JPH0678534B2 - Coal gasifier control device - Google Patents

Coal gasifier control device

Info

Publication number
JPH0678534B2
JPH0678534B2 JP16462986A JP16462986A JPH0678534B2 JP H0678534 B2 JPH0678534 B2 JP H0678534B2 JP 16462986 A JP16462986 A JP 16462986A JP 16462986 A JP16462986 A JP 16462986A JP H0678534 B2 JPH0678534 B2 JP H0678534B2
Authority
JP
Japan
Prior art keywords
coal
detection end
temperature
gas
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16462986A
Other languages
Japanese (ja)
Other versions
JPS6320388A (en
Inventor
仁一 戸室
真二 田中
俊太郎 小山
芳樹 野口
栄次 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP16462986A priority Critical patent/JPH0678534B2/en
Publication of JPS6320388A publication Critical patent/JPS6320388A/en
Publication of JPH0678534B2 publication Critical patent/JPH0678534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石炭を部分酸化によりガス化するガス化炉に係
り、生成ガスの発生量を変化させながら運転することが
要求される場合に生成ガス発熱量を一定値以上に保つた
めのガス化炉運転条件の制御装置に関する。
Description: TECHNICAL FIELD The present invention relates to a gasification furnace for gasifying coal by partial oxidation, which is produced when it is required to operate while changing the amount of produced gas. The present invention relates to a control device for operating conditions of a gasification furnace for keeping a gas calorific value above a certain value.

〔従来の技術〕[Conventional technology]

部分酸化法により石炭をガス化する場合、生成ガスの発
熱量を支配する因子には、ガス化温度,ガス化圧力,ガ
ス化剤である酸素又は空気のような酸素含有ガスと石炭
との流量比,石炭のガス化率などがある。これらの因子
で運転条件として操作可能な因子はガス化剤及び石炭の
流量とガス化圧力である。ガス化温度はガス化剤の予熱
温度、あるいは、ガス化炉材の冷却媒体の温度によりあ
る程度操作可能であるが、ガス化炉を高温に維持する熱
源は石炭の部分酸化反応で発生する反応熱が主体であ
り、従つて、ガス化温度はガス化剤と石炭との流量比が
定まつた場合、結果として得られるガス化温度をガス化
剤の予熱温度等により大幅に変化させることは困難であ
る。又、石炭のガス化率は、供給された石炭がいかに効
率良くガス化剤と反応するかを表わす因子で、他の条件
が一定であれば、ガス化率が大きい程生成ガス発熱量は
高い。但し、ガス化率は、ガス化炉、あるいは、ガス化
剤、及び、石炭の供給装置等の構造、ガス化反応条件等
で定まるため、運転条件により直接操作可能な因子では
ない。
When coal is gasified by the partial oxidation method, the factors that govern the calorific value of the produced gas are gasification temperature, gasification pressure, the flow rate of oxygen-containing gas such as oxygen or air which is a gasifying agent, and coal. Ratio, coal gasification rate, etc. Among these factors, the factors that can be operated as operating conditions are the gasification agent and the flow rate and gasification pressure of coal. The gasification temperature can be controlled to some extent by the preheating temperature of the gasifying agent or the temperature of the cooling medium of the gasification furnace material, but the heat source that keeps the gasification furnace at a high temperature is the reaction heat generated by the partial oxidation reaction of coal. Therefore, if the gasification temperature is determined by the flow rate ratio between the gasifying agent and coal, it is difficult to change the resulting gasification temperature significantly by the preheating temperature of the gasifying agent. Is. The gasification rate of coal is a factor that shows how efficiently the supplied coal reacts with the gasifying agent. If other conditions are constant, the calorific value of the produced gas is higher as the gasification rate is higher. . However, the gasification rate is not a factor that can be directly controlled depending on the operating conditions, because it is determined by the structure of the gasification furnace, the gasifying agent, the coal supply device, etc., the gasification reaction conditions, and the like.

