電性ポリマーを、正極または負極の少なくとも一方
の電極に用いたことを要旨とする。
<Means for Solving Problems> The secondary battery of the present invention has an asymmetric voltage in which the voltage value changes alternately and repeatedly between positive and negative with time and the period of the positive voltage value is large. The gist is that a conductive polymer synthesized by applied electrolytic polymerization is used for at least one of a positive electrode and a negative electrode.

〈作用〉 電解重合により例えばアニオン種をドーピング種とする
導電性ポリマーを電解陽極上に作製する場合、電解陽極
上においてはモノマーが活性化されて重合する反応が起
こると同時に、近傍のアニオン種が取込まれてドーピン
グされる反応が生じ、電解陽極上には導電性ポリマーが
薄膜状に形成されていく。この時、上記のような非対称
電圧を印加して電解重合を行うことで、電解時の電流は
零→正→零→負→零というサイクルを繰返し、零→負→
零の期間では上記の重合反応は起こらず、この期間にお
いて電解液中のモノマーが電解陽極近傍へ拡散する時間
的余裕が生じる。このため、モノマーの濃度低下が緩和
され、次のサイクルにおいても重合反応がスムーズ且つ
均一に進行するようになり、また均一性のある導電性ポ
リマーが生成される。また、上記負の期間ではアニオン
種が電解陽極上のポリマーからアンドーピングされるこ
とから、電解重合時、アニオン種のドーピング,アンド
ーピングが繰返し起こり、結果的に可逆性の優れた導電
性ポリマーが生成される。そして、この可逆性のよい導
電性ポリマーを電池の電極に用いることで、電極の充電
反応及び放電反応がよりスムーズに進行するようにな
り、電池の放電容量が一層増大し、サイクル特性が更に
向上する。
<Function> When a conductive polymer having an anionic species as a doping species is produced by electrolytic polymerization on an electrolytic anode, a reaction occurs in which the monomer is activated and polymerizes on the electrolytic anode, and at the same time, a nearby anionic species A reaction of taking in and doping occurs, and a conductive polymer is formed in a thin film on the electrolytic anode. At this time, by performing the electrolytic polymerization by applying the asymmetric voltage as described above, the current during electrolysis repeats the cycle of zero → positive → zero → negative → zero, and zero → negative →
The above-mentioned polymerization reaction does not occur in the period of zero, and there is a time margin for the monomer in the electrolytic solution to diffuse to the vicinity of the electrolytic anode in this period. For this reason, the decrease in the concentration of the monomer is alleviated, the polymerization reaction proceeds smoothly and uniformly in the next cycle, and the conductive polymer having uniformity is produced. Further, during the negative period, the anionic species are undoped from the polymer on the electrolytic anode, so that during the electropolymerization, the anionic species are repeatedly doped and undoped, resulting in a conductive polymer having excellent reversibility. Is generated. By using this highly reversible conductive polymer for the electrode of the battery, the charge reaction and the discharge reaction of the electrode will proceed more smoothly, the discharge capacity of the battery will be further increased, and the cycle characteristics will be further improved. To do.

一方、従来のように定電流・定電圧で電解重合をした場
合には重合反応が連続的に行なわれるので、モノマー重
合による上記の濃度低下が回復する度合は極く僅かで、
電解陽極近傍のモノマー及びアニオン種の濃度が低い状
態となる。このため、モノマーが活性化されて重合反応
が起こる代わりに、電解陽極に近づいたアニオン種の分
解が起こったり、電解陽極近傍の電解液が分解するとい
った副反応が生じるなどするため、均一性のある導電性
ポリマーの形成は困難となる。
On the other hand, when electrolytic polymerization is carried out at a constant current and a constant voltage as in the conventional case, the polymerization reaction is continuously performed, so that the above-mentioned concentration decrease due to monomer polymerization is recovered to a very small degree,
The concentration of the monomer and anion species near the electrolysis anode is low. Therefore, instead of the monomer being activated to cause the polymerization reaction, side reactions such as decomposition of anionic species approaching the electrolytic anode and decomposition of the electrolytic solution in the vicinity of the electrolytic anode occur, and thus uniformity of The formation of certain conductive polymers becomes difficult.

