JPS59157420A - Combustion controlling method utilizing mixed gas fuel - Google Patents

Combustion controlling method utilizing mixed gas fuel

Info

Publication number
JPS59157420A
JPS59157420A JP58028184A JP2818483A JPS59157420A JP S59157420 A JPS59157420 A JP S59157420A JP 58028184 A JP58028184 A JP 58028184A JP 2818483 A JP2818483 A JP 2818483A JP S59157420 A JPS59157420 A JP S59157420A
Authority
JP
Japan
Prior art keywords
oxygen
mixed gas
density
amount
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028184A
Other languages
Japanese (ja)
Inventor
Koichi Shimamura
島村 耕市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58028184A priority Critical patent/JPS59157420A/en
Publication of JPS59157420A publication Critical patent/JPS59157420A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/28Controlling height of burner oxygen as pure oxydant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To prevent the thermal data of a thermal installation from fluctuation, also contrive the energy-saving and low cost by a method wherein a pure oxygen is introduced into a combustion air line under the control of supplying quantity thereof according to the fluctuation of calorific value produced from mixed gas. CONSTITUTION:A first calculator 11 calculates the optimum oxygen density for an objective heating furnace 1 with collating to the relation shown in previously known figure based on the actual calorific value of a mixed gas fuel 3 from a calorimeter 7. Subsequently, the second calculator 12 calculates required amount of air and pure oxygen based on the optimum oxygen density from the first calcultor 11, and theoretical amount of air from A0 meter 8, then outputs those data to a comparative calculator 13. The comparative calculator 13 decides the ratio of said data, then the optimum oxygen density condition can be regulated by controlling for each amount of pure oxygen and combustion air. The controlling of said oxygen and air is actually performed with flow regulators 5C, 4C, hereupon, the density value from a density meter 9 is compensated in a density compensating circuit 3D.

Description

【発明の詳細な説明】 従来から、製鉄所では、所内の副生ガスを燃料として燃
焼する場合において、各種燃料を混合して加熱炉等に送
給することが行なわれている。この種の発熱量が異った
燃料を用いて燃焼制御を行う場合、流量制御の簡便性等
のために、ウオツベ・インデックス(Wobbe 4n
dex )制御や理論空気量(AO)制御などで対応し
ている。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, in steel works, when by-product gas within the plant is burned as fuel, various types of fuels have been mixed and fed to a heating furnace or the like. When performing combustion control using fuels with different calorific values, the Wobbe Index (Wobbe 4n
This is supported by dex) control, theoretical air volume (AO) control, etc.

しかし、混合ガスの発熱量が経時的に大きく変動すると
、その火炎および燃焼ガスからの材料への伝熱性能は大
きく変化するため、鋼材加熱炉や熱処理炉のように炉内
のガス温度パターンを重視する熱設備においては不都合
が生じるとともに、熱量原単位の変動も著しい。
However, if the calorific value of the mixed gas fluctuates greatly over time, the heat transfer performance from the flame and combustion gas to the material changes greatly. In addition to causing inconvenience in the important thermal equipment, the unit heat consumption also fluctuates significantly.

これに対処するために、混合ガスの発熱量の変化にかか
わらず、同じガス温度および熱量原単位を維持するため
に、燃焼用空気に純酸素を富化することが有効な手段で
ある。純酸素の富化による燃焼自体は必らずしも新規で
はなく、たとえば特開昭57−41521号公報等によ
り公知である。
To deal with this, enriching the combustion air with pure oxygen is an effective means to maintain the same gas temperature and heat unit regardless of changes in the calorific value of the mixed gas. Combustion by enriching pure oxygen itself is not necessarily new, but is known, for example, from Japanese Patent Laid-Open No. 57-41521.

しかしながら、従来は一般に5、燃焼用空気への酸素富
化は、純酸素投入率が一定で、換言すれば富化後の酸素
濃度は一定であり、本発明法のように、燃料発熱量の変
化に応じて、富化酸素濃度を変化させるものではなかっ
た〇本発明の目的は、熱設備の熱的諸元、たとえば炉内
ガス温度分布や熱量原単位を大巾に変動するのを防止し
ながら、使用混合気体燃料の発熱量変動に適確に対応で
きる燃焼制御方法を樟供することにある。
However, in the past, generally5, oxygen enrichment to combustion air was performed at a constant pure oxygen input rate, in other words, the oxygen concentration after enrichment was constant, and as in the method of the present invention, the heating value of the fuel was The purpose of the present invention is to prevent wide fluctuations in the thermal specifications of thermal equipment, such as the gas temperature distribution in the furnace and the unit heat consumption. However, it is an object of the present invention to provide a combustion control method that can appropriately respond to variations in the calorific value of the mixed gas fuel used.