更に、操作可能な因子のうち、ガス化炉圧力は、商用規
模の装置ではガス化炉の周辺機器への影響を考慮すると
一定圧力に保持することが好ましく、あえて操作したと
しても時間的に極めて緩やかな変化に限られ、急激な変
化は困難である。従つてガス化炉の運転条件として実質
的に操作可能な因子は、第一次的に供給する石炭及びガ
ス化剤の流量となり、副次的にガス化剤予熱温度,ガス
化圧力等となる。
Further, among the factors that can be operated, it is preferable to keep the gasifier pressure at a constant pressure in the case of a commercial-scale device in consideration of the influence on the peripheral equipment of the gasifier. Limited to gradual changes, rapid changes are difficult. Therefore, the factors that can be substantially manipulated as the operating conditions of the gasifier are the flow rate of coal and the gasifying agent that are primarily supplied, and the secondary factors are the gasifying agent preheating temperature, gasification pressure, etc. .

特開昭56−79186号公報には溶融金属中に石炭を吹き込
んでガス化する場合の石炭とガス化剤の供給量を制御す
る装置が示されている。この公知例は本発明のガス化炉
と形式が異なるガス化炉に関する発明であるが、ガス化
剤の制御は類似する点が多い。この公知例は、石炭供給
量を設定値に維持する制御装置を基本に、石炭及びガス
化剤の加熱温度を一定に保つための加熱制御装置を備
え、更に、石炭・ガス化剤・生成ガスそれぞれの温度・
流量とガス化炉内温度から総合的にガス化剤の流量を決
定しようとするもので、例えば、起動操作中と定常運転
中とで、各部の温度、そのうちでも特にガス化炉内温度
を極力変化させないように制御し、溶融金属の固化を防
止することを主目的としている。石炭供給量がほぼ一定
に保たれた状態では、外乱としての石炭供給量変動に対
してガス化炉温度を一定に保つことにより実質的に生成
ガス発熱量を一定にすることが可能であるため、生成ガ
ス流量を大幅に変化させる必要のないガス製造装置に、
制御装置として、上記の公知例は十分な機能を果すと考
えられる。
Japanese Unexamined Patent Publication (Kokai) No. 56-79186 discloses an apparatus for controlling the supply amount of coal and a gasifying agent when coal is blown into molten metal for gasification. This known example relates to a gasifier having a different type from the gasifier of the present invention, but control of the gasifying agent has many similarities. This known example is based on a control device that maintains the coal supply amount at a set value, and is equipped with a heating control device for keeping the heating temperature of coal and the gasifying agent constant, and further, coal, gasifying agent, and produced gas. Each temperature
It is intended to comprehensively determine the flow rate of the gasifying agent from the flow rate and the temperature in the gasification furnace.For example, the temperature of each part during start-up operation and steady operation, especially the temperature in the gasification furnace as much as possible The main purpose is to prevent solidification of the molten metal by controlling so as not to change. In the state where the coal supply amount is kept almost constant, it is possible to keep the generated gas calorific value substantially constant by keeping the gasifier temperature constant against fluctuations in the coal supply amount as disturbance. For gas production equipment that does not require a large change in the generated gas flow rate,
As a control device, the above-mentioned publicly known examples are considered to fulfill a sufficient function.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

