JPS585967A - Battery - Google Patents

Battery

Info

Publication number
JPS585967A
JPS585967A JP56104172A JP10417281A JPS585967A JP S585967 A JPS585967 A JP S585967A JP 56104172 A JP56104172 A JP 56104172A JP 10417281 A JP10417281 A JP 10417281A JP S585967 A JPS585967 A JP S585967A
Authority
JP
Japan
Prior art keywords
carbon
battery
active material
fluoride
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56104172A
Other languages
Japanese (ja)
Inventor
Teruyoshi Morita
守田 彰克
Hisaaki Otsuka
大塚 央陽
Ryoji Okazaki
良二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56104172A priority Critical patent/JPS585967A/en
Publication of JPS585967A publication Critical patent/JPS585967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the discharge characteristic of a carbon-fluoride light-metal system battery by obtaining carbon fluoride having a large activity from carbon black having a specific surface area of above several hundreds m<2>/g, and adding an appropriate amount of thus prepared carbon fluoride to carbon fluoride made from petroleum coke or the like. CONSTITUTION:A battery includes a negative electrode made of a light metal used as an active material, a positive electrode made of carbon fluoride used as an active material, and an organic electrolyte. The above positive active material is prepared by adding carbon fluoride, which is obtained by fluorinating carbon black having a specific surface area of above 800m<2>/g, to carbon fluoride o btained by fluorinating natural graphite, artificial graphite or petroleum coke. Here, a remarkably good result can be obtained by using carbon black with a grain diameter of below 1mu. Besides, in order to achieve such a good result without deteriorating the energy density of the battery, the content of carbon fluoride obtained from carbon black should be 5-20% by weight of the amount of the active material.

Description

【発明の詳細な説明】 本発明は、リチウム、マグネシウム、アルミニウムなど
の軽金属、もしくはそれらを主体どする合金を負極活物
質、フッ化炭素を正極活物質とし、電解液としてプロピ
レンカーボネート、γ−ブチロラクトン、1−2ジメト
キシエタン、1−3ジオキソラン、テトラヒドロフラン
などの有機溶媒の単独あるいは混合物に過塩素リチウム
、ホウフッ化リチウム、塩化アルミニウムなどの無機塩
を溶解したものを用いる、いわゆるフッ化炭素/軽金属
系電池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses light metals such as lithium, magnesium, and aluminum, or alloys mainly composed of them, as a negative electrode active material, fluorocarbon as a positive electrode active material, and propylene carbonate and γ-butyrolactone as an electrolyte. , 1-2 dimethoxyethane, 1-3 dioxolane, tetrahydrofuran, etc., alone or in a mixture, with an inorganic salt such as lithium perchloride, lithium fluoroborate, or aluminum chloride dissolved in a so-called fluorocarbon/light metal system. This relates to improvements in batteries.

従来、有機電解質リチウム゛電池の正極活物質としては
、フッ化炭素、二酸化マンガン、クロム酸銀、酸化銅、
フッ化銅、塩化ニッケル、酸化ビスマスなどの固体活物
質、塩化チオニール、塩化スルフリルなどの液体活物質
、あるいは二酸化イオウなどの気体活物質など種々試み
られてきた。
Conventionally, positive electrode active materials for organic electrolyte lithium batteries include carbon fluoride, manganese dioxide, silver chromate, copper oxide,
Various attempts have been made to use solid active materials such as copper fluoride, nickel chloride, and bismuth oxide, liquid active materials such as thionyl chloride and sulfuryl chloride, and gaseous active materials such as sulfur dioxide.

しかしながら活物質のエネルギー密度、電解液に対する
安定性8取り扱い易さ、安全性など総合的な観点からフ
ッ化炭素活物質が最もすぐれたものであると言える。
However, it can be said that the fluorocarbon active material is the most excellent from a comprehensive viewpoint such as the energy density of the active material, stability with respect to electrolyte, ease of handling, and safety.