〈実施例〉 0.2MのピロールC4H5N、並びに0.2Mの過塩素酸リチウムL
iClO4を、それぞれプロピレンカーポネートに溶かし
て、電解重合に使用する電解液を調製した。この液に、
陽極としてSUS網、または陰極としてリチウム箔をそれ
ぞれ浸漬し、波高最高値4.0Vで周波数150Hzの交流電圧
と+2.0Vの直流電圧とを重畳した第1図に示したような
非対称交流電圧を印加して電気分解を行ない、陽極のSU
S網にポリピロールを電解重合させた。
<Example> 0.2 M pyrrole C 4 H 5 N and 0.2 M lithium perchlorate L
Each of iClO 4 was dissolved in propylene carbonate to prepare an electrolytic solution used for electrolytic polymerization. In this liquid,
Immerse SUS net as the anode or lithium foil as the cathode, and apply the asymmetrical AC voltage as shown in Fig. 1 in which the peak voltage of 4.0V and the AC voltage of frequency 150Hz and the DC voltage of + 2.0V are superposed. And then electrolyze the anode SU
Polypyrrole was electrolytically polymerized on S mesh.

このポリピロールの付着したSUS網を所定寸法に打ち抜
いて正極とし、一方リチウム金属を所定寸法に打ち抜い
たものを負極とし、また2MのLiClO4をプロピレンカーボ
ネートに溶解した溶液を電解液として、第3図に示すよ
うな電池(本発明電池A)を作製した。この図で1は正
極、2は負極、3はセパレータで、これらは正極缶4と
負極缶5とを絶縁パッキング6を介して組合せたケース
内に密封されている。尚、7は負極集電体である。
This SUS net with polypyrrole attached was punched out to a predetermined size as a positive electrode, while lithium metal was punched out to a predetermined size as a negative electrode, and a solution of 2M LiClO 4 dissolved in propylene carbonate was used as an electrolytic solution. A battery as shown in (Battery A of the invention) was produced. In this figure, 1 is a positive electrode, 2 is a negative electrode, and 3 is a separator, which are sealed in a case in which a positive electrode can 4 and a negative electrode can 5 are combined via an insulating packing 6. Incidentally, 7 is a negative electrode current collector.

また、第2図に示したような、三角波電圧に正の直流電
圧を重畳してなる正側ピーク電圧+6.0V、負側ピーク電
圧−2.0Vで周波数150Hzの非対称三角波電圧を印加して
上記電気分解を行ない、陽極のSUS網にポリピロールを
電解重合させた。このポリピロールの付着したSUS網を
所定寸法に打ち抜いて正極とした他は本発明品Aと同じ
構造の電池(本発明電池B)を作製した。
Further, as shown in FIG. 2, by applying an asymmetrical triangular wave voltage with a frequency of 150 Hz with a positive peak voltage of +6.0 V and a negative peak voltage of −2.0 V, which is obtained by superimposing a positive DC voltage on the triangular wave voltage, Electrolysis was performed and polypyrrole was electrolytically polymerized on the SUS net of the anode. A battery having the same structure as the product A of the present invention (battery B of the present invention) was produced except that the positive electrode was formed by punching out the SUS net having the polypyrrole attached thereto in a predetermined size.

一方、電流密度7mA/cm2で上記電気分解を行なって陽極
のSUS網にポリピロールを電解重合させ、こうして得ら
れたポリピロールを正極とした以外は本発明電池Aと同
様にして、比較用の電池(比較電池C)を作製した。
On the other hand, a battery for comparison was prepared in the same manner as the battery A of the present invention, except that the above-mentioned electrolysis was carried out at a current density of 7 mA / cm 2 to electropolymerize polypyrrole in the SUS net of the anode, and the thus obtained polypyrrole was used as the positive electrode. (Comparative Battery C) was produced.

これら3つの電池について、1mAの電流で2時間充電し
た後、1mAの電流で電池電圧が2.5Vになるまで放電する
条件で、充放電サイクルを繰返した。尚、上記充電は電
池電圧が5.0V以上になった場合はその時点で中断した。
A charge / discharge cycle was repeated for these three batteries under the condition that they were charged at a current of 1 mA for 2 hours and then discharged at a current of 1 mA until the battery voltage reached 2.5V. The above charging was interrupted when the battery voltage became 5.0 V or higher.