本発明の要曽とするところは、少くとも発熱量を異にす
る2種以上の気体燃料を混合して用いる燃焼系において
、混住ガスの発熱量を検出し、これを予め既知の燃料発
熱量と最適酸素量との関係に照合して最適酸素量を求め
、この最適酸素量となるように燃焼空気系に純酸素をそ
の量を制御しながら投入することを特徴とする混合ガス
燃料を用いる燃焼制御方法、にちる。
The key point of the present invention is that in a combustion system that uses a mixture of two or more gaseous fuels having different calorific values, the calorific value of the mixed gas is detected, and this is calculated from the previously known fuel calorific value. The method uses a mixed gas fuel characterized by determining the optimal amount of oxygen by comparing the relationship between Combustion control method, Nichiru.

前述のように、製鉄所では、たとえば次表にかかる副生
ガスは、工場内の多数の熱設備に供給するが、副生ガス
の発生源の操業状態や、各熱設備の操業状態によって、
ガス発生状況および使用状況が時々変化し、工場内での
ガスノ(ランスが変化する0このような情況にもかかわ
らず、もし従来例のように酸素富化率を一定にしておく
、と、ガスホルダーの容量以上の余剰を生じた場合には
、折角のガスを放散せねばならないし、他方不足が一生
じた場合、LPG等の外部からの購入燃料量を増さなけ
ればならない0その結果、副生ガスを最大限使用できず
、省エネルギーの点から問題がある0 ところで、混合ガスf対して酸素、富化を行うと、たと
えそれが低カロリーであっても高カロリーガスに相当し
たものが得られる0本発明者は、種々の実験によって第
1図に、示す結果を得ている。同図は、BCM(高炉ガ
スとコークス炉ガスとの混合ガス)、BPG(高炉ガス
とプロパンガスとの混合ガス)について、それらの発熱
量と、コークス炉ガス(COG)に対して等価とするた
めの酸素富化率との関係を調べたものである。
As mentioned above, in a steelworks, the byproduct gases listed in the table below are supplied to a large number of thermal equipment within the factory, but depending on the operating status of the source of the byproduct gas and the operating status of each heating equipment,
The gas generation and usage conditions change from time to time, and the gas flow inside the factory changes.Despite these circumstances, if the oxygen enrichment rate is kept constant as in the conventional example, the gas If a surplus exceeds the capacity of the holder, the gas must be dissipated at all costs, and if a shortage occurs, the amount of fuel purchased from outside, such as LPG, must be increased.As a result, By-product gas cannot be used to the maximum extent, which poses a problem from the point of view of energy conservation.By the way, when mixed gas f is enriched with oxygen, even if it is low-calorie, it becomes equivalent to high-calorie gas. The inventor obtained the results shown in Fig. 1 through various experiments. This study investigated the relationship between the calorific value and the oxygen enrichment rate to make it equivalent to coke oven gas (COG).

したがって、予めこのような関係を求めておけば、たと
えばBFGとCOGとの混合ガス(B、CM)を用いる
場合において、BFGおよびCOGがそれぞれ変動した
としても、現在の混合ガスの発熱量に応じて酸素富化率
を調整すべく純酸素量を制御すれば、常にCOG単独に
よる燃焼と等価の燃焼状態を維持でき、もって材料に対
する伝熱性能、炉内ガス温度分布および熱量原単位等を
常に一定に保持できる。
Therefore, if such a relationship is determined in advance, for example, when using a mixed gas (B, CM) of BFG and COG, even if BFG and COG vary, it will be possible to adjust the relationship according to the current calorific value of the mixed gas. By controlling the amount of pure oxygen to adjust the oxygen enrichment rate, it is possible to always maintain a combustion state equivalent to combustion with COG alone, thereby constantly maintaining the heat transfer performance to the material, the gas temperature distribution in the furnace, the unit heat consumption, etc. Can be held constant.

本発明は以上の事柄を板木思想とするものであり、熱エ
ネルギーの有効利用に寄与するところが犬である。もっ
とも、純酸素の価格が高ければ本発明法を適用する有利
性はないけれども、実際純酸素の価格は然程高くない。
The present invention is based on the above-mentioned concept, and the dog contributes to the effective use of thermal energy. However, if the price of pure oxygen is high, there is no advantage in applying the method of the present invention, but in reality, the price of pure oxygen is not that high.