フッ化炭素は、フッ系と炭素とを高温で直接反応させて
得られる無機高分子とも言うもので、一般式として(C
F、 )n(r−=1 )で表わされ、無定形の炭素を
原材料としても、黒鉛から得られるような結晶性の高い
ものとなるため、CF4などのフルオロカーボンと区別
し、フッ化炭素と呼ばれている。
Fluorocarbon is an inorganic polymer obtained by directly reacting fluoride and carbon at high temperatures, and has the general formula (C
F, )n (r-=1), and even if amorphous carbon is used as a raw material, it will be highly crystalline like that obtained from graphite, so it is distinguished from fluorocarbons such as CF4, and fluorocarbons It is called.

このフッ化炭素は化学的に全く安定であるのに対し、電
気化学的には非常に活性であることから電池の活物質と
して用いた場合、すぐれた特性を示す。
Although this fluorinated carbon is completely stable chemically, it is very active electrochemically, so it exhibits excellent properties when used as an active material in batteries.

特に原材料炭素に石油コークス、天然黒鉛2人造黒鉛な
どを用いた場合、他のカーボン材料と異なり、フッ化炭
素の生成の収率が良く、しかも電池活物質として用いた
場合、放電利用率にすぐれると共に平坦電圧特性にすぐ
れるなどの特徴を有する一方、放電初期において一部わ
ずかに電圧の立ち上りに遅れを生じるという傾向を有す
る。
In particular, when petroleum coke, natural graphite, two-synthetic graphite, etc. are used as the raw material carbon, unlike other carbon materials, the yield of fluorocarbon generation is high, and when used as a battery active material, the discharge utilization rate increases quickly. Although it has characteristics such as excellent flat voltage characteristics, it also tends to have a slight delay in the voltage rise in some parts at the initial stage of discharge.

最近リチウム電池は、耐漏液性にすぐれ、自己放電が少
ないなどの特徴を生かし、電子ウォッチ用の電源として
注目されているが、初期の電圧の立ち遅れが支障となる
恐れもあり、改良が望1ノする。
Recently, lithium batteries have attracted attention as a power source for electronic watches due to their excellent leakage resistance and low self-discharge, but there is a risk that the initial voltage ramp-up may be a problem, so improvements are needed. No.

本発明は比表面積が数百ば/y以L、特に800ゴp上
のカーボンブランクを炭素原料に用いて生成したフッ化
炭素は活性度が犬であり、これを活物質として用いた場
合、初期の放電電圧は高いという特徴をもつ反面、電圧
平坦性、放電利用率に劣るという欠点をも併せ持つとい
うことを発見し7、これを前記石油コークス等を原料と
したフッ化炭素に適量添加することにより、電池特性の
改良を図ることを目的としたものである。
In the present invention, the fluorocarbon produced by using a carbon blank with a specific surface area of several hundred ba/y or more, particularly 800 gp as a carbon raw material, has a high degree of activity, and when this is used as an active material, It was discovered that while it has the characteristic of high initial discharge voltage, it also has the drawbacks of poor voltage flatness and discharge utilization. The purpose of this is to improve battery characteristics.

またフン化炭素リチウム電池において、IF極活物質で
あるフッ化炭素はそれ自体絶縁体であるか、放電反応の
進行に伴い導電性のカーボンを生じるため、電極の電気
伝導度−が上り、とわが電池の放電特性に寄与している
。従って放電生成物であるカーボンの状態により電池の
放電特性、特に放電電圧は微紗に変化する。
In addition, in fluorocarbon lithium batteries, the fluorocarbon that is the IF electrode active material is either an insulator itself or generates conductive carbon as the discharge reaction progresses, so the electrical conductivity of the electrode increases. It contributes to the discharge characteristics of our batteries. Therefore, the discharge characteristics of the battery, particularly the discharge voltage, vary slightly depending on the state of carbon, which is a discharge product.

即ち生成カーボンの粒子が細かけtlば細かい程、電極
の伝導度に寄与する度合が犬となり、放電時の平坦電圧
が高くなる。
That is, the finer the generated carbon particles, the more they contribute to the conductivity of the electrode, and the higher the flat voltage during discharge becomes.