第100サイクル目における充電特性を第4図(A)に、
また同じく放電特性を第4図(B)にそれぞれ示した。
第4図(A)より、比較電池Cではそれぞれ充電容量1.
6mAHの時点で電池電圧が5.0Vに立ち上がっており、充電
容量が小さく、電圧の立ち上がりによるポリマーの変成
などが早期に生じ易いことがわかる。これに対し、本発
明電池A,Bでは充電容量が2.0mAHになっても電池電圧は
各々4.0V,4.1Vであり、比較電池Cに較べて充電容量が
大きいことは明らかである。また、第4図(B)からし
て、本発明電池A,Bは放電容量も大きい。
The charging characteristics at the 100th cycle are shown in Fig. 4 (A).
Similarly, the discharge characteristics are shown in FIG. 4 (B).
From FIG. 4 (A), the comparative battery C has a charge capacity of 1.
At 6 mAH, the battery voltage has risen to 5.0 V, and it can be seen that the charge capacity is small and polymer transformation due to rising voltage is likely to occur early. On the other hand, in the batteries A and B of the present invention, the battery voltages are 4.0 V and 4.1 V, respectively, even when the charging capacity is 2.0 mAH, and it is clear that the charging capacity is larger than that of the comparative battery C. Further, as shown in FIG. 4 (B), the batteries A and B of the present invention have a large discharge capacity.

また、第5図にこれら電池A〜Cのサイクル特性を示し
た。このサイクル特性において、比較電池Cは第140サ
イクル目で充放電効率が60%以下に低下して電池寿命と
なっており、サイクル劣化が大きい。これに対し、本発
明電池A,Bでは170サイクル目を経過した後も充放電効率
に劣化がみられず、良好なサイクル特性を示した。本発
明電池A,Bでこのように特性がよいのは、正極に用いた
導電性ポリマーの均一性が良く、電池反応が電極の全面
で行なわれていることなどによるものと考えられる。
尚、以上は正極のみに導電性ポリマーを用いた場合であ
るが、負極あるいは正負極に本発明の導電性ポリマーを
使用した場合も同様の効果が得られることは明らかであ
る。
Further, FIG. 5 shows the cycle characteristics of these batteries A to C. In this cycle characteristic, in Comparative Battery C, the charge and discharge efficiency decreased to 60% or less at the 140th cycle and the battery life was reached, and cycle deterioration was large. On the other hand, in the batteries A and B of the present invention, the charge / discharge efficiency did not deteriorate even after the 170th cycle, and good cycle characteristics were exhibited. It is considered that the good characteristics of the batteries A and B of the present invention are due to the good uniformity of the conductive polymer used for the positive electrode and the fact that the battery reaction is carried out on the entire surface of the electrode.
Although the above is the case where the conductive polymer is used only for the positive electrode, it is clear that the same effect can be obtained when the conductive polymer of the present invention is used for the negative electrode or the positive and negative electrodes.

