JP3993472B2 - Operation control method of gasification furnace for coal gasification combined power plant - Google Patents

Operation control method of gasification furnace for coal gasification combined power plant Download PDF

Info

Publication number
JP3993472B2
JP3993472B2 JP2002176657A JP2002176657A JP3993472B2 JP 3993472 B2 JP3993472 B2 JP 3993472B2 JP 2002176657 A JP2002176657 A JP 2002176657A JP 2002176657 A JP2002176657 A JP 2002176657A JP 3993472 B2 JP3993472 B2 JP 3993472B2
Authority
JP
Japan
Prior art keywords
gas
coal
oxygen
char
gasifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002176657A
Other languages
Japanese (ja)
Other versions
JP2004018703A (en
Inventor
克彦 横濱
泰成 柴田
智規 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002176657A priority Critical patent/JP3993472B2/en
Publication of JP2004018703A publication Critical patent/JP2004018703A/en
Application granted granted Critical
Publication of JP3993472B2 publication Critical patent/JP3993472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭ガス化炉で発生させた石炭(微粉炭)の粗ガスをガス精製設備で精製して燃料ガスを発生させ、その燃料ガスをガスタービンで燃焼させて石炭ガス化発電プラントに使用するガス化炉に係り、特に前記ガス化炉で発生した石炭未燃分(以後チャーという)をガス化炉に戻し、燃焼効率の向上を図ったチャー循環型の石炭ガス化発電プラントシステムに関する。
【0002】
【従来の技術】
一般に、石炭ガス化複合発電プラントは、微粉炭とガス化剤とを反応させて可燃性ガスを生成する石炭ガス化炉が設けられ、ガス化炉で発生させた石炭の粗ガスをガス精製設備で精製して燃料ガスを発生させ、その燃料ガスをガスタービンで燃焼させると共に、ガスタービンで燃焼させた排ガスの排熱及びガス化炉設備で蒸気を発生させ、その蒸気で蒸気タービンを駆動し発電するように構成されており、又近年前記ガス化炉で発生した熱分解ガスをボイラ等により冷却後サイクロン等回収装置で微粉固形状の石炭未燃分(チャー)を捕集して石炭ガス化炉に戻し、熱効率の向上を図っていた。
【0003】
係る技術を図2に基づいて説明するに、図中1は、コンバスタ1aとリダクタ1bからなる空気吹き加圧二段噴流床式ガス化炉で、コンバスタ1a内に微粉炭(石炭)とチャーと空気及び必要に応じて酸素富化空気とを投入して高温燃焼した後、その上方のリダクタ1b内に更に微粉炭(石炭)を投入してコンバスタ1aの高温燃焼ガスを利用して乾留ガス化させる。ガス化したCOやH2等の生成ガスは、熱回収ボイラ等の冷却器12により冷却された後、ポーラスフィルタやサイクロン等でチャーを回収分離した後、ガス熱交換器21、COS変換器22、ガス熱交換器23を経てガス冷却塔14及びガス洗浄塔15にて、冷却、洗浄された後、H2S吸収塔16に送られ、H2Sを除去する。
2S吸収塔16では、吸収液により粗ガス中のH2S、COS等の硫黄化合物がガスタ−ビン17の許容濃度以下まで除去される。
【0004】
一方H2S吸収塔16で精製されたガスはスチーム熱交換器24、ガス熱交換器23及びガス熱交換器21で順次昇温してガスタ−ビン17に送られ、燃焼発電が行われ、一方ガスタ−ビン17からの燃焼排ガスは不図示の排熱回収ボイラにて冷却されると同時に冷却器12で昇温された高圧蒸気を回収し、ここで得られた蒸気は不図示の蒸気タービンに送られ、発電が行われる。
【0005】
又H2S吸収塔16でH2S等の硫黄化合物を吸収した吸収液は吸収液再生塔18に送られ、吸収液再生加熱器19で加熱することで吸収しているH2Sを脱離し再生される。
【0006】
しかしながらこのようなチャー再循環型の石炭ガス化炉で生成した燃料ガスの発熱量は、発生する石炭未燃分(チャー)の投入量の変動によって変動していた。
一般に、チャー投入量は循環系のホッパ重量を一定に保つか又は発熱量をある程度一定に保つように、重量制御と組み合わせて制御を行っているが、ホッパの重量の変動の制約又はチャーをガス化炉に噴出して燃焼する際の、バーナや搬送路の一時的な詰まり若しくはホッパよりガス化炉までの搬送路における流量変動によってチャー投入量が変動することを防止することは極めて困難であった。
このチャーの変動によって発熱量が変動し、結果としてガスタービン発電機の出力すなわちプラント負荷が変動するために安定した発電出力が得られないという欠点を有していた。
【0007】
特に高圧の反応容器内に石炭+チャー、空気、酸素を投入して石炭から可燃性のガスを生成する石炭ガス化炉では、ガス化炉出口の未燃炭素を含む粒子であるチャーをガス化炉にリサイクルして運転される。特にチャーの搬送は、一部チャー搬送管の閉塞やガス化炉の圧力変動により安定して供給するのが困難な場合がある。このような場合には、生成ガスの発熱量が変化するために後流にガスタービンのような発電機器を有する石炭ガス複合発電システムでは、安定運転に支障が生じる。
従来の運転では、このような生成ガスの発熱量変動に対して、石炭やチャーの供給量を調整することにより所定の発熱量を得るように制御していた。しかしながら石炭やチャーのような粉体の流量は計測が困難であることから発熱量の詳細な制御に不具合を生じていた。
【0008】
尚、本発明に類似する従来技術として特開平10−82330が存在する。
しかしながら係る技術はチャーを再循環しておらず、基本的に発明が異なるのみならず、ガス化炉設備で発生する粗ガスの発熱量を参照信号として補正信号発生器から、ガス化炉燃料指令の補正信号を出力し、この補正信号を第2の制御器からのガス化炉燃料指令に加算して、補正されたガス化炉燃料指令を出力することにより、燃料ガスの発熱量変動によるガスタービンの燃料流量の変化に伴う圧力の変動を事前に抑制するもので、ガス化炉設備よりの発熱量が変動することを前提とするものである。
【0009】
言い換えればかかる技術は粗ガスの発熱量を測定するも、その発熱量に基づいてガスタービン側の燃料流量に伴う圧力変動を抑制しようとするものである。
しかしながら入力側の発熱量の変動をその後流側で抑制しようとすることは、補正信号発生器から補正精度が不安定になり、精度良い補正が困難である。
【0010】
【発明が解決しようとする課題】
本発明は、かかる従来技術の課題に鑑み、ガス発熱量及びガスタービン等の出力の安定化を図るために、石炭ガス化炉より得られる可燃性ガスを分析してガス発熱量を演算して支燃性ガス側を制御することより、本質的に石炭ガス化炉内の発熱量を安定化させ、結果としてガス発熱量及びガスタービン等の出力の安定化を図ることを目的とする。
【0011】
【課題を解決するための手段】
本発明はかかる課題を解決するために、石炭(微粉炭)ガス化炉設備で発生させた石炭の粗ガス(可燃性ガス)をガス精製設備で精製して燃料ガスを発生させ、その燃料ガスをガスタービンで燃焼させて発電を行うとともに、前記粗ガスよりチャー回収装置を介して石炭未燃分(以後チャーという)を回収分離して搬送路を介してガス化炉に戻すように構成した石炭ガス化複合発電プラント用ガス化炉の運転制御方法において、チャー回収装置でチャーを回収後、チャーが分離された粗ガス中の石炭ガス中のガス分析計で計測される、CO、H、CO、HO、CHの成分の内CO、 、CHを含む3つ以上の成分の含有割合から、解析装置に設定した関数から求められる生成ガスの発熱量の偏差ΔHに基づいて、ガス化剤としての相対的に窒素を多く含むガス(例えば空気)と、酸素を多く含むガス(例えば酸素富化空気)を増減して、ガス化剤中の酸素ガス流量を一定に保ったままでガス化剤中の窒素流量を増減して、ガス化炉に投入する酸素を含む支燃剤中の酸素濃度を調整して、ガス化炉より生成される可燃性ガスの発熱量が一定となるように制御しながら運転することを特徴とする。
この場合、石炭ガス化炉内の温度を計測して、該温度を関数として石炭ガス化炉に投入する支燃剤である空気と酸素富化空気を増減して、ガス化剤中の酸素ガス流量を一定に保ったままで、酸素濃度を調整するのがよい。
【0012】
かかる発明によれば、石炭ガス炉出口直後のチャーが混入している状態の生成ガスではなく、チャー回収装置でチャーを回収後、チャーが分離された粗ガス中の石炭ガスを分析するものであるために、サンプルグラインのチャーによる閉塞がなく、発熱成分として必要なガス成分を検知できる。
【0013】
本発明を具体的に説明する。
石炭のガス化炉では所定の生成ガス発熱量を達成可能な、石炭流量とガス化剤中酸素の流量の比を設定し運転を実施する。このときガス化剤中に含まれる酸素ガスと窒素ガスの流量比すなわち酸素濃度は一定の値で運転される。
ガス化炉内ではガス化剤中の酸素と石炭が反応し、生成ガス中にはCO、CO、HO、H、CH等のガスを発生させる。このとき、生成ガス中のCO、H、CH等の可燃性ガスは、ガス化剤中に含まれる窒素や、CO、HO等の不燃性ガスにより希釈され、生成ガスの発熱量が決定される。
【0014】
ここで、例えばリサイクルされるチャー流量が何らかの原因で変動した場合は、生成ガス中のCO、CO、HO、H、CH等のガス流量も変動する事になる。そして、可燃性ガスを希釈する成分の大部分を占める窒素流量が一定の場合は、生成ガスの発熱量も変動する。
よって、このような発熱量変動が発生した場合にガス化剤中の窒素流量を、発熱量変動を打ち消すように調整する事により、生成ガス中の発熱量を一定に制御できる。
【0015】