これに対して、生成ガスを貯蔵することなくガスタービ
ンのような発電設備に導きその燃料として使用する場
合、目標とする発熱量に応じて生成ガス発生量を調節す
る必要があり、且つ、生成ガス発熱量が燃料として許容
され得る範囲内に常に制御されることが要求される。近
年の火力発電では運用上少なくとも一分間当り3%程度
の負荷の増減速度が要求されており、これに組み合わせ
るガス化炉では発生ガス量もほぼ負荷の増減に見合つて
変化させる必要がある。この従来技術のようにガス化炉
温度を一定に保つように制御すると、負荷が変化しても
炉からの熱損失は基本的に不変であるため、低負荷時に
はガス化炉内で発生しなければならない発熱反応量の供
給される石炭の発熱量に対する相対的な割合が増し、生
成ガスの発熱量が低下する。又、生成ガス発熱量を炉内
温度に準じて検出できれば、従来技術と同様な制御で生
成ガス発熱量を一定に保つことが可能だが、噴流層ガス
化炉のように高温・高圧でダストを含有するガスの発熱
量を検出するには、ガスの一部をサンプリングし冷却・
除塵した後、特殊な燃焼器で燃焼させて発熱量を直接測
定するか、ガスクロマトグラフ等で組成を分析し、成分
毎の理論発熱量から計算で間接的に求めねばならず、サ
ンプリング系・分析系での時間遅れが大きく、応答の速
い検出端を備えるのは困難である。ガス化炉の運転条件
が緩やかに変化する場合は時間遅れの大きい検出端を用
いても生成ガスの発熱量制御は可能だが、発電プラント
のように負荷変動が著しく変化速度も大きい運転の場
合、時間遅れの大きな発熱量検出端では適切な制御とな
り得ない。
On the other hand, when the generated gas is guided to a power generation facility such as a gas turbine and used as fuel without storing the generated gas, it is necessary to adjust the generated gas generation amount according to the target calorific value, and It is required that the gas calorific value be constantly controlled within a range that is acceptable as fuel. In recent years, thermal power generation requires an increase / decrease rate of load of at least about 3% per minute in operation, and the gasification furnace combined with this needs to change the amount of generated gas almost in proportion to the increase / decrease of load. If the gasifier temperature is controlled to be constant as in this prior art, the heat loss from the furnace is basically unchanged even if the load changes, so it must occur in the gasifier at low load. The relative proportion of the required exothermic reaction amount to the calorific value of the supplied coal increases, and the calorific value of the produced gas decreases. Also, if the generated gas calorific value can be detected according to the furnace temperature, the generated gas calorific value can be kept constant by the same control as the conventional technology, but dust can be generated at high temperature and high pressure like a spouted bed gasification furnace. To detect the calorific value of the contained gas, a part of the gas is sampled and cooled.
After removing dust, it must be burned in a special combustor to directly measure the calorific value, or the composition must be analyzed by a gas chromatograph, etc. and calculated indirectly from the theoretical calorific value of each component. The time delay in the system is large and it is difficult to provide a detection end with a fast response. When the operating conditions of the gasification furnace change slowly, it is possible to control the calorific value of the generated gas by using a detection end with a large time delay, but in the case of an operation such as a power plant where the load fluctuation is significantly large and the rate of change is large, Proper control cannot be achieved at the heat generation amount detection end with a large time delay.

本発明の目的は、生成ガス発熱量の測定精度では劣るが
ガス化炉運転状態を応答性良く検知する検出端と、ガス
化炉生成ガスの発熱量測定精度では優れるが応答の遅い
検出端とを同時に使用し、両検出量から得られる情報を
合理的にフイードバツクすることにより、負荷変動中に
も生成ガス発熱量をほぼ一定に制御することにある。
The object of the present invention is a detection end which is inferior in the measurement accuracy of the generated gas calorific value but which detects the gasifier operating state with good response, and a detection end which is excellent in the calorific value measurement accuracy of the gasifier generated gas but has a slow response. Is used at the same time, and the information obtained from both detected amounts is reasonably feedback-controlled, so that the calorific value of the generated gas is controlled to be substantially constant even during load changes.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、負荷変化に応じて石炭供給量を定め、応
答性の良い第一の検出端で検出される状態量が設定値と
なるようガス化剤供給量を制御しながら、応答の遅い第
二の検出端で精度良い生成ガス発熱量が検出されるのを
待ち、第二の検出端で生成ガス発熱量が検出された時点
でこれを発熱量設定値と比較し誤差に応じて第一の検出
端で検出される状態量の設定値を変更する制御ループを
構成することにより達成される。
The purpose of the above is to determine the coal supply amount according to the load change and control the gasification agent supply amount so that the state amount detected by the first detection end with good responsiveness becomes the set value, while the response is slow. Wait until the generated gas calorific value is accurately detected at the second detection end, and at the time when the generated gas calorific value is detected at the second detection end, compare this with the calorific value set value, and according to the error, This is achieved by configuring a control loop that changes the set value of the state quantity detected at one detection end.