一般にフッ化炭素正極は放電により、原料カーボンより
も更に細かい無定形のカーボンを生じるが、勿論原料炭
素が細かければ細かい程、放電により生成するカーボン
は細かいものとなり、電圧特性・を向上させることがで
きる。
In general, fluorocarbon positive electrodes produce amorphous carbon that is finer than the raw material carbon through discharge, but of course, the finer the raw material carbon, the finer the carbon produced by discharge, which improves the voltage characteristics. Can be done.

従って原料炭素の粒子が小さければ小さい程、よい放電
特性を示すことになる。またその粒径が1μ以下のカー
ボンブランクを使用した場合、特に効果が顕著であるこ
とが判った。
Therefore, the smaller the raw carbon particles are, the better the discharge characteristics will be. Furthermore, it has been found that the effect is particularly remarkable when a carbon blank with a particle size of 1 μm or less is used.

同時にこれらの効果があられれ、電池のエネルギー密度
を損うことのない範囲としては、添加するカーボンブラ
ックを原料としたフッ化炭素の量は活物質全体に対し重
量パーセントで5〜20%であった。
At the same time, as long as these effects are achieved and the energy density of the battery is not impaired, the amount of fluorocarbon added, which is made from carbon black, should be 5 to 20% by weight based on the total active material. Ta.

一般に比表面積の大きい炭素としては活性炭が挙げられ
、その比表面積は約1000〜3000 WVyであり
、かつその粒径は数μ以上である。これを用いてフッ素
化したフッ化炭素を先の石油コークス等を原料としたフ
ッ化炭素に添加した場合、明らかに初期の電圧の立ち上
り特性は改良さfrだ。
In general, activated carbon is an example of carbon having a large specific surface area, and its specific surface area is about 1000 to 3000 WVy, and its particle size is several microns or more. When fluorinated fluorocarbon using this is added to the fluorocarbon made from petroleum coke, etc., the initial voltage rise characteristics are obviously improved fr.

但しその粒径は数μと大きいため、平坦電圧特性は殆ん
ど変化がみられなかった。
However, since the particle size was as large as several microns, almost no change was observed in the flat voltage characteristics.

これに対しカーボンブラックは活性炭とくらへて粒径は
小さく表面積も数+rrt/yと小さい。
On the other hand, carbon black has a smaller particle size than activated carbon and a smaller surface area of several +rrt/y.

しかしその一種であるファーネスブラックの特殊な種類
のもの、例えば米国アクゾ社のE、C,ブラックは無定
形の粒状粉末であり、その比表面積は1o00ゴ/y9
粒径は数十mμで、これをフッ素化しフッ化炭素とした
もの゛を活物質全量の6〜2゜重量パーセントの範囲℃
゛添加ると、その度合により、初期の電圧の立ち上り特
性が改良されるだけでなく、平坦電圧特性の向上をも同
時にはかることができた。
However, a special kind of furnace black, such as E, C, Black manufactured by Akzo Corporation in the United States, is an amorphous granular powder with a specific surface area of 1000g/y9.
The particle size is several tens of microns, and the particles are fluorinated to form fluorocarbon, which is in the range of 6 to 2% by weight of the total amount of active material.
Depending on the degree of addition, not only the initial voltage rise characteristics were improved, but also the flat voltage characteristics could be improved at the same time.

以下その効果を実施例で説明する。The effects will be explained below using examples.

第1図はフッ化炭素/リチウムの扁平形電池を示すもの
で、図中1は厚さ0.26mのステンレス鋼板よりなる
ケース、2は同材質の封[」板である。
FIG. 1 shows a fluorocarbon/lithium flat battery. In the figure, 1 is a case made of a stainless steel plate with a thickness of 0.26 m, and 2 is a sealing plate made of the same material.