なお、「純酸素」とは必らずしも02 %が1ooq6
である必要はなく、極端に言えば空気中の酸素チより高
ければよい。
Note that "pure oxygen" does not necessarily mean that 0.2% is 1ooq6
It doesn't have to be that high; in extreme terms, it just needs to be higher than the oxygen concentration in the air.

以下本発明を第2図に示す具体例によってさらに詳述す
る0 1は熱設備の一例としての加熱炉で、それに付帯するバ
ーナ2に、混合ガス燃料3および燃焼用空気4の供給系
が設けられている0本発明においては、純酸素5の供給
系が付加される。各供給系には、流量計3Q、4Q、5
Q、その流量信号を受けて流量を調節するための流量調
節計3C,40,5C,および流量制御弁3V、4V、
5Vがそれぞれ設けられている。
The present invention will be described in more detail below with reference to a specific example shown in FIG. 2. Reference numeral 01 is a heating furnace as an example of thermal equipment, and a burner 2 attached thereto is provided with a supply system for mixed gas fuel 3 and combustion air 4. In the present invention, a supply system for pure oxygen 5 is added. Each supply system has flowmeters 3Q, 4Q, 5
Q, flow rate controllers 3C, 40, 5C and flow rate control valves 3V, 4V for adjusting the flow rate in response to the flow rate signal;
5V is provided for each.

なお、混合ガス燃料3の供給系には、密度補正回路3D
が配されている。
In addition, the supply system of the mixed gas fuel 3 includes a density correction circuit 3D.
are arranged.

また、理容ガス燃料3の供給路には、検出器6が設けら
れ、検出信号は熱量計7、Ao (理論空気量)計8、
および密度計9に取シ込まれるようになっている0これ
らの計器7,8.9による信号は、ダイレクト・デジタ
ル・コントロールCDDC)制御系10において次のよ
うに処理さする0 まず、熱量計7からの混合ガス燃料3の現発熱量に基い
て、第1演算器11は、予め既知の第1図に示す関係に
照会して、対象加熱炉1に関して最適な酸素濃度を求め
る。たとえば、混合ガスがBCMである場合において、
現発熱量が2750 krO11t/N m:’であッ
7jとすルト、第1図の’関係から最適酸素濃度は24
.4 %となる。
Further, a detector 6 is provided in the supply path of the barber gas fuel 3, and the detection signal is transmitted from a calorimeter 7, Ao (theoretical air amount) total 8,
The signals from these meters 7, 8.9 are processed as follows in the direct digital control (CDDC) control system 10. Based on the current calorific value of the mixed gas fuel 3 from 7, the first computing unit 11 refers to the previously known relationship shown in FIG. 1 to determine the optimum oxygen concentration for the target heating furnace 1. For example, when the mixed gas is BCM,
If the current calorific value is 2750 krO11t/N m:', then from the relationship in Figure 1, the optimum oxygen concentration is 24
.. 4%.

次に、第2演算器12では、第1演算器11からの最適
酸素濃度と、Ao計8からの理論空気量とに基いて、必
要な空気量と純酸素量とを算出すべく、比率演算器13
に出力する。比率演算器13はその比率を定める0これ
を数値を挙げて説明すれば、現理論空気量から、21係
酸素含有空気基準で、燃料INm’当り、2.42量m
/i’Jm?の空気が必要であると判断したならば、次
に酸素濃度が前述の最適酸素濃度24.4%になるよう
に、Aoを補正してAO’とするような処理を行う。−
!た21係酸素含有空気基準で2.42Niの空気中に
は、約酸素はo、 51 (= 2.42X0.21 
)Nm’、窒素は約1.91 (=2.42X0.79
 )Nm”を含んでいる○ したがって、Ao’としては、0.5110.2.i 
4=2.lNm3として固定される。そこで、純酸素を
XNm3、燃焼用空気をy N rrl供給するとする
と、次式の連立方程式が成り立つ。
Next, the second calculator 12 calculates the ratio based on the optimal oxygen concentration from the first calculator 11 and the theoretical air amount from the Ao meter 8 to calculate the required air amount and pure oxygen amount. Arithmetic unit 13
Output to. The ratio calculator 13 determines the ratio.0 To explain this numerically, from the current theoretical air amount, based on the 21st oxygen-containing air standard, the amount is 2.42 m per fuel IN'.
/i'Jm? If it is determined that this air is necessary, then a process is performed to correct Ao to AO' so that the oxygen concentration becomes the aforementioned optimum oxygen concentration of 24.4%. −
! Based on the 21st standard oxygen-containing air, in air of 2.42Ni, approximately oxygen is 0,51 (= 2.42X0.21
)Nm', nitrogen is approximately 1.91 (=2.42X0.79
) Nm” ○ Therefore, Ao' is 0.5110.2.i
4=2. It is fixed as lNm3. Therefore, if XNm3 of pure oxygen and yNrrl of combustion air are supplied, the following simultaneous equations hold true.