〔実施例〕〔Example〕

以下、第1図により本発明の構成をより詳細に述べる。
第1図は本発明を具象化するのに好適な制御ブロツクの
接続構成を示したものである。発電側の負荷に応じて与
えられる石炭供給量設定値1は石炭供給量検出回路13の
出力と比較され、両者の誤差によりPID調節計で構成さ
れる補償回路11を通して石炭供給量制御装置12を制御
し、ガス化炉40への石炭供給量2を調節する。一方、生
成ガス発熱量設定値3は生成ガス発熱量検出回路32の出
力と比較され、両者の誤差によりガス化炉温度補正回路
21を通してガス化炉温度設定値4にオフセツトを加え、
更に、ガス化炉温度検出回路31の出力と比較される。こ
の誤差はガス化剤供給量演算回路22によりガス化剤供給
量設定値に変換され、ガス化剤供給量検出回路25の出力
と比較され、その誤差によりPID調節計で構成される補
償回路23を通してガス化剤供給量制御弁24を制御し、ガ
ス化炉40へガス化剤供給量5を調節する。ガス化炉40か
らはガス化炉温度検出信号6及び生成ガス発熱量検出信
号7が取り出され、それぞれ、ガス化炉温度検出回路31
及び生成ガス発熱量検出回路32へ入力される。このう
ち、生成ガス発熱量検出回路32は新たに生成ガス発熱量
が検出,測定されるまでは直前に測定された発熱量を保
持する機能を持たせている。
Hereinafter, the configuration of the present invention will be described in more detail with reference to FIG.
FIG. 1 shows a connection structure of a control block suitable for embodying the present invention. The coal supply amount set value 1 given according to the load on the power generation side is compared with the output of the coal supply amount detection circuit 13, and the error of both causes the coal supply amount control device 12 to pass through the compensation circuit 11 configured by a PID controller. The amount of coal supply 2 to the gasifier 40 is controlled and adjusted. On the other hand, the generated gas calorific value set value 3 is compared with the output of the generated gas calorific value detection circuit 32, and due to an error between them, the gasification furnace temperature correction circuit
Add the offset to the gasifier temperature set point 4 through 21,
Further, it is compared with the output of the gasification furnace temperature detection circuit 31. This error is converted into a gasifying agent supply amount set value by the gasifying agent supply amount calculation circuit 22, compared with the output of the gasifying agent supply amount detection circuit 25, and the error is compensated by a compensation circuit 23 composed of a PID controller. The gasifying agent supply amount control valve 24 is controlled to control the gasifying agent supply amount 5 to the gasification furnace 40. The gasification furnace temperature detection signal 6 and the generated gas calorific value detection signal 7 are extracted from the gasification furnace 40, and are respectively supplied to the gasification furnace temperature detection circuit 31.
And the generated gas calorific value detection circuit 32. Among these, the generated gas calorific value detection circuit 32 has a function of holding the calorific value measured immediately before until the generated gas calorific value is newly detected and measured.