具体的には、石炭ガス化炉にガス化剤に窒素を多く含むガス、例えば空気と、酸素を多く含むガス、例えば酸素をそれぞれ投入する場合、生成ガスの発熱量が低下した場合は窒素を多く含むガスの流量を少なくし、酸素を多く含むガスの流量を多くすることにより、ガス化剤中の酸素ガス流量を一定に保ったままで、ガス化剤中の窒素流量を少なくすることにより、生成ガスの発熱量は上昇し所定の値に回復できる。また、ガス化剤中の窒素流量が少なくなることにより、ガス化炉の温度が上昇し、石炭のガス化反応が加速される方向となり、CO、H、CH等の可燃性ガス流量が増加し、生成ガス発熱量の回復に寄与する。
【0016】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は本発明の実施例に係る石炭ガス化炉廻りを示す要部構成図で、図中1は、コンバスタ1aとリダクタ1bからなる空気吹き加圧二段噴流床式ガス化炉で、コンバスタ1a内に石炭供給装置19より微粉炭(石炭)と搬送管8よりチャーと、更に空気供給装置6、酸素富化空気供給装置7より空気と酸素富化空気とを投入して高温燃焼した後、更にその上方のリダクタ1b内に更に微粉炭(石炭)を投入してコンバスタ1aの高温燃焼を利用して乾留ガス化させる。そしてガス化したCOやH2等の生成ガスは、熱回収ボイラ等の冷却器12により冷却された後、ポーラスフィルタやサイクロン等のチャー回収装置13でチャーを回収分離した後、ガス精製設備20に導かれ、精製されたガスはガスタ−ビン17に送られ、所定の発電が行われるとともに、一方ガスタ−ビン17からの燃焼排ガスは不図示の排熱回収ボイラにて冷却されると同時に高圧蒸気を回収し、蒸気タービンに送られ、発電が行われる。
チャー回収装置13で回収分離されたチャーはホッパ等のチャー供給装置2に一時貯留された後、搬送管8よりガス化炉1内に戻される。
【0017】
一方、チャー回収装置13でチャーを回収分離された後の粗ガスライン13aには前記ガス精製設備20に行く前に粗ガス中のCO、H、CO2、H2O、CHを測定するガス分析計3を設け、その分析結果を解析装置5に送る。
又石炭ガス化炉1の上部には温度センサ4が取り付けられており、該センサ4で測定された炉内温度も解析装置5に送られる。
【0018】
次に本発明の第1実施例を説明する。
第1実施例では、前記ガス分析計3で計測された発熱に関係するCO、H2、CHの3つの成分の含有割合から、解析装置5に設定した関数から生成ガスの実際の発熱量((H±ΔH)を求める。この場合CO2、H2Oも含めて吸熱反応として補正しても良い。尚、Hは基準となる目標発熱量である。
【0019】
生成ガスの実際の発熱量((H±ΔH)から、ガス化炉1に投入する酸素を含む支燃剤中の酸素濃度を求める。
支燃剤の酸素濃度はガス化炉1に投入される空気Qair、酸素富化空気の流量Qoxyと、酸素富化空気Qoxy中の酸素濃度ro2から以下の式で計算する。
ここで酸素濃度の調整は、石炭ガス化炉1に投入する支燃剤である酸素富化空気と空気の両方あるいは一方の流量を調整することに必要な酸素濃度をy’を得る。
【0020】
すなわち、目標の発熱量Hに対する、設定の石炭、空気、酸素、流量に対し、ガス分析計で計測した発熱量に偏差ΔHが発生したとき、
(H±ΔH/H)={1/1+(1/y’)}/{1/1+(1/y)}
1+(1/y’)={1+(1/y)}*(H±ΔH/H)
y’=1/{1+(1/y)}*(H±ΔH/H)−1
となる。
従ってO2濃度y’=0.21*空気+酸素富化空気*ro2/空気+酸素富化空気として求められ、
空気供給装置6、酸素富化空気供給装置7を制御して調整する。
【0021】
第2実施例は温度センサ4により炉内温度を測定してO2濃度y’になるように、空気若しくは酸素富化空気の配分調整を行う。この場合は発熱に関係するCO、H2、CHに加えて吸熱に影響するCO2、H2Oも含めて測定する。
具体的には、石炭のガス化炉では所定の生成ガス発熱量を達成可能な、石炭流量とガス化剤中酸素の流量の比を設定し運転を実施する。このときガス化剤中に含まれる酸素ガスと窒素ガスの流量比すなわち酸素濃度は一定の値で運転される。
ガス化炉内ではガス化剤中の酸素と石炭が反応し、生成ガス中にはCO、CO、HO、H、CH等のガスを発生させる。このとき、生成ガス中のCO、H、CH等の可燃性ガスは、ガス化剤中に含まれる窒素や、CO、HO等の不燃性ガスにより希釈され、生成ガスの発熱量が決定される。
【0022】
ここで、例えばリサイクルされるチャー流量が何らかの原因で変動した場合は、生成ガス中のCO、CO、HO、H、CH等のガス流量も変動する事になる。そして、可燃性ガスを希釈する成分の大部分を占める窒素流量が一定の場合は、生成ガスの発熱量も変動する。
よって、このような発熱量変動が発生した場合にガス化剤中の窒素流量を、発熱量変動を打ち消すように調整する事により、生成ガス中の発熱量を一定に制御できる。
【0023】
具体的には、石炭ガス化炉にガス化剤に窒素を多く含むガス、例えば空気と、酸素を多く含むガス、例えば酸素をそれぞれ投入する場合、生成ガスの発熱量が低下した場合は窒素を多く含むガスの流量を少なくし、酸素を多く含むガスの流量を多くすることにより、ガス化剤中の酸素ガス流量を一定に保ったままで、ガス化剤中の窒素流量を少なくすることにより、生成ガスの発熱量は上昇し所定の値に回復できる。また、ガス化剤中の窒素流量が少なくなることにより、ガス化炉の温度が上昇し、石炭のガス化反応が加速される方向となり、CO、H、CH等の可燃性ガス流量が増加し、生成ガス発熱量の回復に寄与する。
【0024】
そして例えばガス化炉1内の温度が1500℃前後と高く、CO2 、H2 Oが多い場合は、酸素富化空気投入量を少なくして、吸熱反応によりCO、H2を増加させるのがよい。すなわちH2O、CO2とチャー等のCとを反応させて、H2、COにする吸熱反応で反応させて燃料として有益なガス成分にする。
又CO、H2、CHの割合が少ない場合は、熱分解反応が進んでいないために、空気量を低減させ、酸素富化空気の配分割合を多くして、高温化を図るのがよい。
又CO、H2、割合が多くCHが少なく炉内温度1300℃以下の場合は高分子炭化水素はタール状態にあり、熱分解が不足しているために、酸素富化空気の配分割合を多くしてO2を増大し、炉内温度を上げるのがよい。
【0025】
【発明の効果】
以上記載のごとく本発明によれば、石炭ガス化炉より得られる可燃性ガスを分析してガス発熱量を演算して支燃性ガス側を制御することより、本質的に石炭ガス化炉内の発熱量を安定化させ、結果としてガス発熱量及びガスタービン等の出力の安定化を図ることが出来る。
【図面の簡単な説明】
【図1】 本発明の実施例に係る石炭ガス化炉回りの要部構成図である。
【図2】 従来技術にかかる図1対応の石炭ガス化複合発電システムの全体図である。
【符号の説明】
1 ガス化炉
3 ガス分析計
4 温度センサ
5 解析装置
6 空気供給装置
7 酸素富化空気供給装置
13 チャー回収装置
13a 粗ガスライン
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a crude gas of coal (pulverized coal) generated in a coal gasification furnace is purified by a gas purification facility to generate fuel gas, and the fuel gas is burned by a gas turbine to produce a coal gasification power plant. The present invention relates to a gasification furnace to be used, and more particularly to a char circulation type coal gasification power plant system in which unburned coal (hereinafter referred to as char) generated in the gasification furnace is returned to the gasification furnace to improve combustion efficiency. .
[0002]
[Prior art]
Generally, a coal gasification combined power plant is provided with a coal gasification furnace that generates flammable gas by reacting pulverized coal with a gasifying agent, and gas purification equipment for the crude coal gas generated in the gasification furnace The fuel gas is generated by refining the gas, and the fuel gas is combusted by the gas turbine. The exhaust heat of the exhaust gas combusted by the gas turbine and steam are generated by the gasifier equipment, and the steam turbine is driven by the steam. It is configured to generate electricity, and after cooling the pyrolysis gas generated in the gasification furnace in recent years with a boiler, etc., it collects fine unburned coal (char) with a recovery device such as a cyclone to collect coal gas. It was returned to the chemical furnace to improve thermal efficiency.
[0003]
This technique will be described with reference to FIG. 2. In FIG. 2, reference numeral 1 denotes an air blown pressurized two-stage entrained bed gasification furnace comprising a combustor 1a and a reductor 1b. After injecting air and, if necessary, oxygen-enriched air for high-temperature combustion, pulverized coal (coal) is further introduced into the upper reductor 1b, and dry distillation gasification is performed using the high-temperature combustion gas of the combustor 1a. Let The gasified product gas such as CO and H 2 is cooled by a cooler 12 such as a heat recovery boiler, and then char is recovered and separated by a porous filter, a cyclone or the like, and then a gas heat exchanger 21 and a COS converter 22 are obtained. , through the gas heat exchanger 23 at gas cooling tower 14 and the gas washing tower 15, cooling, after being cleaned, it is fed to the H 2 S absorption tower 16, to remove the H 2 S.
In the H 2 S absorption tower 16, sulfur compounds such as H 2 S, COS and the like in the crude gas are removed by the absorption liquid to an allowable concentration below the gas turbine 17.
[0004]
On the other hand, the gas refined in the H 2 S absorption tower 16 is heated in sequence in the steam heat exchanger 24, the gas heat exchanger 23 and the gas heat exchanger 21 and sent to the gas turbine 17, where combustion power generation is performed. On the other hand, the combustion exhaust gas from the gas turbine 17 is cooled by an exhaust heat recovery boiler (not shown), and at the same time, the high pressure steam heated by the cooler 12 is recovered, and the steam obtained here is a steam turbine (not shown). To generate electricity.
[0005]
The absorbent that has absorbed the sulfur compounds H 2 S and the like in H 2 S absorption tower 16 is sent to the absorption liquid regenerator 18, de the H 2 S which is absorbed by heating the absorption liquid regeneration heater 19 Played away.
[0006]
However, the calorific value of the fuel gas generated in such a char recirculation-type coal gasifier has fluctuated due to fluctuations in the input amount of unburned coal (char) generated.
Generally, the char input amount is controlled in combination with the weight control so as to keep the hopper weight of the circulation system constant or to keep the calorific value to some extent. It is extremely difficult to prevent the char input amount from fluctuating due to temporary clogging of the burner and the conveyance path or fluctuation in the flow rate in the conveyance path from the hopper to the gasification furnace when jetting into the gasification furnace and burning. It was.
The calorific value fluctuates due to the fluctuation of the char. As a result, the output of the gas turbine generator, that is, the plant load fluctuates, so that a stable power output cannot be obtained.
[0007]
Especially in coal gasifiers that produce combustible gas from coal by charging coal + char, air, and oxygen into a high-pressure reactor, char, which is a particle containing unburned carbon at the gasifier outlet, is gasified. Recycled into a furnace for operation. In particular, it is sometimes difficult to stably supply the char due to partial blockage of the char transfer pipe or fluctuation in the pressure of the gasification furnace. In such a case, since the calorific value of the generated gas changes, a stable operation is hindered in the coal gas combined power generation system having a power generation device such as a gas turbine in the downstream.
In the conventional operation, control is performed to obtain a predetermined heat generation amount by adjusting the supply amount of coal or char with respect to such a variation in the heat generation amount of the generated gas. However, since the flow rate of powders such as coal and char is difficult to measure, there has been a problem in the detailed control of the calorific value.
[0008]
Japanese Patent Laid-Open No. 10-82330 exists as a prior art similar to the present invention.
However, the technology does not recirculate the char and the invention is not only fundamentally different, but also from the correction signal generator using the calorific value of the crude gas generated in the gasifier facility as a reference signal from the gasifier fuel command. The correction signal is output to the gasifier fuel command from the second controller, and the corrected gasifier fuel command is output. It presupposes that the fluctuation of the pressure accompanying the change of the fuel flow rate of the turbine is suppressed in advance, and the heating value from the gasifier equipment is assumed to fluctuate.
[0009]
In other words, this technique measures the calorific value of the crude gas, but attempts to suppress pressure fluctuations associated with the fuel flow rate on the gas turbine side based on the calorific value.
However, trying to suppress fluctuations in the amount of heat generated on the input side on the downstream side makes the correction accuracy unstable from the correction signal generator, making accurate correction difficult.
[0010]
[Problems to be solved by the invention]
In order to stabilize the gas calorific value and the output of the gas turbine, etc., the present invention calculates the gas calorific value by analyzing the combustible gas obtained from the coal gasification furnace in order to stabilize the gas calorific value and the output of the gas turbine. By controlling the combustion-supporting gas side, the heat generation amount in the coal gasification furnace is essentially stabilized, and as a result, the gas heat generation amount and the output of the gas turbine and the like are stabilized.
[0011]
[Means for Solving the Problems]
In order to solve such a problem, the present invention refines crude coal gas (combustible gas) generated in a coal (pulverized coal) gasifier facility with a gas purification facility to generate fuel gas, and the fuel gas. The gas is burned by a gas turbine to generate power, and unburned coal (hereinafter referred to as char) is recovered and separated from the crude gas via a char recovery device and returned to the gasifier via a conveyance path. In the operation control method for a gasification furnace for a coal gasification combined power plant, CO and H 2 are measured by a gas analyzer in coal gas in crude gas after the char is recovered by the char recovery device. , CO 2 , H 2 O, CH 4 component content ratio of three or more components including CO, H 2 , CH 4 , deviation ΔH of the generated gas calorific value obtained from the function set in the analyzer Based on gasifying agent As a gasifying agent, a gas containing a relatively large amount of nitrogen (for example, air) and a gas containing a large amount of oxygen (for example, oxygen-enriched air) are increased or decreased to keep the oxygen gas flow rate in the gasifying agent constant. The flow rate of nitrogen in the gasifier is increased / decreased, and the oxygen concentration in the combustion support containing oxygen introduced into the gasifier is adjusted, so that the calorific value of the combustible gas generated from the gasifier is controlled to be constant. It is characterized by driving while.
In this case, the temperature in the coal gasifier is measured, and as a function of the temperature, the amount of oxygen gas flow in the gasifying agent is increased or decreased by increasing or decreasing the amount of air and oxygen-enriched air that are injected into the coal gasifier. It is better to adjust the oxygen concentration while keeping the constant.
[0012]
According to this invention, the char gas immediately after the coal gas furnace outlet is mixed, and the char gas is recovered by the char recovery device, and then the coal gas in the crude gas separated from the char is analyzed. Therefore, there is no blockage due to the char of the sample grin, and a gas component necessary as a heat generating component can be detected.
[0013]
The present invention will be specifically described.
In the coal gasification furnace, the ratio of the flow rate of coal and the flow rate of oxygen in the gasifying agent that can achieve a predetermined calorific value of generated gas is set and operated. At this time, the flow rate ratio of oxygen gas and nitrogen gas contained in the gasifying agent, that is, the oxygen concentration is operated at a constant value.
In the gasifier, oxygen in the gasifying agent reacts with coal, and gases such as CO, CO 2 , H 2 O, H 2 , and CH 4 are generated in the product gas. At this time, the combustible gas such as CO, H 2 and CH 4 in the product gas is diluted with nitrogen or non-combustible gas such as CO 2 and H 2 O contained in the gasifying agent, and the generated gas generates heat. The amount is determined.
[0014]
Here, for example, when the recycled char flow rate varies for some reason, the gas flow rates of CO, CO 2 , H 2 O, H 2 , CH 4, etc. in the product gas also vary. And when the nitrogen flow rate which occupies most of the component which dilutes combustible gas is constant, the emitted-heat amount of generated gas also fluctuates.
Therefore, when such a calorific value variation occurs, the calorific value in the product gas can be controlled to be constant by adjusting the nitrogen flow rate in the gasifying agent so as to cancel the calorific value variation.
[0015]
Specifically, when a gas containing a large amount of nitrogen, such as air, and a gas containing a large amount of oxygen, such as oxygen, are introduced into a coal gasifier, nitrogen is used when the generated gas has a reduced calorific value. By reducing the flow rate of the gas containing a large amount and increasing the flow rate of the gas containing a large amount of oxygen, while maintaining the oxygen gas flow rate in the gasification agent constant, reducing the flow rate of nitrogen in the gasification agent, The calorific value of the product gas rises and can be recovered to a predetermined value. In addition, by reducing the nitrogen flow rate in the gasifying agent, the temperature of the gasification furnace rises, and the gasification reaction of coal is accelerated, and the flow rate of combustible gas such as CO, H 2 , CH 4 is increased. It increases and contributes to recovery of the generated gas heat generation.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
FIG. 1 is a block diagram showing the main part of a coal gasifier according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an air blown pressurized two-stage entrained bed gasifier comprising a combustor 1a and a reductor 1b. After laminating pulverized coal (coal) from the coal supply device 19 and char from the transport pipe 8 and further air and oxygen-enriched air from the oxygen supply air supply device 7 and oxygen-enriched air supply device 7 in 1a Further, pulverized coal (coal) is further introduced into the upper reductor 1b, and dry distillation gasification is performed using high-temperature combustion of the combustor 1a. The gasified product gas such as CO or H 2 is cooled by a cooler 12 such as a heat recovery boiler, and then char is recovered and separated by a char recovery device 13 such as a porous filter or a cyclone, and then gas purification equipment 20 Then, the purified gas is sent to the gas turbine 17 for predetermined power generation, while the combustion exhaust gas from the gas turbine 17 is cooled by a waste heat recovery boiler (not shown) and at the same time has a high pressure. Steam is collected and sent to a steam turbine for power generation.
The char recovered and separated by the char recovery device 13 is temporarily stored in the char supply device 2 such as a hopper, and then returned to the gasification furnace 1 through the transport pipe 8.
[0017]
On the other hand, in the crude gas line 13a after the char is recovered and separated by the char recovery device 13, CO, H 2 , CO 2 , H 2 O, and CH 4 in the crude gas are measured before going to the gas purification facility 20. The gas analyzer 3 is provided, and the analysis result is sent to the analyzer 5.
A temperature sensor 4 is attached to the upper part of the coal gasification furnace 1, and the furnace temperature measured by the sensor 4 is also sent to the analysis device 5.
[0018]
Next, a first embodiment of the present invention will be described.
In the first embodiment, the actual calorific value of the product gas is calculated from the function set in the analyzer 5 from the content ratio of the three components CO, H 2 , and CH 4 related to the heat generation measured by the gas analyzer 3. ((H ± ΔH) is obtained. In this case, CO 2 and H 2 O may be corrected as an endothermic reaction, where H is a reference target heating value.
[0019]
From the actual calorific value of the product gas ((H ± ΔH)), the oxygen concentration in the combustion support containing oxygen to be introduced into the gasifier 1 is determined.
The oxygen concentration of the combustion support is calculated from the air Qair charged into the gasification furnace 1, the flow rate Qoxy of the oxygen-enriched air, and the oxygen concentration ro2 in the oxygen-enriched air Qoxy by the following equation.
Here, the oxygen concentration is adjusted to obtain y ′ as the oxygen concentration necessary for adjusting the flow rate of both or one of oxygen-enriched air and air, which are the combustion support agents to be fed into the coal gasification furnace 1.
[0020]
That is, when a deviation ΔH occurs in the calorific value measured by the gas analyzer with respect to the set coal, air, oxygen, and flow rate with respect to the target calorific value H,
(H ± ΔH / H) = {1/1 + (1 / y ′)} / {1/1 + (1 / y)}
1+ (1 / y ′) = {1+ (1 / y)} * (H ± ΔH / H)
y ′ = 1 / {1+ (1 / y)} * (H ± ΔH / H) −1
It becomes.
Therefore, it is calculated as O 2 concentration y ′ = 0.21 * air + oxygen-enriched air * ro 2 / air + oxygen-enriched air,
The air supply device 6 and the oxygen-enriched air supply device 7 are controlled and adjusted.
[0021]
In the second embodiment, the temperature inside the furnace is measured by the temperature sensor 4 and the distribution of air or oxygen-enriched air is adjusted so that the O 2 concentration becomes y ′. In this case, measurement is performed including CO 2 , H 2 O affecting heat absorption in addition to CO, H 2 , CH 4 related to heat generation.
Specifically, in the coal gasification furnace, the operation is carried out by setting the ratio between the coal flow rate and the oxygen flow rate in the gasifying agent that can achieve a predetermined calorific value of the generated gas. At this time, the flow rate ratio of oxygen gas and nitrogen gas contained in the gasifying agent, that is, the oxygen concentration is operated at a constant value.
In the gasifier, oxygen in the gasifying agent reacts with coal, and gases such as CO, CO 2 , H 2 O, H 2 , and CH 4 are generated in the product gas. At this time, the combustible gas such as CO, H 2 and CH 4 in the product gas is diluted with nitrogen or non-combustible gas such as CO 2 and H 2 O contained in the gasifying agent, and the generated gas generates heat. The amount is determined.
[0022]
Here, for example, when the recycled char flow rate varies for some reason, the gas flow rates of CO, CO 2 , H 2 O, H 2 , CH 4, etc. in the product gas also vary. And when the nitrogen flow rate which occupies most of the component which dilutes combustible gas is constant, the emitted-heat amount of generated gas also fluctuates.
Therefore, when such a calorific value variation occurs, the calorific value in the product gas can be controlled to be constant by adjusting the nitrogen flow rate in the gasifying agent so as to cancel the calorific value variation.
[0023]
Specifically, when a gas containing a large amount of nitrogen, such as air, and a gas containing a large amount of oxygen, such as oxygen, are introduced into a coal gasifier, nitrogen is used when the generated gas has a reduced calorific value. By reducing the flow rate of the gas containing a large amount and increasing the flow rate of the gas containing a large amount of oxygen, while maintaining the oxygen gas flow rate in the gasification agent constant, reducing the flow rate of nitrogen in the gasification agent, The calorific value of the product gas increases and can be restored to a predetermined value. In addition, by reducing the nitrogen flow rate in the gasifying agent, the temperature of the gasification furnace rises, and the gasification reaction of coal is accelerated, and the flow rate of combustible gas such as CO, H 2 , CH 4 is increased. It increases and contributes to recovery of the generated gas heat generation.
[0024]
For example, when the temperature in the gasification furnace 1 is as high as around 1500 ° C. and the amount of CO 2 and H 2 O is large, the amount of oxygen-enriched air input is reduced and CO and H 2 are increased by endothermic reaction. Good. In other words, H 2 O, CO 2 and C such as char are reacted with each other by an endothermic reaction to form H 2 , CO to form a gas component useful as a fuel.
If the ratio of CO, H 2 , and CH 4 is small, the thermal decomposition reaction has not progressed. Therefore, it is preferable to reduce the amount of air and increase the distribution ratio of oxygen-enriched air to increase the temperature. .
If the ratio of CO, H 2 , CH 4 is low and the furnace temperature is 1300 ° C or lower, the polymer hydrocarbon is in a tar state and the thermal decomposition is insufficient. It is better to increase O2 and raise the furnace temperature.
[0025]
【The invention's effect】
As described above, according to the present invention, by analyzing the combustible gas obtained from the coal gasification furnace, calculating the gas calorific value, and controlling the combustion-supporting gas side, essentially the inside of the coal gasification furnace As a result, it is possible to stabilize the heat generation amount of the gas and the output of the gas turbine or the like.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a main part around a coal gasifier according to an embodiment of the present invention.
FIG. 2 is an overall view of a combined coal gasification combined power generation system corresponding to FIG. 1 according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gasification furnace 3 Gas analyzer 4 Temperature sensor 5 Analysis apparatus 6 Air supply apparatus 7 Oxygen-enriched air supply apparatus 13 Char recovery apparatus 13a Coarse gas line

Claims (2)

石炭(微粉炭)ガス化炉設備で発生させた石炭の粗ガス(可燃性ガス)をガス精製設備で精製して燃料ガスを発生させ、その燃料ガスをガスタービンで燃焼させて発電を行うとともに、前記粗ガスよりチャー回収装置を介して石炭未燃分(以後チャーという)を回収分離して搬送路を介してガス化炉に戻すように構成した石炭ガス化複合発電プラント用ガス化炉の運転制御方法において、
チャー回収装置でチャーを回収後、チャーが分離された粗ガス中の石炭ガス中のガス分析計で計測される、CO、H、CO、HO、CHの成分の内CO、 、CHを含む3つ以上の成分の含有割合から、解析装置に設定した関数から求められる生成ガスの発熱量の偏差ΔHに基づいて、ガス化剤としての相対的に窒素を多く含むガスと、酸素を多く含むガスを増減して、ガス化剤中の酸素ガス流量を一定に保ったままでガス化剤中の窒素流量を増減して、ガス化炉に投入する酸素を含む支燃剤中の酸素濃度を調整して、ガス化炉より生成される可燃性ガスの発熱量が一定となるように制御しながら運転することを特徴とする石炭ガス化炉の運転制御方法。
While generating crude fuel gas (combustible gas) generated by coal (pulverized coal) gasification furnace equipment by gas purification equipment and generating fuel gas, the fuel gas is burned by gas turbine to generate electricity A gasification furnace for a combined coal gasification combined power plant configured to recover and separate unburned coal (hereinafter referred to as char) from the crude gas via a char recovery device and return it to the gasification furnace via a conveyance path. In the operation control method,
After the char is recovered by the char recovery device, CO of the components of CO, H 2 , CO 2 , H 2 O, and CH 4 measured by a gas analyzer in the coal gas in the crude gas from which the char has been separated, It contains a relatively large amount of nitrogen as a gasifying agent based on the deviation ΔH of the calorific value of the product gas determined from the function set in the analyzer from the content ratio of three or more components including H 2 and CH 4 Increasing and decreasing gas and oxygen-rich gas, increasing and decreasing the nitrogen flow rate in the gasifying agent while keeping the oxygen gas flow rate in the gasifying agent constant, and supporting oxygen containing oxygen to be introduced into the gasifier A method for controlling the operation of a coal gasifier, comprising adjusting the oxygen concentration therein and controlling the combustible gas generated from the gasifier so that the amount of heat generated is constant.
石炭ガス化炉内の温度を計測して、該温度を関数として石炭ガス化炉に投入する支燃剤である空気と酸素富化空気を増減して、ガス化剤中の酸素ガス流量を一定に保ったままで、酸素濃度を調整することを特徴とする請求項1記載の石炭ガス化炉の運転制御方法。  Measure the temperature in the coal gasifier, and increase or decrease the air and oxygen-enriched air that are the combustion supporter to be input to the coal gasifier as a function of the temperature, and keep the oxygen gas flow rate in the gasifier constant. 2. The operation control method for a coal gasifier according to claim 1, wherein the oxygen concentration is adjusted while maintaining the temperature.
JP2002176657A 2002-06-18 2002-06-18 Operation control method of gasification furnace for coal gasification combined power plant Expired - Lifetime JP3993472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176657A JP3993472B2 (en) 2002-06-18 2002-06-18 Operation control method of gasification furnace for coal gasification combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176657A JP3993472B2 (en) 2002-06-18 2002-06-18 Operation control method of gasification furnace for coal gasification combined power plant

Publications (2)

Publication Number Publication Date
JP2004018703A JP2004018703A (en) 2004-01-22
JP3993472B2 true JP3993472B2 (en) 2007-10-17

Family

ID=31174896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176657A Expired - Lifetime JP3993472B2 (en) 2002-06-18 2002-06-18 Operation control method of gasification furnace for coal gasification combined power plant

Country Status (1)

Country Link
JP (1) JP3993472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146951A (en) * 2014-07-09 2016-12-21 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Gasifier equipment, integrated gasification combined cycle facility, and method for starting gasifier equipment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402967B2 (en) * 2004-01-27 2010-01-20 株式会社日清製粉グループ本社 Powder filling equipment
KR101008374B1 (en) * 2004-09-22 2011-01-14 카와사키 주코교 카부시키 카이샤 Low calorie content gas feeding apparatus
CN101331213B (en) * 2005-12-14 2015-05-13 国际壳牌研究有限公司 Method of producing synthesis gas
JP2008121513A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Gas turbine power generation system and method of detecting calorie abnormality thereof
JP5804888B2 (en) 2011-10-19 2015-11-04 三菱日立パワーシステムズ株式会社 Control method for gas turbine power plant, gas turbine power plant, control method for carbon-containing fuel gasifier, and carbon-containing fuel gasifier
JP5642657B2 (en) * 2011-12-06 2014-12-17 三菱重工業株式会社 Fuel gasification system, control method and control program therefor, and fuel gasification combined power generation system including fuel gasification system
JP6191560B2 (en) * 2014-08-27 2017-09-06 Jfeスチール株式会社 Gasification method for carbonaceous fuel
JP2016056294A (en) * 2014-09-10 2016-04-21 Jfeスチール株式会社 Gasification process for carbonaceous fuel
CN108865284A (en) * 2017-10-30 2018-11-23 陈晓辉 A kind of high-effective gasization and energy utilization system and coal gasification and energy utilizing method
CN114253306B (en) * 2020-09-25 2024-08-02 华东理工大学 Control system of coal slurry gasification device
CN114544908B (en) * 2022-04-24 2022-07-08 山西和运能源服务有限公司 Colliery low concentration gas heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146951A (en) * 2014-07-09 2016-12-21 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Gasifier equipment, integrated gasification combined cycle facility, and method for starting gasifier equipment
KR101880382B1 (en) * 2014-07-09 2018-07-19 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Gasifier equipment, integrated gasification combined cycle facility, and method for starting gasifier equipment

Also Published As

Publication number Publication date
JP2004018703A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4745940B2 (en) Coal gasification combined power generation system and operation control method thereof
US4472936A (en) Method and apparatus for controlling combustion of gasified fuel
US20080222956A1 (en) System for the Conversion of Coal to a Gas of Specified Composition
JP5721317B2 (en) Coal gasification furnace facility, control method and program thereof, and coal gasification combined power generation apparatus provided with the same
JP3993472B2 (en) Operation control method of gasification furnace for coal gasification combined power plant
ZA200401271B (en) Combustion turbine fuel inlet temperature management for maximum power output.
CA2733243C (en) Oxy/fuel combustion system with little or no excess oxygen
CN1298926A (en) Process and system for prodn. of hydrogen/carbon mono oxide mixture, and fuel/electric power combination installation
JP2008121513A (en) Gas turbine power generation system and method of detecting calorie abnormality thereof
US8475545B2 (en) Methods and apparatus for use in cooling an injector tip
JP5804888B2 (en) Control method for gas turbine power plant, gas turbine power plant, control method for carbon-containing fuel gasifier, and carbon-containing fuel gasifier
KR20000015802A (en) Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
JP4095829B2 (en) Char circulation type coal gasification power plant system
JP6189082B2 (en) Control device for gasification power plant, gasification power plant, and control method for gasification power plant
CN112443398B (en) Gasification power generation system for carbon-based fuel
US8597581B2 (en) System for maintaining flame stability and temperature in a Claus thermal reactor
US9683184B2 (en) Method and apparatus for gasification
Hoppesteyn et al. Coal gasification and combustion of LCV gas
JP6400415B2 (en) Gasification combined power generation facility, control device and control method thereof
JPS61266491A (en) Method of gasifying coal
JPS638369B2 (en)
JPS63264696A (en) Operation control method of coal gasifier oven
KR101918776B1 (en) Gasifier system and producing method for syngas thereof
Liu et al. Development of Coal Partial Gasification and Combustion System

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

R151 Written notification of patent or utility model registration

Ref document number: 3993472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term