これを解けばx、yをそれぞれ求めることができ、逆に
X+yとなるよう、それぞれ純酸素量おlよび燃焼用空
気量を制御すれば、最適酸素濃度の状態に調整できる〇 そして、流量調節計5C,4Cはその制御を実際に行う
。なお、ここで、密度計9がらの密度値を密度補正回路
3Dにおいて補正し、流量調節計30に取込むようにし
たのは、混合ガス燃料の密度が前述の表のよ、うに各ガ
ス量の変動によって大巾に異なるので、流量計3Qの値
をそのままは使用できないからであ、る。
By solving this, you can find x and y, and conversely, by controlling the amount of pure oxygen, 1, and the amount of combustion air, respectively, so that X + y, you can adjust to the optimal oxygen concentration state. Then, adjust the flow rate. A total of 5C and 4C actually perform the control. Here, the density value from the density meter 9 is corrected in the density correction circuit 3D and taken into the flow rate controller 30 because the density of the mixed gas fuel is adjusted to the amount of each gas as shown in the above table. This is because the value of the flow meter 3Q cannot be used as is because it varies widely depending on fluctuations in the flow rate.

一方、このような制御は、概略的に第3図に示す態様と
なる。すなわち、当初(1)CO’G単独で燃焼させて
いたが、その量が低下したので13FGを付加し、しか
しBFGの付加のみでは加熱炉内の熱的諸元が変動して
しまうので純酸素を加え(■)、以下COG量の変化に
応じてBFG量および02量を制御するものである。な
お、第3図では燃焼用空気の変動は省略しである。
On the other hand, such control takes the form schematically shown in FIG. 3. In other words, initially (1) CO'G was burned alone, but as the amount decreased, 13FG was added.However, adding BFG alone would change the thermal specifications in the heating furnace, so pure oxygen was burned. is added (■), and the BFG amount and 02 amount are subsequently controlled according to changes in the COG amount. Incidentally, in FIG. 3, fluctuations in the combustion air are omitted.

したがって、COGが足9なくなりつつあり、これに対
してB’FGが余剰である場合には、(ロ)過程で示す
ように、純酸素を加えるだけで、炉内の温度変動を防止
でき、純酸素より高価な外部燃料を購入しなくともよく
なる。
Therefore, if COG is running low and B'FG is in surplus, temperature fluctuations in the furnace can be prevented by simply adding pure oxygen, as shown in process (b). Eliminates the need to purchase external fuel, which is more expensive than pure oxygen.

以上の通り、本発明は、混合ガスの発熱量の変動に応じ
て、燃焼用空気系に純酸素をその量を制御しながら投入
するものであるから、熱設備の熱的諸元の変動を防止で
きるのみならず、ガスバランスが崩れがちな工場内にお
いて、副生ガスを最大限利用でき、もって省エネルギー
および低コストを達成するに寄与するところが大でちる
As described above, since the present invention injects pure oxygen into the combustion air system while controlling its amount in accordance with the fluctuations in the calorific value of the mixed gas, fluctuations in the thermal specifications of the thermal equipment can be avoided. Not only can this be prevented, but it is also possible to make maximum use of by-product gas in factories where gas balance tends to collapse, which greatly contributes to achieving energy savings and lower costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混合ガス燃料についてその発熱量に対応する最
適酸素濃度を示す相関図、第2図は本発明の制御法を示
すフロー図、第3図は制御例の一例・を示す説明図であ
る。
Fig. 1 is a correlation diagram showing the optimum oxygen concentration corresponding to the calorific value of mixed gas fuel, Fig. 2 is a flow chart showing the control method of the present invention, and Fig. 3 is an explanatory diagram showing an example of a control example. be.