3は封口板2の内面に溶着した厚さo、i mのニッケ
ルラス板で、この−トに厚さ0.24m、直径18駄の
リチウム/−トを圧着して負極4が構成されている。5
は直径17M、厚き0.581ulの7ノ化炭素正極で
ある。6はテタ/板正極集電体で、7はポリプロピレン
製保液材、8はポリプロピレン製セパレータ、9はポリ
プロピレン製ガスケットである。
Reference numeral 3 denotes a nickel lath plate with a thickness of o and i m welded to the inner surface of the sealing plate 2, and a negative electrode 4 is constructed by pressing a lithium lath plate with a thickness of 0.24 m and a diameter of 18 mm onto this plate. There is. 5
is a carbon heptonide positive electrode with a diameter of 17M and a thickness of 0.581 ul. Reference numeral 6 is a tele/plate positive electrode current collector, 7 is a polypropylene liquid retaining material, 8 is a polypropylene separator, and 9 is a polypropylene gasket.

電解液にはグロビレンカーボネートと1−2ジメトキン
エタンを体積比で1:1の割合に混合した溶媒に1モル
/eのホウフッ化リチウムを溶解したものを用いた。
The electrolytic solution used was one in which 1 mol/e of lithium borofluoride was dissolved in a solvent in which globylene carbonate and 1-2 dimethyneethane were mixed at a volume ratio of 1:1.

この電解液0.18CGを注入後電池を封口し、電池の
大きさを直径23B、高さ2mとした。
After injecting 0.18 CG of this electrolyte solution, the battery was sealed, and the size of the battery was set to 23 B in diameter and 2 m in height.

−1−記の構成で種々の正極を用い検討をおこなった。Studies were conducted using various positive electrodes in the configuration described in -1-.

なお、正極には7ノ化炭素活物質100重量部、導電剤
としてアセチレンブラック10重量部、結11としてス
チレンブタジェンラバー5重量部を混合し、加圧成型し
たものを用いた。
The positive electrode used was a mixture of 100 parts by weight of carbon heptanoide active material, 10 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of styrene-butadiene rubber as a binder 11, and the mixture was molded under pressure.

+−E極活物質として、石油コークスをフッ素化してフ
ッ化炭素としたものを電池A、比表面積2000d/p
 、粒径数μ〜数十μの活性炭をフッ素化したフン化炭
素を用いたものを電池B、比表面積1000ゴ/y2粒
径数十mμの無定形カーボンブラックをフッ素化したフ
ッ化炭素を用いたものを電池Cとした。
As the +-E electrode active material, battery A uses fluorinated carbon by fluorinating petroleum coke, with a specific surface area of 2000 d/p.
Battery B uses fluorinated carbon, which is made by fluorinating activated carbon with a particle size of several microns to several tens of microns, and battery B uses fluorinated carbon, which uses fluorinated amorphous carbon black with a specific surface area of 1000g/y2 and a particle size of several tens of microns. The battery used was designated as battery C.

いずれも成型後の正極の厚みを一定としたため、成型性
の良い石油コークスのフッ化炭素を用いた正極の充填密
度が最も大きく、正極重量は、電池Aが0.2y(理論
充填量150 mAh )、電池Bが0.191 (理
論充填量142 mAh )、電池Cが0.18 y(
理論充填量135 mAh )であった。
Since the thickness of the positive electrode after molding was constant in both cases, the positive electrode using fluorocarbon of petroleum coke with good moldability had the highest packing density, and the positive electrode weight was 0.2y for battery A (theoretical filling amount 150 mAh ), battery B is 0.191 (theoretical filling capacity 142 mAh), battery C is 0.18 y (
The theoretical filling amount was 135 mAh).

これらの電池を温度20°C,13にΩの定抵抗を負荷
として放電し、た特性を第2図に示す。
Figure 2 shows the characteristics of these batteries when they were discharged at a temperature of 20 DEG C. and a constant resistance of 13 Ω as a load.

電池Aは電圧乎坦性、放電電気量ともにすぐiするが、
放電初期にわずかに電圧の立ち遅れが認められる。これ
に対し1電池B、Cは初期の電圧の立ち遅れは認められ
ず、高い電圧特性を示すが、電圧の゛ド坦性、放電電気
量の面でAよりも劣っている。
Battery A has both voltage stability and discharge amount of electricity, but
A slight voltage delay is observed at the beginning of discharge. On the other hand, batteries B and C have no initial voltage delay and exhibit high voltage characteristics, but are inferior to battery A in terms of voltage uniformity and discharged electricity amount.