いま、第1図で制御されるガス化炉が定常状態にあり、
ある時点から、石炭供給量設定値1を徐徐に低下させた
場合、ブロツク11〜13で構成され開ループにより、石炭
供給量2が低下し始める。この直後には、ブロツク23〜
25で構成される開ループによりガス化剤供給量5は一定
に保たれるため、単位石炭供給量当りのガス化剤は増加
することになり、ガス化炉40の運転状態は完全燃焼に近
づく。この状態変化はガス化炉温度の上昇と生成ガス発
熱量の低下に結びつくが、まず、温度上昇が温度検出回
路31を通じてフイードバツクされ、ガス化剤供給量演算
回路の出力であるガス化剤供給量設定値を低下させ、ブ
ロツク23〜25で構成される閉ループは新たな設定値に向
けてガス化剤供給量を低下させる。ガス化剤供給量はガ
ス化炉40の温度検出信号6が以前の定常値に達するまで
低下し続ける。この間に生成ガス検出回路32から新たな
生成ガス発熱量の実測値が得られ、生成ガス発熱量がそ
の設定値3を下回つていると、温度補正回路21によりオ
フセツト値が増加し、見掛け上、低いガス化炉温度設定
値とし、ガス化剤供給量5を更に低下させ単位石炭供給
量当りのガス化剤供給量を小さくし、生成ガス発熱量を
回復するように働く。
Now, the gasifier controlled in Fig. 1 is in a steady state,
When the coal feed rate set value 1 is gradually decreased from a certain point in time, the coal feed rate 2 starts to drop due to the open loop constituted by the blocks 11 to 13. Immediately after this, block 23 ~
Since the gasification agent supply amount 5 is kept constant by the open loop composed of 25, the gasification agent per unit coal supply amount increases, and the operating state of the gasification furnace 40 approaches complete combustion. . This change in state leads to an increase in the temperature of the gasifier and a decrease in the calorific value of the generated gas.First, the temperature rise is fed back through the temperature detection circuit 31, and the gasifying agent supply amount output from the gasifying agent supply amount calculation circuit is output. The set value is lowered, and the closed loop constituted by the blocks 23 to 25 lowers the gasifying agent supply amount toward the new set value. The gasifying agent supply amount continues to decrease until the temperature detection signal 6 of the gasification furnace 40 reaches the previous steady value. During this period, a new measured value of the calorific value of the generated gas is obtained from the generated gas detection circuit 32, and when the calorific value of the generated gas is lower than the set value 3, the temperature correction circuit 21 increases the offset value, apparently. , A low gasification furnace temperature set value, further reducing the gasifying agent supply amount 5 to reduce the gasifying agent supply amount per unit coal supply amount, and recovering the generated gas calorific value.

なお、本発明はガス化炉に設置される検出端の種類に限
定されるものではなく、第1図における温度並びにそれ
に係るブロツクは、他の状態量、例えば、生成ガス中の
特定成分の濃度、あるいは、同特定二成分の濃度比、と
それに係るブロツクで置き換えてもよい。但し、この
時、検出端の応答はガス化炉のガス滞留時間に比較して
同等程度以下となる検出端を選定することが好ましい。
又、第1図の発熱量検出に係る部分は、ガクスロマトグ
ラフ等により生成ガス中の大部分の成分を定量し発熱量
を算出する検出端でも、生成ガスの一部又は部分を燃焼
させ、燃焼温度等からガスの発熱量を求める検出端でも
よい。
It should be noted that the present invention is not limited to the type of the detection end installed in the gasification furnace, and the temperature in FIG. 1 and the block related thereto are not limited to other state quantities, for example, the concentration of a specific component in the produced gas. Alternatively, the concentration ratio of the same specific two components and the block relating thereto may be replaced. However, at this time, it is preferable to select a detection end whose response is equal to or less than the gas residence time of the gasification furnace.
In addition, the part related to the calorific value detection in FIG. 1 is such that even at the detection end for quantifying most of the components in the generated gas and calculating the calorific value by a gas chromatograph or the like, a part or part of the generated gas is burned, It may be a detection end for obtaining the calorific value of the gas from the combustion temperature or the like.

温度補正回路21の内容の変更により本発明は生成ガス発
熱量の一定制御としても、下限値制御としても働く。必
要であれば、両者の制御方式を条件に応じて切換えるこ
とも可能である。例えば、生成ガスをガスタービン燃料
として使用する場合、定格、あるいは、それに準じる負
荷で運転中は燃焼器温度が異常に高くなるのを防止する
ため、ガス化炉での生成ガス発熱量は定格値付近で一定
に保つことが好ましく、低負荷運転中は燃焼器温度が低
下しているため燃焼器での失火を防止するため、ガス化
炉生成ガス発熱量が限界値を下回らないように制御でき
ればよい。
By changing the contents of the temperature correction circuit 21, the present invention functions both as a constant control of the generated gas calorific value and as a lower limit control. If necessary, both control methods can be switched according to the conditions. For example, when the generated gas is used as gas turbine fuel, the calorific value of the generated gas in the gasification furnace is the rated value in order to prevent the combustor temperature from rising abnormally during operation at the rated or equivalent load. It is preferable to keep it constant near the combustor temperature during low load operation, so to prevent misfire in the combustor, if the calorific value of the gasifier produced gas can be controlled so as not to fall below the limit value. Good.