Claims (1)

【特許請求の範囲】[Claims] (1)少くとも発熱量を異にする2種以上の気体燃料を
混合して用いる燃焼系において、混合ガスの発熱量を検
出し、これを予め既知の燃料発熱量と最適酸素量との関
係に照合して最適酸素量を求め、この最適酸素量となる
ように燃焼空気系に純酸素をその量を制御しながら投入
することを特徴とする混合ガス燃料を用いる燃焼制御方
法。
(1) In a combustion system that uses a mixture of two or more gaseous fuels that have at least different calorific values, the calorific value of the mixed gas is detected, and this is used to calculate the relationship between the known fuel calorific value and the optimal amount of oxygen. A combustion control method using a mixed gas fuel, characterized in that the optimum amount of oxygen is determined by comparing the amount of oxygen to the combustion air system, and pure oxygen is injected into the combustion air system while controlling the amount so as to reach the optimum amount of oxygen.
JP58028184A 1983-02-22 1983-02-22 Combustion controlling method utilizing mixed gas fuel Pending JPS59157420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028184A JPS59157420A (en) 1983-02-22 1983-02-22 Combustion controlling method utilizing mixed gas fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028184A JPS59157420A (en) 1983-02-22 1983-02-22 Combustion controlling method utilizing mixed gas fuel

Publications (1)

Publication Number Publication Date
JPS59157420A true JPS59157420A (en) 1984-09-06

Family

ID=12241613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028184A Pending JPS59157420A (en) 1983-02-22 1983-02-22 Combustion controlling method utilizing mixed gas fuel

Country Status (1)

Country Link
JP (1) JPS59157420A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634786A (en) * 1994-11-30 1997-06-03 North American Manufacturing Company Integrated fuel/air ratio control system
WO2004083726A1 (en) * 2003-03-19 2004-09-30 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Real time optimization and control of oxygen enhanced boilers
CN115354142A (en) * 2022-08-18 2022-11-18 重庆赛迪热工环保工程技术有限公司 Combustion control method for heating furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634786A (en) * 1994-11-30 1997-06-03 North American Manufacturing Company Integrated fuel/air ratio control system
WO2004083726A1 (en) * 2003-03-19 2004-09-30 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Real time optimization and control of oxygen enhanced boilers
US7401577B2 (en) 2003-03-19 2008-07-22 American Air Liquide, Inc. Real time optimization and control of oxygen enhanced boilers
CN115354142A (en) * 2022-08-18 2022-11-18 重庆赛迪热工环保工程技术有限公司 Combustion control method for heating furnace
CN115354142B (en) * 2022-08-18 2023-11-28 重庆赛迪热工环保工程技术有限公司 Combustion control method of heating furnace

Similar Documents

Publication Publication Date Title
CN109307437B (en) Optimized combustion control system and method for heat accumulating type industrial heating furnace
CN110243174B (en) Roller kiln atmosphere control method and device and storage medium
CN108592079A (en) The simplified control method of various gas mixing automatic adjustment
US2780414A (en) Heat input stabilization
CN107429915A (en) For method, control and the adjusting means of controllably running the industrial furnace particularly heated to regenerative and heatable industrial furnace
JPS59157420A (en) Combustion controlling method utilizing mixed gas fuel
US4065250A (en) Method of independently adjusting the fuel mixture composition and melting rate of multiburner shaft furnaces for melting metals
PL190981B1 (en) Method of and apparatus for adjusting calorific power of a gaseous fuel stream
KR100804233B1 (en) Oxygen concentration control method in case of firing multiple fuels
JPS6056968B2 (en) Low oxygen combustion method for gaseous fuel
CN113654359B (en) Oxygen supply system for gas combustion and adjusting method
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
KR20040056883A (en) Apparatus and method for controlling air flowrate in a firing furnace
JPS60207827A (en) Controlling unit for controlling gaseous mixture combustion
CN113566581B (en) Sintering oxygen-supplying and oxygen-enriching system with double oxygen supply pipelines and oxygen supply method
JPS61255225A (en) Control system for fuel gas in gas turbine
JPH10231708A (en) Combustion control method in coal-fired thermal power generating plant
SU1028954A1 (en) Method of automatic control of heating furnace heat condition
JPH0419445B2 (en)
JPS616702A (en) Method for controlling calorie of mixed gas
JPS6246123A (en) Sox concentration control method in high speed fluidized bed boiler
JPS59164821A (en) Air-fuel ratio control of combustion furnace
SU840647A1 (en) Thermic furnace heating method
SU1749273A1 (en) Method of automatic control of agglomeration charge moisture content
SU1333637A1 (en) Method of controlling temperature of output product of tubular furnace