〈発明の効果〉 以上のようにこの発明の二次電池では、均一性がよく、
またドーピング,アンドーピングにおける可逆性に優れ
た導電性ポリマーを電極材料として用いたので、電池反
応が電極全面で均一且つ安定に行なわれると共に、充電
反応及び放電反応がスムーズに行なわれるため、充放電
容量が大きく、サイクル特性の良好な二次電池を提供す
ることができる。
<Effects of the Invention> As described above, the secondary battery of the present invention has good uniformity,
In addition, since a conductive polymer having excellent reversibility in doping and undoping is used as the electrode material, the battery reaction can be performed uniformly and stably over the entire electrode surface, and the charge reaction and the discharge reaction can be performed smoothly. It is possible to provide a secondary battery having a large capacity and excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図はそれぞれ本発明の電池に用いる導電性
ポリマーの製造時に印加する電圧の波形図、第3図は実
施例の電池などの構造を示した断面図、第4図(A),
(B)はそれぞれ実施例及び比較例の電池の充電特性、
放電特性を示したグラフ、第5図は同じくサイクル特性
を示したグラフである。 1……正極、2……負極、3……セパレータ。
FIG. 1 and FIG. 2 are waveform diagrams of the voltage applied during the production of the conductive polymer used in the battery of the present invention, FIG. 3 is a sectional view showing the structure of the battery of the embodiment, and FIG. ),
(B) is the charging characteristics of the batteries of Examples and Comparative Examples,
FIG. 5 is a graph showing discharge characteristics, and FIG. 5 is a graph similarly showing cycle characteristics. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電圧値が時間と共に正と負との間を交互に
反復して変化し且つ正電圧値である期間が大なる非対称
電圧を印加した電解重合によって合成してなる導電性ポ
リマーを、正極または負極の少なくとも一方の電極に用
いたことを特徴とする二次電池。
1. A conductive polymer synthesized by electrolytic polymerization in which an asymmetric voltage is applied, in which a voltage value is alternately and repeatedly changed between positive and negative with time and a period of a positive voltage value is large. A secondary battery characterized by being used for at least one of a positive electrode and a negative electrode.
【請求項2】前記非対称電圧として、交流電圧と正の直
流電圧とを重畳した非対称交流電圧を用いることを特徴
とする特許請求の範囲第1項記載の二次電池。
2. The secondary battery according to claim 1, wherein an asymmetrical AC voltage obtained by superimposing an AC voltage and a positive DC voltage is used as the asymmetrical voltage.
【請求項3】前記非対称電圧として、三角波電圧と正の
直流電圧とを重畳した非対称三角波電圧を用いることを
特徴とする特許請求の範囲第1項記載の二次電池。
3. The secondary battery according to claim 1, wherein an asymmetrical triangular wave voltage in which a triangular wave voltage and a positive DC voltage are superposed is used as the asymmetrical voltage.
【請求項4】前記導電性ポリマーがポリピロールまたは
ポリチオフェンであることを特徴とする特許請求の範囲
第1項,第2項または第3項記載の二次電池。
4. The secondary battery according to claim 1, 2, or 3, wherein the conductive polymer is polypyrrole or polythiophene.
JP61192288A 1986-08-18 1986-08-18 Secondary battery Expired - Lifetime JPH0679488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192288A JPH0679488B2 (en) 1986-08-18 1986-08-18 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192288A JPH0679488B2 (en) 1986-08-18 1986-08-18 Secondary battery

Publications (2)

Publication Number Publication Date
JPS6348750A JPS6348750A (en) 1988-03-01
JPH0679488B2 true JPH0679488B2 (en) 1994-10-05

Family

ID=16288785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192288A Expired - Lifetime JPH0679488B2 (en) 1986-08-18 1986-08-18 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0679488B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826341B2 (en) * 1989-05-13 1998-11-18 日本ケミコン株式会社 Method for manufacturing solid electrolytic capacitor
JP2631910B2 (en) * 1990-11-16 1997-07-16 帝人株式会社 Polypyrrole molded article for polymer secondary battery and method for producing the same

Also Published As

Publication number Publication date
JPS6348750A (en) 1988-03-01

Similar Documents

Publication Publication Date Title
JP4014418B2 (en) Electrochemical device
JP3743691B2 (en) Aniline polymer, electrode material, and secondary battery
JP3186811B2 (en) Method of charging lithium secondary battery
JPH0679488B2 (en) Secondary battery
US4753715A (en) Process for the production of electrically conducting organic polymer compounds as thick film electrode materials for rechargeable galvanic elements
JPS6348749A (en) Secondary battery
JP2999813B2 (en) Rechargeable battery
JP2680631B2 (en) Rechargeable battery
JP2713619B2 (en) Electrolytic polymerization apparatus for producing conductive polymer film and method for producing membrane
JP2567644B2 (en) Secondary battery
JP3237261B2 (en) Reversible composite electrode and lithium secondary battery using the same
JPH06283175A (en) Reversible electrode
JP3287837B2 (en) Battery electrodes and non-aqueous electrolyte secondary batteries
JPS585967A (en) Battery
JP2501821B2 (en) Secondary battery
JP2632021B2 (en) Rechargeable battery
JPS63102174A (en) Secondary battery
JPH0660906A (en) Organic compound battery
JPS63105477A (en) Secondary battery
JPS62256369A (en) Composite negative electrode for secondary battery
JPWO2012105438A1 (en) Electrode active material, electrode, and secondary battery
JP5716934B2 (en) Electrode active material, electrode, and secondary battery
JPS59173962A (en) Secondary battery
JPS62256370A (en) Composite negative electrode for secondary battery
JPS63105478A (en) Secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term