ガス化炉40として、内径300mm,高さ1200mmのガス化部を
もつ噴流層ガス化炉を用い、圧力4kg/cm2Gで太平洋炭を
約150℃に予熱した空気によりガス化する際に、第1図
に示した制御ブロツクにより、温度検出端としてガス化
炉出口に設置した熱電対を、発熱量検出端として分析周
期10分のプロセス用ガスクロマトグラフの分析値からの
計算値を用いたところ、石炭供給量を32kg/hから14kg/h
まで毎分3%の割合で低下しても、生成ガス発熱量は75
0〜820Kcal/kg(低位発熱量)の範囲内に制御できた。
As the gasification furnace 40, a spouted bed gasification furnace having a gasification section with an inner diameter of 300 mm and a height of 1,200 mm is used, and when gasifying Pacific coal at a pressure of 4 kg / cm 2 G with air preheated to about 150 ° C., Using the control block shown in Fig. 1, the thermocouple installed at the outlet of the gasification furnace as the temperature detection end and the calculated value from the analysis value of the process gas chromatograph for 10 minutes as the heat generation amount detection end were used. , Coal supply from 32kg / h to 14kg / h
Even if it decreases at a rate of 3% per minute, the generated gas calorific value is 75
It could be controlled within the range of 0 to 820 Kcal / kg (lower heating value).

第2図は本発明の他の実施例の制御ブロツクの接続構成
を示したもので、第1図の実施例にガス化剤の温度制御
を付加したものである。即ち、温度補正回路21の出力を
分岐し、ガス化剤予熱温度補償回路51に導き、温度補正
回路21の出力がゼロとなるようガス化剤予熱器52の加熱
量を制御する。本実施例のガス化剤温度制御はガス化剤
の供給温度を一定に保つ制御とは本質的に異なり、低負
荷時のガス化剤予熱温度を定格運転時に比べ高めてガス
化炉温度の低下を補うもので、負荷の低減限界をより低
くし、運転可能範囲を拡大することができる。又、制御
ブロツクの構成から明らかなように、ガス化剤の温度制
御の最終目的はあくまで生成ガス発熱量の維持であり、
ガス化炉温度を一定に保つことではない。従つて、部分
負荷状態を続けた場合のガス化炉定常温度は定格状態の
ガス化炉定常温度と必ずしも一致せず、又、どの程度異
なるかはもつぱら系の特性に依存する。
FIG. 2 shows the connection structure of the control block of another embodiment of the present invention, in which the temperature control of the gasifying agent is added to the embodiment of FIG. That is, the output of the temperature correction circuit 21 is branched and led to the gasifying agent preheating temperature compensating circuit 51, and the heating amount of the gasifying agent preheater 52 is controlled so that the output of the temperature correcting circuit 21 becomes zero. The gasifying agent temperature control of the present embodiment is essentially different from the control for keeping the supply temperature of the gasifying agent constant, and the gasifying agent preheating temperature at low load is increased as compared with that at the time of rated operation to lower the gasification furnace temperature. The load reduction limit can be further lowered and the operable range can be expanded. Also, as is clear from the configuration of the control block, the final purpose of temperature control of the gasifying agent is to maintain the calorific value of the generated gas.
It is not to keep the gasifier temperature constant. Therefore, the gasifier steady-state temperature when the partial load is continued does not always match the gasifier steady-state temperature in the rated state, and the degree of difference depends on the characteristics of the para system.

更に生成ガスをガスタービン燃料として利用する場合、
ガスタービン燃料器での生成ガスの燃焼をガス発熱量検
出端とみなし、その情報をフイードバツクすることも可
能である。この場合、ガス化炉からの生成ガスは冷却,
除塵,脱硫などの処理が加えられ、発熱量検出端である
ガスタービン燃焼器に達するまでに数分の時間遅れがあ
るが、本発明による制御法では特に問題とはならない。
Furthermore, when using the generated gas as gas turbine fuel,
It is also possible to regard the combustion of the generated gas in the gas turbine fuel unit as the gas calorific value detection end and feed back the information. In this case, the gas produced from the gasifier is cooled,
There is a delay of several minutes before reaching the gas turbine combustor, which is the end of the calorific value detection, due to the addition of dust removal, desulfurization, etc., but the control method according to the present invention does not cause any particular problem.