この放電初期の高い電圧特性は明らかに原H科炭素の比
表面積の大きさによるものである。
This high voltage characteristic at the initial stage of discharge is clearly due to the large specific surface area of the original H family carbon.

即ち一1=記の粒径数十mμの無定形カーボンブランク
を適当な製造方法により、その比表面積が6oowt/
y 、 7oont/y 、sooゴ/P。
That is, an amorphous carbon blank with a particle size of several tens of micrometers as shown in 11 is produced by an appropriate manufacturing method, and its specific surface area becomes 6oowt/
y, 7oont/y, soogo/P.

1000n?/7.2000ゴ/yとなるようにし、−
ト記電池Cと同じ条件で電池を製作したものを、それぞ
れ電池C4,C2,C3,C1C4とし、温度2゜’C
,13kQの定抵抗負荷で放電したものを第3に示す。
1000n? /7. Make it 2000 go/y, -
Batteries manufactured under the same conditions as battery C described above are called batteries C4, C2, C3, and C1C4, respectively, and the temperature is 2°C.
, 13kQ constant resistance load is shown in the third figure.

第3図からも明らかなように、放電電圧特性は原材料カ
ーボンブラックの比表面積に比例し、放電初期の電圧の
立ち遅れの分岐点は、比表面積が800 rrt / 
yであり、これ以−トの比表面積を有する原材料カーボ
ンブランクを使用すれば、放電初期の電圧の立ち遅力は
生じないことが判る。
As is clear from Fig. 3, the discharge voltage characteristics are proportional to the specific surface area of the raw material carbon black, and the branching point of the voltage delay at the beginning of discharge occurs when the specific surface area is 800 rrt /
y, and it can be seen that if a raw material carbon blank having a specific surface area smaller than this is used, no voltage rise delay occurs at the initial stage of discharge.

次に正極活物質として、石油コークスのフッ化炭素のみ
の電池Aと、Aの石油コークスのフン化炭素に活性炭の
フン化炭素に10Ji量パーセント添加した電池をり、
同じく上記電池Cの活物質の無定形カーボンブランクの
フン化炭素を5重針バーセント添加した電池をE、10
重量パーセント0 添加した電池をF、20重量パーセント添加した電池を
Gとする。正極重量は電池りが02y(理論充填量15
0 mAh )、電池Eが0.2y(理論充填量150
 mAh )、電池Fが0.196y(理論充填量1.
46 mAh )、電池Gが0.19 y(理論充填量
142mAh)であツタ。
Next, as a positive electrode active material, a battery A with only fluorocarbon of petroleum coke and a battery with 10Ji amount percent added to the fluoride carbon of petroleum coke of A and the fluoride carbon of activated carbon were used.
Similarly, a battery E, 10 in which fluorinated carbon of the amorphous carbon blank of the active material of Battery C was added with a pentad needle percentage was used.
A battery with 0 weight percent addition is designated as F, and a battery with 20 weight percent addition is designated as G. The weight of the positive electrode is 02y (theoretical filling amount: 15
0 mAh), battery E is 0.2y (theoretical filling capacity 150
mAh), battery F is 0.196y (theoretical filling amount 1.
46 mAh), battery G was 0.19 y (theoretical charging capacity 142 mAh).

r。r.

電池A、D、E油を温度20’Cテ13 k QI)定
抵抗で放電した結早を第4図に示す。
Figure 4 shows the early discharge of batteries A, D and E oils at a constant resistance of 20'C (20'C).

第4図から判るように、比表面積の大きい原料カーボン
ブランクから生成したフッ化炭素を、電圧平坦性、放電
利用率にすぐれる石油コークスから生成したフッ化炭素
に適量添加することにより、それらの特性を損うことな
く、放電初期の電圧\’Aち上り特性を改良できる。
As can be seen from Figure 4, by adding an appropriate amount of fluorocarbon produced from raw material carbon blank with a large specific surface area to fluorocarbon produced from petroleum coke, which has excellent voltage flatness and discharge utilization efficiency, these The voltage \'A rise characteristic at the initial stage of discharge can be improved without impairing the characteristics.

また、活性炭を原材料としてフッ化炭素と無定形カーボ
ンブランクを原材料とした7ツ化炭素は、第2図から明
らかな如く放電電圧特性は殆んど変らないのに対し、こ
れを石油コークスを原14月とした7フ化炭素に添加し
た場合、第4図からも明らかなように、電池りとFは同
じ10重址パーセン]・の添加量にもかかわらず、電池
Fの方が放電平坦電圧か高い。これは第2図の電池Bと
Cからも認められ、原材料カーボンの粒径が関係してい
るものと考えられる。
Furthermore, as shown in Figure 2, the discharge voltage characteristics of carbon heptide, which is made from activated carbon as a raw material, fluorocarbon, and amorphous carbon blank, have almost no change in discharge voltage characteristics. When added to carbon 7 fluoride prepared in April, battery F had a flatter discharge, even though the amount added was the same for battery F and battery F (10%), as is clear from Figure 4. Voltage is high. This is also recognized from batteries B and C in FIG. 2, and is thought to be related to the particle size of the raw material carbon.

従って無定形カーボンブラックの粒径を変えて、フッ・
化炭素を生成し、それを電池Fと同じ条件で石油コーク
スを原材料としたフン化炭素に添加して電池を製作し、
温度20°C,13にΩの定抵抗負荷で放電した時の平
坦電圧の値と、添加した無定形カーボンブランクの7ノ
化炭素の原材料カーボンブラックの粒径との関係を第5
図に示す。
Therefore, by changing the particle size of amorphous carbon black,
A battery is manufactured by producing fluorinated carbon and adding it to fluorinated carbon made from petroleum coke under the same conditions as Battery F.
The relationship between the flat voltage value when discharged at a temperature of 20°C and a constant resistance load of 13 Ω and the particle size of carbon black, the raw material for carbon hepta-node of the added amorphous carbon blank, is shown in Figure 5.
As shown in the figure.

第5図から明らかなように、粒径が1μ以下では平坦電
圧(−,1,2,76Vとはソ一定であるが、粒径がそ
れ以JZ”となると低下し、10μ以上では又2.7V
と一定になる。従って良好な平坦電圧特性を得るには粒
径がI II以下が望丑しいことが判る。
As is clear from Fig. 5, the flat voltage (-, 1, 2, and 76 V is constant at -, 1, 2, and 76 V when the particle size is less than 1 μm, but it decreases when the particle size becomes JZ'', and when the particle size exceeds 10 μm, the voltage increases again at 2 V). .7V
becomes constant. Therefore, it can be seen that in order to obtain good flat voltage characteristics, it is desirable that the grain size be less than III.

こねは1石油コークスから生成したフッ化炭素だtlで
なく、天然黒鉛1人造黒鉛から生成したフッ化炭素に対
しても同様の効果を示すことが確認できた。
It was confirmed that the same effect was shown not only for fluorocarbon produced from 1 petroleum coke, but also for fluorocarbon produced from natural graphite and 1 artificial graphite.

以上の如く本発明は、フン化炭素を正極活物質に用いた
電池の特性改良において、その価値は大であると云える
As described above, it can be said that the present invention is of great value in improving the characteristics of batteries using fluorinated carbon as a positive electrode active material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるフッ化炭素/リチウム
系扁平電池の断面図、第2図は正極活物質であるフッ化
炭素を異ならせた電池の放電特性図、第3図は無定形カ
ーボンブラックの比表面積を種々異ならせてフッ1、化
したフッ化炭素を用いた電池の放電特性図、第4図はフ
ッ化炭素を2種類併用した電池の放電特性図、第5図は
フッ素化する力〜ボンブラックの粒径と平坦電圧との関
係を示す図である。 1・・@110ケース、2■・・■刺口板、4■・・・
―負極、6・・・・・・ンソ化炭素正極、7・・・・・
・保液伺、8−−−−・・セパレータ 9 @1111
・・9ガスケツト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名葛゛
1図 j  6’     、9 第2図 1文 1  卓 1(ty=/Iルノ 第3図 放 龜専量  (InIA]
Figure 1 is a cross-sectional view of a fluorocarbon/lithium flat battery according to an embodiment of the present invention, Figure 2 is a discharge characteristic diagram of batteries using different fluoride carbon as the positive electrode active material, and Figure 3 is an amorphous battery. Figure 4 shows the discharge characteristics of batteries using fluorocarbons with different specific surface areas of carbon black, and Figure 5 shows the discharge characteristics of batteries using two types of fluorocarbons. FIG. 3 is a diagram showing the relationship between the force to change and the particle size of bomb black and the flat voltage. 1..@110 cases, 2..■ Punching board, 4..
- Negative electrode, 6... Sorated carbon positive electrode, 7...
・Liquid retention, 8------...Separator 9 @1111
...9 gaskets. Name of agent: Patent attorney Toshio Nakao and one other person (InIA)

Claims (3)

【特許請求の範囲】[Claims] (1)軽金居千活物質とする負極と、フッ化炭素を活物
質とする正極と、有機電解質とからなり、前記正極活物
質が天然黒鉛2人造黒鉛もしくは石油化炭素を添加した
ものからなることを特徴とする電池。
(1) Consisting of a negative electrode using a light Kanai Chi active material, a positive electrode using fluorocarbon as an active material, and an organic electrolyte, where the positive electrode active material is natural graphite, artificial graphite, or petroleum carbon added. A battery characterized by:
(2)前記正極へ添加するフン化炭素の原料カーボンブ
ランクの粒径が1μ以下である特許請求の範囲第1項に
記載の電池。
(2) The battery according to claim 1, wherein the carbon blank as a raw material for the fluorinated carbon added to the positive electrode has a particle size of 1 μm or less.
(3)前記正極へ添加するカーボンブラックをフッ素化
したフッ化炭素が、活物質全体の5〜20重量パーセン
トである特許請求の範囲第1項または第2に記載の電池
(3) The battery according to claim 1 or 2, wherein the fluorinated carbon added to the positive electrode is 5 to 20 weight percent of the total active material.
JP56104172A 1981-07-02 1981-07-02 Battery Pending JPS585967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56104172A JPS585967A (en) 1981-07-02 1981-07-02 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104172A JPS585967A (en) 1981-07-02 1981-07-02 Battery

Publications (1)

Publication Number Publication Date
JPS585967A true JPS585967A (en) 1983-01-13

Family

ID=14373608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104172A Pending JPS585967A (en) 1981-07-02 1981-07-02 Battery

Country Status (1)

Country Link
JP (1) JPS585967A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142113A2 (en) * 1983-11-07 1985-05-22 Daikin Kogyo Co., Ltd. Active material for batteries
US4686161A (en) * 1985-09-16 1987-08-11 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery
CN111170302A (en) * 2020-01-16 2020-05-19 厦门稀土材料研究所 Preparation method and application of carbon fluoride material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142113A2 (en) * 1983-11-07 1985-05-22 Daikin Kogyo Co., Ltd. Active material for batteries
US4686161A (en) * 1985-09-16 1987-08-11 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery
CN111170302A (en) * 2020-01-16 2020-05-19 厦门稀土材料研究所 Preparation method and application of carbon fluoride material

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
KR101268989B1 (en) Lithium ion secondary cell
JPH1186905A (en) Nonaqueous electrolyte secondary battery
JP3401884B2 (en) Lithium secondary battery
JP3186811B2 (en) Method of charging lithium secondary battery
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JPH07335199A (en) Non-aqueous electrolyte secondary battery
JPS585967A (en) Battery
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP3232953B2 (en) Non-aqueous electrolyte secondary battery
JPH0997611A (en) Electrode for battery, and secondary battery
JP2730641B2 (en) Lithium secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP3468956B2 (en) Non-aqueous electrolyte secondary battery
JPH0353743B2 (en)
JPS6231962A (en) Secondary battery
JPS59130070A (en) Nonaqueous electrolytic secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JPS58140972A (en) Production method of positive electrode active material for organic electrolyte cell
JPH0424828B2 (en)
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JPH1040960A (en) Nonaqueous electrolyte secondary battery