〔発明の効果〕〔The invention's effect〕

本発明によれば、噴流層石炭ガス化炉を用いて石炭供給
量を変化させながら運転しても、ガス化炉から発生する
生成ガスの発熱量の低下を抑制でき、石炭からガスター
ビン等の燃料として好適なガスの製造が可能となる。
According to the present invention, even if the spouted bed coal gasification furnace is operated while varying the coal supply amount, it is possible to suppress the decrease in the calorific value of the generated gas generated from the gasification furnace, and to reduce the heat generation from coal such as a gas turbine. It becomes possible to produce a gas suitable as a fuel.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の制御ブロツク構成図、第2
図は他の実施例の制御ブロツク構成図である。 1……石炭供給量設定値、2……石炭供給量、3……生
成ガス発熱量設定値、4……ガス化炉温度設定値、5…
…ガス化剤供給量、6……温度検出信号、7……生成ガ
ス発熱量検出信号、8……ガス化剤温度、40……ガス化
炉。
FIG. 1 is a block diagram of a control block according to an embodiment of the present invention, and FIG.
The figure is a block diagram of the control block of another embodiment. 1 ... Coal supply amount setting value, 2 ... Coal supply amount setting, 3 ... Generated gas calorific value setting value, 4 ... Gasification furnace temperature setting value, 5 ...
Gas supply agent supply amount, 6 ... Temperature detection signal, 7 ... Generated gas heat value detection signal, 8 ... Gasification agent temperature, 40 ... Gasification furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 俊太郎 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 野口 芳樹 東京都千代田区神田駿河台4丁目6番地 株式会社日立製作所内 (72)発明者 木田 栄次 広島県呉市宝町6番9号 パプコツク日立 株式会社呉工場内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Shuntaro Koyama 4026 Kuji-machi, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory Ltd. (72) Inventor Yoshiki Noguchi 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. Inside the Works (72) Inventor Eiji Kida 6-9 Takaracho, Kure City, Hiroshima Prefecture Papkotsu Hitachi Hitachi Kure Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸素又は酸素含有ガスをガス化剤とし噴流
層ガス化炉により石炭をガス化するに際し、炉内状態の
変化を検出する第一の検出端と、生成ガス発熱量を検出
する第二の検出端とを備え、前記第一の検出端から得ら
れる情報により石炭と前記ガス化剤の供給流量比を制御
する第一の制御ループと、前記第二の検出端で得られる
前記生成ガス発熱量の情報により前記第一の制御ループ
の制御目標値を修正する第二の制御ループとを備えるこ
とを特徴とする石炭ガス化炉の制御装置。
1. When gasifying coal with a spouted bed gasification furnace using oxygen or an oxygen-containing gas as a gasifying agent, a first detection end for detecting changes in the state of the furnace and a calorific value of generated gas are detected. With a second detection end, the first control loop for controlling the supply flow rate ratio of coal and the gasifying agent by the information obtained from the first detection end, and the second obtained at the second detection end. A control device for a coal gasification furnace, comprising: a second control loop for correcting the control target value of the first control loop based on information on the generated gas calorific value.
【請求項2】特許請求の範囲第1項において、 ガス化炉出口近傍からサンプリングしたガス中の一酸化
炭素と二酸化炭素の濃度比を前記第一の検出端の情報と
することを特徴とする石炭ガス化炉の制御装置。
2. The method according to claim 1, wherein the concentration ratio of carbon monoxide and carbon dioxide in the gas sampled from the vicinity of the gasifier outlet is used as the information of the first detection end. Control device for coal gasifier.
【請求項3】特許請求の範囲第1項において、 ガス化炉内部又はガス化炉近傍の生成ガスラインに設け
られた温度検出端を前記第一の検出端とすることを特徴
とする石炭ガス化炉の制御装置。
3. The coal gas according to claim 1, wherein a temperature detection end provided in a gas production line inside or near the gasification furnace is the first detection end. Control device for chemical reactor.
【請求項4】特許請求の範囲第3項において、 前記第二の制御ループで得られる前記第一の制御ループ
の設定温度の修正値を用いて、修正が不要となるようガ
ス化剤予熱温度を制御することを特徴とする石炭ガス化
炉の制御装置。
4. The preheating temperature of the gasifying agent according to claim 3, wherein a correction value of the set temperature of the first control loop obtained by the second control loop is used so that correction is unnecessary. A control device for a coal gasification furnace, which controls the
【請求項5】特許請求の範囲第1項において、 燃焼器内の温度から演算される情報を前記第二の検出端
で得られる生成ガス発熱量情報として用いることを特徴
とする石炭ガス化炉の制御装置。
5. The coal gasifier according to claim 1, wherein information calculated from the temperature inside the combustor is used as generated gas calorific value information obtained at the second detection end. Control device.
JP16462986A 1986-07-15 1986-07-15 Coal gasifier control device Expired - Fee Related JPH0678534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16462986A JPH0678534B2 (en) 1986-07-15 1986-07-15 Coal gasifier control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16462986A JPH0678534B2 (en) 1986-07-15 1986-07-15 Coal gasifier control device

Publications (2)

Publication Number Publication Date
JPS6320388A JPS6320388A (en) 1988-01-28
JPH0678534B2 true JPH0678534B2 (en) 1994-10-05

Family

ID=15796832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16462986A Expired - Fee Related JPH0678534B2 (en) 1986-07-15 1986-07-15 Coal gasifier control device

Country Status (1)

Country Link
JP (1) JPH0678534B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662963B2 (en) * 1989-12-26 1994-08-17 川崎製鉄株式会社 Operating method of flammable gas generator
US8083818B2 (en) * 2005-12-14 2011-12-27 Shell Oil Company Method and system for producing synthesis gas
JP5065653B2 (en) * 2006-10-31 2012-11-07 一般財団法人電力中央研究所 Coal gasifier operation control method, coal gasifier operation control device, and coal gasifier operation control program
JP6200731B2 (en) 2013-09-05 2017-09-20 三菱日立パワーシステムズ株式会社 Control method of gasification power generation system

Also Published As

Publication number Publication date
JPS6320388A (en) 1988-01-28

Similar Documents

Publication Publication Date Title
US4642273A (en) Reformer reaction control apparatus for a fuel cell
EP0055852B1 (en) Method and apparatus for controlling combustion of gasified fuel
JPH0678534B2 (en) Coal gasifier control device
JP3993472B2 (en) Operation control method of gasification furnace for coal gasification combined power plant
JP3918255B2 (en) Fuel cell reformer
KR101735989B1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP2015048840A (en) Gasification power generation system control method
JPH07103383B2 (en) Pulverized coal gasification method
CN112694920A (en) Gasification furnace load regulation and efficiency improvement system and working method thereof
JPS63264696A (en) Operation control method of coal gasifier oven
JPH0420591A (en) Entrained bed coal gasifying apparatus and starting thereof
JPH028213B2 (en)
JP5298793B2 (en) Pressure control method and apparatus for gasification equipment
JPS59157420A (en) Combustion controlling method utilizing mixed gas fuel
JPS63254192A (en) Operation of coal gasifying furnace of jet flow layer
SU958315A1 (en) Method for controlling process of conversion of natural gas
JP2023181869A (en) thermal energy supply system
JPS63171812A (en) Operation of oxygen blast furnace
JPS638369B2 (en)
JP2003321205A (en) Method for operating heat exchanging type steam reformer
SU667677A1 (en) Heat utilization turbine control method
JPH1082330A (en) Control system for integrated coal gasification combined cycle power plant
SU567027A1 (en) Method of automatic regulation of fuel consumption in a steam generator
JP2686356B2 (en) Gasification combustion method
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees