JPH0676823A - Non-aqueous electrolyte secondary battery and positive electrode active material thereof - Google Patents
Non-aqueous electrolyte secondary battery and positive electrode active material thereofInfo
- Publication number
- JPH0676823A JPH0676823A JP4228148A JP22814892A JPH0676823A JP H0676823 A JPH0676823 A JP H0676823A JP 4228148 A JP4228148 A JP 4228148A JP 22814892 A JP22814892 A JP 22814892A JP H0676823 A JPH0676823 A JP H0676823A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode plate
- cobalt oxide
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウム複合コバルト
酸化物を正極活物質とする非水電解液二次電池および非
水電解液電池用正極活物質に関するものであり、特にそ
の電池特性改善に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium composite cobalt oxide as a positive electrode active material and a positive electrode active material for a non-aqueous electrolyte battery, and more particularly to improving battery characteristics thereof. It is a thing.
【0002】[0002]
【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。現在これら電子機器
の駆動用電源としての役割を、ニッケル−カドミウム電
池あるいは密閉型小型鉛蓄電池が担っているが、ポータ
ブル化、コードレス化が進展し、定着するにしたがい、
駆動用電源となる二次電池の高エネルギー密度化、小型
軽量化の要望が強くなっている。また近年は小型のカム
コーダの急速な市場の拡大に代表されるように、高率充
放電が可能な電池が要望されている。2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is rapidly progressing. Currently, nickel-cadmium batteries or sealed small lead-acid batteries play a role as driving power sources for these electronic devices, but with the progress of portable and cordless development, it has become established.
There is an increasing demand for higher energy density, smaller size and lighter weight of the secondary battery as a driving power source. Further, in recent years, a battery capable of high-rate charging / discharging has been demanded as represented by the rapid expansion of the market of small camcorders.
【0003】このような状況から、高い充放電電圧を示
すリチウム複合コバルト酸化物例えばLiCoO2 を正
極活物質に用い、リチウムイオンの挿入、離脱を利用し
た、非水電解液二次電池が提案されている(例えば特開
昭63−59507号公報参照)。Under such circumstances, a non-aqueous electrolyte secondary battery has been proposed which uses a lithium composite cobalt oxide showing a high charge / discharge voltage, for example, LiCoO 2, as a positive electrode active material and utilizes insertion / extraction of lithium ions. (See, for example, JP-A-63-59507).
【0004】このような電池は、高率充放電を実現可能
にするため、例えば正極版と負極版をセパレータを介し
て巻回したスパイラル構造にすることにより、電極面積
をできるだけ大きくする工夫がなされている。In order to realize high-rate charging / discharging, such a battery is devised to maximize the electrode area by, for example, forming a spiral structure in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween. ing.
【0005】例えば、その電極作成方法の一例を示す
と、特開平3−244508公報に示されている方法で
は、まず正極活物質であるLiCoO2 の粉末100重
量部に、アセチレンブラック3重量部、グラファイト粉
末4重量部、フッ素樹脂系結着剤7重量部を混合し、カ
ルボキシメチルセルロース、水溶液に懸濁させてペース
ト状にする。このペーストをアルミ箔の両面に塗着し、
乾燥後圧延して正極板としている。For example, as an example of the method for producing the electrode, in the method disclosed in JP-A-3-244508, first, 100 parts by weight of LiCoO 2 powder as a positive electrode active material, 3 parts by weight of acetylene black, 4 parts by weight of graphite powder and 7 parts by weight of a fluororesin binder are mixed and suspended in carboxymethyl cellulose and an aqueous solution to form a paste. Apply this paste to both sides of aluminum foil,
After drying, it is rolled to obtain a positive electrode plate.
【0006】このような方法で作成された正極板は、電
池容量を大きくするためには正極活物質層中の単位体積
あたりのリチウム複合コバルト酸化物の重量(以後、活
物質密度と称する)を大きくする必要があるが、大電流
で放電する高率放電のためには、活物質密度は小さいほ
うが好ましいことが知られている。In order to increase the battery capacity, the positive electrode plate manufactured by such a method has a weight of lithium composite cobalt oxide per unit volume in the positive electrode active material layer (hereinafter referred to as active material density). It is necessary to increase the size, but it is known that a low active material density is preferable for high rate discharge in which a large current is discharged.
【0007】例えば、厚さ0.03mmのアルミニウム
箔の両面に、活物質密度を2.0、2.5、3.0、
4.0、4.5、5.0g/cm3 として幅35mm、
長さ240mm、厚さ0.07mmの正極活物質層を構
成した正極板と、コークスを加熱処理した炭素剤を活物
質とした負極板とを、セパレータを介して組み合わせて
電池を構成し、直径13.8mm、高さ50mmの電池
ケース内に収納し、充電終止電圧4.1V、放電終止電
圧3.0Vで定電流充放電を行ったところ、図1のよう
な各放電容量を示した。For example, active material densities of 2.0, 2.5, and 3.0 are formed on both sides of an aluminum foil having a thickness of 0.03 mm.
Width 35 mm as 4.0, 4.5 and 5.0 g / cm 3 .
A positive electrode plate having a positive electrode active material layer having a length of 240 mm and a thickness of 0.07 mm and a negative electrode plate having a carbon agent obtained by heat treatment of coke as an active material are combined to form a battery, and a diameter is formed. The battery was housed in a battery case having a height of 13.8 mm and a height of 50 mm and subjected to constant current charging / discharging at a charge end voltage of 4.1 V and a discharge end voltage of 3.0 V.
【0008】図1から明らかなように、正極板の活物質
密度が2.0g/cm3 以下では高率放電特性は良いも
のの、電池そのものの容量がAAサイズの電池で300
mAh以下と小さくなるので実用的ではない。また、活
物質密度が5.0g/cm3以上になると、低率放電で
は高容量を示すものの、活物質密度が大きくなることに
よって極板の多孔度が小さくなるとともに、正極板の電
解液に対する濡れ性が悪くなるために、高率放電率が著
しく劣化する。As is apparent from FIG. 1, when the active material density of the positive electrode plate is 2.0 g / cm 3 or less, the high rate discharge characteristics are good, but the capacity of the battery itself is 300 AA size batteries.
It is not practical because it becomes smaller than mAh. Further, when the active material density is 5.0 g / cm 3 or more, although the capacity is high at a low rate discharge, the porosity of the electrode plate is decreased due to the increase of the active material density and the positive electrode plate with respect to the electrolyte solution is reduced. Since the wettability is deteriorated, the high rate discharge rate is significantly deteriorated.
【0009】このことからも分かるように、通常、正極
板の活物質密度は2.5〜4.5g/cm3 に設定され
る。As can be seen from this, the active material density of the positive electrode plate is usually set to 2.5 to 4.5 g / cm 3 .
【0010】[0010]
【発明が解決しようとする課題】しかし、このように極
板の活物質密度を2.5〜4.5g/cm3 の範囲で構
成された極板を用いて構成した電池においても、大電流
を流す高率の充放電を行うと、活物質密度が3.5g/
cm3 以上の極板を用いた電池では、容量低下の問題が
依然として残される。However, even in the battery constructed by using the electrode plate having the active material density of the electrode plate in the range of 2.5 to 4.5 g / cm 3 as described above, a large current is required. When high-rate charging and discharging is performed, the active material density is 3.5 g /
A battery using an electrode plate having a size of 3 cm 3 or more still has a problem of capacity reduction.
【0011】また、このような正極板を用いた電池は、
充放電サイクルの繰り返しに伴う容量劣化が大きいこと
も明らかになった。A battery using such a positive electrode plate is
It was also clarified that the capacity deterioration with the repetition of charge and discharge cycles was large.
【0012】本発明者らが、十分検討を重ねた結果、こ
のような特性劣化は以下のことが原因であることが解っ
た。As a result of thorough investigations by the present inventors, it has been found that such characteristic deterioration is caused by the following.
【0013】このようなスパイラル構造を有する電池に
おいては、高率での充放電を可能にするため、極板面積
をできる限り大きくした構造が望ましい。しかし、逆に
極板面積を増すほど電池単位体積内にセパレータの占め
る割合が大きくなるため、活物質量が減少し、電池の高
容量を維持することが困難となる。このため、容量を確
保するためには極板の単位体積あたりにおける活物質充
填量を大きくする必要がある。In a battery having such a spiral structure, it is desirable that the electrode plate area be as large as possible in order to enable charging and discharging at a high rate. However, conversely, as the area of the electrode plate increases, the proportion of the separator in the battery unit volume increases, so that the amount of the active material decreases and it becomes difficult to maintain the high capacity of the battery. Therefore, in order to secure the capacity, it is necessary to increase the amount of the active material filled per unit volume of the electrode plate.
【0014】このような特性を満足させるために、例え
ば特開平3−244508号公報に示された電池では、
前述したように、活物質ペーストをアルミ箔等の集電体
に塗着し、乾燥した後ローラープレス機等によって圧延
する方法が適応されている。このような方法で極板を作
成する場合、単位面積あたりの活物質充填量を増すに
は、アルミ箔等の集電体に塗着するペーストの厚みを増
し、ローラープレス機等によるプレス機で所定の極板厚
さまで圧延する必要がある。In order to satisfy such characteristics, for example, in the battery disclosed in Japanese Unexamined Patent Publication No. 3-244508,
As described above, a method in which the active material paste is applied to a current collector such as an aluminum foil, dried, and then rolled by a roller press or the like is applied. When making an electrode plate by such a method, in order to increase the active material filling amount per unit area, increase the thickness of the paste applied to the current collector such as aluminum foil, and press with a pressing machine such as a roller pressing machine. It is necessary to roll to a predetermined electrode plate thickness.
【0015】しかし、このような方法で作成した正極板
を用いて電池を構成し、大電流での充放電を行うと、正
極板の電位が分極し、容量の低下をもたらすことが明ら
かとなった。このように正極の電位が著しく分極するの
は、ローラープレス機等による数回の圧延によって正極
板の活物質密度を増大させる際に、正極板が平滑に圧延
され、そのために極板表面付近の多孔度が著しく減少
し、極板の実質表面積が減少しているためである。However, when a battery is constructed by using the positive electrode plate prepared by such a method and charging and discharging with a large current is carried out, it becomes clear that the potential of the positive electrode plate is polarized and the capacity is lowered. It was As described above, the potential of the positive electrode is remarkably polarized because the positive electrode plate is smoothly rolled when the active material density of the positive electrode plate is increased by rolling several times with a roller press machine or the like, and therefore the vicinity of the surface of the positive electrode plate is increased. This is because the porosity is remarkably reduced and the substantial surface area of the electrode plate is reduced.
【0016】また、このようなイオンの挿入、脱離を利
用した電池においては、充放電によって正極板が膨張収
縮するため、このように強く圧延した極板を用いた場
合、充放電サイクルを繰り返すことによって極板から活
物質が脱落してしまい、著しい容量劣化を示すことが明
らかとなった。Further, in a battery utilizing such ion insertion and desorption, the positive electrode plate expands and contracts due to charge and discharge. Therefore, when such a strongly rolled electrode plate is used, the charge and discharge cycle is repeated. As a result, it was revealed that the active material fell off from the electrode plate, showing a significant capacity deterioration.
【0017】[0017]
【課題を解決するための手段】本発明は、負極板と、リ
チウム複合コバルト酸化物を主たる活物質とする正極と
をセパレータを介して構成した極板群からなる非水電解
液二次電池において、前記正極活物質であるリチウム複
合コバルト酸化物粉末の静置法による見かけ密度(Appa
rent Bulk Density:以後ABDと示す)を、0.35
〜1.5g/cm3 としたものを用いるものである。前
記リチウム複合コバルト酸化物のABDが、0.5〜
1.5g/cm3 とすれば、更に好ましい。The present invention relates to a non-aqueous electrolyte secondary battery comprising a negative electrode plate and a positive electrode plate having a lithium composite cobalt oxide as a main active material with a separator interposed between them. , The apparent density of the lithium composite cobalt oxide powder as the positive electrode active material by the static method (Appa
rent Bulk Density: hereinafter referred to as ABD) is 0.35
What is set to be ~ 1.5 g / cm 3 is used. ABD of the lithium composite cobalt oxide is 0.5 to
More preferably, it is 1.5 g / cm 3 .
【0018】また、本発明は、前記リチウム複合コバル
ト酸化物粉末のタップ法による見かけ密度(Apparent T
ap Density:以後ATDと示す)を、1.0〜3.3g
/cm3 とするものである。前記リチウム複合コバルト
酸化物粉末のタップ法による見かけ密度が、1.4〜
3.3g/cm3 とすればさらに好ましい。The present invention also provides an apparent density (Apparent T) of the lithium composite cobalt oxide powder obtained by the tap method.
ap Density: hereinafter referred to as ATD), 1.0 to 3.3 g
It is an / cm 3. The apparent density of the lithium composite cobalt oxide powder by the tap method is 1.4 to
More preferably, it is 3.3 g / cm 3 .
【0019】上記リチウム複合コバルト酸化物は、炭酸
リチウムとコバルト塩、例えば四酸化三コバルト、炭酸
コバルト、一酸化コバルト、水酸化コバルト、硝酸コバ
ルトもしくはこれらの混合物から合成されたものを用い
ることができる。なお、コバルト源としては上記例の中
でも、四酸化三コバルト粉末は見かけ密度が大きく、大
きな見かけ密度を有するリチウム複合コバルト酸化物を
合成することが容易である。The lithium composite cobalt oxide may be lithium carbonate and a cobalt salt, for example, one synthesized from tricobalt tetraoxide, cobalt carbonate, cobalt monoxide, cobalt hydroxide, cobalt nitrate or a mixture thereof. . As the cobalt source, among the above examples, tricobalt tetraoxide powder has a large apparent density, and it is easy to synthesize a lithium composite cobalt oxide having a large apparent density.
【0020】リチウム複合コバルト酸化物粉末のABD
もしくはATDは、例えば、前記コバルト塩の見かけ密
度、リチウム源とコバルト源の混合比、リチウム源とコ
バルト源を混合した混合剤の加圧処理や合成における熱
処理温度、熱処理時間等の合成条件を変えることによっ
て設定され、これらの方法で前記所定のABDもしくは
ATDに設定されたリチウム複合コバルト酸化物を得る
ことができる。ABD of lithium composite cobalt oxide powder
Alternatively, the ATD changes synthesis conditions such as the apparent density of the cobalt salt, the mixing ratio of the lithium source and the cobalt source, the pressure treatment of the mixture of the lithium source and the cobalt source, and the heat treatment temperature and heat treatment time in the synthesis. It is possible to obtain the lithium composite cobalt oxide which is set to the predetermined ABD or ATD by these methods.
【0021】[0021]
【作用】本発明によるリチウム複合コバルト酸化物を用
い、カルボキシメチルセルロース水溶液に懸濁させたペ
ーストは乾燥後の比重が大きいため、ペーストを集電体
金属状に厚く塗着しなくとも、所定の単位面積あたりの
活物質充填量を得ることができる。The paste prepared by suspending the lithium composite cobalt oxide according to the present invention in an aqueous solution of carboxymethyl cellulose has a large specific gravity after drying, so that the paste can be applied in a predetermined unit without being thickly applied to the collector metal. The active material filling amount per area can be obtained.
【0022】このため、所定の極板サイズに成形する際
に、プレス機等による圧延の圧力および回数を著しく減
少することが可能となる。Therefore, it is possible to remarkably reduce the pressure and the number of times of rolling by a pressing machine or the like when forming into a predetermined electrode plate size.
【0023】このため、極板表面の多孔度を減少させる
ことなく、単位面積あたりの活物質重量を大きくするこ
とができる。Therefore, the weight of the active material per unit area can be increased without decreasing the porosity of the surface of the electrode plate.
【0024】これにより低率充放電のみならず、大電流
を流す高率の充放電の場合においても高容量を維持でき
た。As a result, not only low rate charging / discharging but also high rate charging / discharging in which a large current is passed can maintain a high capacity.
【0025】また、強固に圧延されていないため、充放
電サイクルを繰り返しても極板から活物質が脱落せず、
電池のサイクル寿命が著しく向上した。Further, since it is not rolled firmly, the active material does not fall off from the electrode plate even after repeated charge and discharge cycles.
The cycle life of the battery is significantly improved.
【0026】さらに、ペーストの塗着圧が薄くできるた
め、ペーストの乾燥が容易になり、極板作成効率が大幅
に向上した。Furthermore, since the paste application pressure can be made thin, the paste can be dried easily, and the electrode plate production efficiency is greatly improved.
【0027】[0027]
(実施例1)本発明の実施例を図面とともに説明する。
尚、本実施例1では原料となる四酸化三コバルトの見か
け密度を変えることにより、リチウム複合コバルト酸化
物の見かけ密度の異なったものを作成した。(Embodiment 1) An embodiment of the present invention will be described with reference to the drawings.
In this Example 1, lithium cobalt composite oxides having different apparent densities were prepared by changing the apparent density of tricobalt tetroxide as a raw material.
【0028】図2に本実施例1で用いた円筒型電池の縦
断面図を示す。図2において1は耐有機電解液性のステ
ンレス鋼板を加工した電池ケース、2は安全弁を設けた
封口板、3は絶縁パッキングを示す。4は極板群であ
り、正極板5および負極板6がセパレータ7を介して複
数回渦巻状に巻回されてケース内に収納されている。そ
して上記正極板5からは正極リード5aが引き出されて
封口板2に接続され、負極板6からは負極リード6aが
引き出されて電池ケース1の底部に接続されている。8
は絶縁リングで極板群4の上下部にそれぞれ設けられて
いる。FIG. 2 shows a vertical sectional view of the cylindrical battery used in the first embodiment. In FIG. 2, reference numeral 1 is a battery case formed by processing an organic electrolytic solution resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode plate 5 and the negative electrode plate 6 are spirally wound a plurality of times via the separator 7 and housed in the case. A positive electrode lead 5a is drawn out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode lead 6a is drawn out from the negative electrode plate 6 and connected to the bottom of the battery case 1. 8
Are insulating rings provided on the upper and lower portions of the electrode plate group 4, respectively.
【0029】以下、正極板5、負極板6、電解液等につ
いて詳しく説明する。負極板6は、コークスを加熱処理
した炭素粉100重量部に、フッ素樹脂系結着剤10重
量部を混合し、カルボキシメチルセルロース水溶液に懸
濁させてペースト状にした。そしてこのペーストを厚さ
0.015mmの銅箔の表面に塗着し、乾燥後0.2m
mに圧延し、幅37mm、長さ280mmの大きさに切
り出して負極板とした。The positive electrode plate 5, the negative electrode plate 6, the electrolytic solution and the like will be described in detail below. The negative electrode plate 6 was made into a paste by mixing 100 parts by weight of carbon powder obtained by heat-treating coke with 10 parts by weight of a fluororesin-based binder and suspending the mixture in an aqueous carboxymethyl cellulose solution. Then, this paste is applied to the surface of a copper foil having a thickness of 0.015 mm, and after drying 0.2 m
It was rolled into a size of m and cut into a size of width 37 mm and length 280 mm to obtain a negative electrode plate.
【0030】正極板は活性物質であるLiCoO2 (詳
細後術)の粉末100重量部に、アセチレンブラック3
重量部、フッ素樹脂系結着剤7重量部を混合し、カルボ
キシメチルセルロース水溶液に懸濁させてペースト状に
した。このペーストをアルミ箔の両面にそれぞれ単位面
積あたりに存在する活物質量が一定になるように種々の
厚みで塗着し、乾燥後ロールプレス機によって0.17
mmに圧延し、幅35mm、長さ250mmに切り出し
て正極板5とした。そして正、負極板それぞれにリード
5a、6aを取り付け、セパレータを介して渦巻状に巻
回し、直径13.8mm、高さ50mmの電池ケース内
に収納した。The positive electrode plate was prepared by adding 100 parts by weight of powder of active material LiCoO 2 (detailed later) to acetylene black 3
By weight, 7 parts by weight of a fluororesin-based binder were mixed and suspended in an aqueous carboxymethyl cellulose solution to form a paste. This paste was applied on both sides of an aluminum foil in various thicknesses so that the amount of active material present per unit area was constant, dried, and then dried with a roll press machine to a thickness of 0.17.
The positive electrode plate 5 was obtained by rolling into a width of 35 mm and cutting into a width of 35 mm and a length of 250 mm. Then, the leads 5a and 6a were attached to the positive and negative electrodes, respectively, and they were spirally wound with a separator interposed therebetween and housed in a battery case having a diameter of 13.8 mm and a height of 50 mm.
【0031】電解液には炭酸エチレンと炭酸ジエチルの
等容積混合溶媒に、六フッ化リン酸リチウム1モル/l
の割合で溶解したものを用いて極板群4に注入した後、
電池を密封口し、試験電池とした。The electrolytic solution was prepared by mixing 1 volume / l of lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and diethyl carbonate in an equal volume.
After injecting into the electrode plate group 4 using the one dissolved at a ratio of
The battery was sealed and used as a test battery.
【0032】以下、正極活物質の合成および正極板の作
成について詳しく説明する。本発明において、ABDお
よびATDの測定は、JIS K 5101の20.1
および20.2とうに明示されている顔料の見かけ密度
測定法と同様の方法で行った。The synthesis of the positive electrode active material and the production of the positive electrode plate will be described in detail below. In the present invention, ABD and ATD are measured according to JIS K 5101 20.1.
And 20.2 are the same as the method for determining the apparent density of pigments.
【0033】ABDは、図3に示したように目開き0.
5mmのふるい9、漏斗10、容量30cm3 の容器1
1、容器受け12、および漏斗台13を備えたものを用
い、試料をふるいの上に乗せ、はけでふるいの全面を均
等に軽く拭き、ふるいを通った試料を受け器に山盛りと
なるまで受ける。次に、へらを用いて山の部分を削り取
り、受け器の内容物の質量を計り、計算により見かけ密
度を算出した。The ABD has an opening of 0.
5 mm sieve 9, funnel 10, container 30 cm 3 in capacity
1. Using a container equipped with a container receiver 12 and a funnel stand 13, place the sample on a sieve, wipe the entire surface of the sieve evenly and lightly with a brush until the sample that has passed through the sieve becomes heaped up on the receiver. receive. Next, the mountain portion was scraped off using a spatula, the content of the receiver was weighed, and the apparent density was calculated.
【0034】ATDは、図4に一例を示すように容量1
00cm3 のメスシリンダー、メスシリンダー用ゴム
栓、メスシリンダーを50mmの高さから落下させるた
めの器具、厚さ3〜5mmでJIS K 6301の
5.2(スプリング式硬さ試験)に規定するスプリング
式A型で、硬さが60〜80のゴム板を備えたものを用
い、一定質量(例えば50グラム)の試料をメスシリン
ダーに入れ、メスシリンダーにゴム栓をし、50mmの
高さからゴム板上で200回落下タップさせる。タップ
終了後、メスシリンダー内の試料容積を読み取り、見か
け密度を算出する。The ATD has a capacity of 1 as shown in FIG.
00 cm 3 graduated cylinder, rubber stopper for graduated cylinder, device for dropping graduated cylinder from height of 50 mm, and spring specified in JIS K 6301 5.2 (spring hardness test) with a thickness of 3 to 5 mm. Using a type A type with a rubber plate having a hardness of 60 to 80, put a sample of a constant mass (for example, 50 grams) in a graduated cylinder, put a rubber stopper on the graduated cylinder, and apply a rubber from a height of 50 mm. Tap on the plate 200 times. After tapping, the sample volume in the graduated cylinder is read and the apparent density is calculated.
【0035】尚、四酸化三コバルトは、吸湿するとAB
DおよびATDの値が変動するので、650℃で10時
間熱処理することによって十分に乾燥させた後、見かけ
密度の測定を行った。It should be noted that tricobalt tetroxide absorbs AB when it absorbs moisture.
Since the values of D and ATD fluctuate, the apparent density was measured after sufficiently drying by heat treatment at 650 ° C. for 10 hours.
【0036】本発明における正極活物質は次のように作
成した。ABDが0.31g/cm3 、ATDが0.8
g/cm3 である四酸化三コバルトと、炭酸リチウムを
CoとLiの比を1:1の割合で混合し、空気雰囲気に
おいて900℃で5時間焼成して、リチウム複合コバル
ト酸化物を得た。このリチウム複合コバルト酸化物をサ
ンプルAとする。このようにして合成したリチウム複合
コバルト酸化物のABDおよびATDを測定すると、そ
れぞれ0.37g/cm3 と1.02g/cm3 であっ
た。The positive electrode active material in the present invention was prepared as follows. ABD 0.31g / cm 3 , ATD 0.8
Tricobalt tetroxide of g / cm 3 and lithium carbonate were mixed at a ratio of Co to Li of 1: 1 and baked in an air atmosphere at 900 ° C. for 5 hours to obtain a lithium composite cobalt oxide. . This lithium composite cobalt oxide is referred to as sample A. Measurement of the ABD and ATD of the lithium composite cobalt oxide synthesized in this manner were respectively 0.37 g / cm 3 and 1.02 g / cm 3.
【0037】同様にして乾燥時のABDが0.44、
0.64、0.88、1.21g/cm3 である四酸化
三コバルトをコバルト源として用いる他は、上記サンプ
ルAと同様にしてリチウム複合コバルト酸化物を合成し
た。(サンプルB〜E)このようにして合成したリチウ
ム複合コバルト酸化物(サンプルA〜E)の原料である
四酸化三コバルトおよびリチウム複合コバルト酸化物の
ABDおよびATDの値を表1に示した。Similarly, the ABD at the time of drying is 0.44,
A lithium composite cobalt oxide was synthesized in the same manner as in Sample A except that 0.64, 0.88, and 1.21 g / cm 3 of tricobalt tetraoxide were used as the cobalt source. (Samples B to E) Table 1 shows the values of ABD and ATD of tricobalt tetroxide and lithium composite cobalt oxide, which are raw materials of the lithium composite cobalt oxides (Samples A to E) thus synthesized.
【0038】[0038]
【表1】 [Table 1]
【0039】(実施例2)実施例2として、乾燥時のA
BDが1.21g/cm3 、ATDが2.53g/cm
3 の四酸化三コバルトと炭酸リチウムを混合し、100
kgf/cm2 でペレット状に加圧した後、同様の条件
で焼成して得られたリチウム複合コバルト酸化物をサン
プルFとした。サンプルFのABDおよびATDは表1
に併記した。(Example 2) As Example 2, A at the time of drying
BD is 1.21 g / cm 3 , ATD is 2.53 g / cm
3 were mixed tricobalt tetraoxide and lithium carbonate, 100
Sample F was a lithium composite cobalt oxide obtained by pressurizing into pellets at kgf / cm 2 and then firing under the same conditions. The ABD and ATD of sample F are shown in Table 1.
Also described in.
【0040】(比較例1)比較例1として、乾燥時のA
BDが0.22g/cm3 、ATDが0.40g/cm
3 の四酸化三コバルトと炭酸リチウムを混合し、同様の
条件で焼成して得られたリチウム複合コバルト酸化物を
サンプルGとした。得られたリチウム複合酸化物のAB
DおよびATDはそれぞれ0.26g/cm3 、0.5
3g/cm 3 であった。Comparative Example 1 As Comparative Example 1, A at the time of drying was used.
BD is 0.22 g / cm3, ATD 0.40g / cm
3Of tricobalt tetroxide and lithium carbonate
The lithium composite cobalt oxide obtained by firing under the conditions
This is Sample G. AB of the obtained lithium composite oxide
D and ATD are each 0.26 g / cm3, 0.5
3 g / cm 3Met.
【0041】(比較例2)比較例2として、乾燥時のA
BDが1.21g/cm3 、ATGが2.53g/cm
3 の四酸化三コバルトと炭酸リチウムを混合し、500
kgf/cm2 でペレット状に加圧した後、同様の条件
で焼成して得られたリチウム複合コバルト酸化物をサン
プルHとした。サンプルHのABDおよびATDは1.
63、3.72g/cm3 であった。Comparative Example 2 As Comparative Example 2, A at the time of drying was used.
BD is 1.21 g / cm 3 , ATG is 2.53 g / cm
3 were mixed tricobalt tetraoxide and lithium carbonate, 500
Sample H was a lithium composite cobalt oxide obtained by pressurizing into pellets at kgf / cm 2 and then firing under the same conditions. The ABD and ATD of sample H are 1.
It was 63 and 3.72 g / cm 3 .
【0042】上記サンプルA〜H(LiCoO2 )の粉
末100重量部に、アセチレンブラック3重量部、フッ
素樹脂系結着剤7重量部を混合し、カルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にする。このペ
ーストを厚さ30μmのアルミ箔の両面に1cm2 あた
り0.05gの活物質が存在するように塗着厚を変えて
両面に塗着し、乾燥させた。100 parts by weight of the powders of the above samples A to H (LiCoO 2 ) were mixed with 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder and suspended in an aqueous carboxymethylcellulose solution to form a paste. . This paste was applied to both sides of an aluminum foil having a thickness of 30 μm while changing the coating thickness so that 0.05 g of the active material was present per cm 2 and dried.
【0043】得られた極板をローラープレス機を用いて
0.17mmの厚みになるまで圧延し、幅35mm、長
さ250mmに切り出して正極板を作成した。The obtained electrode plate was rolled using a roller press machine to a thickness of 0.17 mm and cut into a width of 35 mm and a length of 250 mm to prepare a positive electrode plate.
【0044】尚、実施例1、2、比較例1、2で作成し
た正極板の活物質密度は全て3.57g/cm3 であ
る。The active material densities of the positive electrode plates prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were all 3.57 g / cm 3 .
【0045】このようにして作成した極板をセパレータ
を介して渦巻状に巻回し、電池ケース内に収納し、電解
液を注入後、電池を密封口することにより試験電池を作
成した。これらを電池A〜Hとする。The thus prepared electrode plate was spirally wound with a separator interposed between the electrode plates and the electrode plate, which was then housed in a battery case. After injection of the electrolyte, the battery was sealed and a test battery was prepared. These are batteries A to H.
【0046】このようにして作成した電池をサイクル試
験として充放電電流100mA、充電終止電圧4.1
V、放電終止電圧3.0Vの条件下で定電流充放電を行
った。また、放電電流1Aで高率放電試験を行った。The battery thus prepared was subjected to a cycle test in which the charge / discharge current was 100 mA and the end-of-charge voltage was 4.1.
Constant-current charging / discharging was performed under the conditions of V and discharge end voltage of 3.0V. Further, a high rate discharge test was conducted at a discharge current of 1A.
【0047】サイクル試験を行った結果を図5に示す。
この試験結果から、本発明によるリチウム複合コバルト
酸化物を正極活物質に使用した電池(電池A〜F、H)
は、ABDおよびATDが小さいLiCoO2から作成
した電池Gに比べて、サイクル特性が向上していること
が認められ、さらにABDが0.5以上、ATDが1.
45以上のLiCoO2 を用いた電池B〜F、Hでは更
に著しくサイクル特性が向上していることがわかる。The results of the cycle test are shown in FIG.
From these test results, batteries (Batteries A to F, H) using the lithium composite cobalt oxide according to the present invention as a positive electrode active material.
It is recognized that the cycle characteristics are improved as compared with the battery G made of LiCoO 2 having a small ABD and ATD, and the ABD is 0.5 or more and the ATD is 1.
It can be seen that the batteries B to F and H using LiCoO 2 of 45 or more have further improved cycle characteristics.
【0048】このようにサイクル特性が向上したのは、
充放電に伴うリチウムイオンの挿入、脱離によってもた
らされる活物質の膨張収縮が起こっても、極板を強固に
圧延していないため極板中の空間体積が大きく、活物質
自体の膨張収縮を極板中の空間が吸収することができ
る。このため、充放電サイクルを繰り返しても極板自身
の形状はほとんど変化しないために、極板から活物質が
脱落することがなく、良好なサイクル特性を示したもの
である。The reason why the cycle characteristics are improved is that
Even if the expansion and contraction of the active material caused by the insertion and desorption of lithium ions due to charging and discharging occurs, the electrode plate is not rolled firmly, so the space volume in the electrode plate is large and the expansion and contraction of the active material itself The space in the electrode plate can absorb. Therefore, the shape of the electrode plate itself hardly changes even if the charge / discharge cycle is repeated, so that the active material does not fall off from the electrode plate, and good cycle characteristics are exhibited.
【0049】しかし、比較例2で示したサンプルHにつ
いては、アセチレンブラック、フッ素樹脂系結着剤を混
合し、カルボキシメチルセルロース水溶液に懸濁して
も、見かけ密度が大きいために活物質が沈降し、ペース
ト中における分散性が悪くなる。このため、ペーストを
アルミ箔表面に塗着すると塗りむらが発生しやすく、乾
燥後圧延すると蛇行してしまうなど極板構成が困難であ
るという問題が生じた。またその結果、活物質密度のバ
ラツキを生じ、この正極極板を用いたサンプルHの電池
の放電容量は他の電池に比べ小さくなった。However, in the sample H shown in Comparative Example 2, even if acetylene black and a fluororesin-based binder were mixed and suspended in an aqueous carboxymethyl cellulose solution, the active material precipitated due to its large apparent density, Dispersibility in the paste becomes poor. Therefore, when the paste is applied to the surface of the aluminum foil, uneven coating is likely to occur, and when rolled after drying, the electrode plate structure is difficult, such as meandering. As a result, the density of the active material varied, and the discharge capacity of the battery of Sample H using this positive electrode plate was smaller than that of the other batteries.
【0050】これらの結果から、リチウム複合コバルト
酸化物のABDおよびATDはそれぞれ1.5g/cm
3 、3.5g/cm3 以下の方が望ましい。From these results, the ABD and ATD of the lithium composite cobalt oxide were 1.5 g / cm 2 respectively.
3 , 3.5 g / cm 3 or less is preferable.
【0051】また、放電電流1Aで高率放電試験を行
い、高率充放電率(1Aでの放電容量/100mAでの
放電容量×100(%))を求めた。Further, a high rate discharge test was conducted at a discharge current of 1 A to obtain a high rate charge / discharge rate (discharge capacity at 1 A / discharge capacity at 100 mA × 100 (%)).
【0052】高率放電試験の結果を図6に示した。図6
から明らかなように、本発明によるリチウム複合コバル
ト酸化物を正極活物質に使用した電池(電池A〜F、
H)は、ABDおよびATDが小さいLiCoO2 から
作成した電池Gにおける結果(76%)に比べて、高率
放電率と区政が向上していることが認められ、さらにA
BDが0.5g/cm3 以上、ATDが1.45g/c
m3 以上のLiCoO2を用いた電池B〜F、Hでは高
率放電率が90%以上と明らかに特製が向上しているこ
とが認められる。このように高率放電率が向上したの
は、極板作成工程において、ペーストで塗着したときの
単位面積あたりの活物質充填量が大きいため、乾燥後の
圧延工程において、圧延圧力もしくは圧延回数を著しく
減少できたため、正極板の多孔度が大きくなり、高率で
放電を行ったときにおいても分極が大きくならないため
である。The results of the high rate discharge test are shown in FIG. Figure 6
As is clear from the above, batteries using the lithium composite cobalt oxide according to the present invention as a positive electrode active material (Batteries A to F,
H) shows that the high rate discharge rate and the ward administration are improved compared with the result (76%) in the battery G made from LiCoO 2 having a small ABD and ATD.
BD is 0.5 g / cm 3 or more, ATD is 1.45 g / c
In the batteries B to F and H using LiCoO 2 of m 3 or more, it is recognized that the high-rate discharge rate is 90% or more, which is clearly improved. In this way, the high rate discharge rate was improved because the active material filling amount per unit area when applied with a paste was large in the electrode plate making process, so the rolling pressure or the number of times of rolling in the rolling process after drying was increased. This is because the porosity of the positive electrode plate is increased and the polarization does not increase even when discharging at a high rate.
【0053】このように、本発明におけるABDが0.
35〜1.5g/cm3 、ATDが1.0〜3.3g/
cm3 のリチウム複合コバルト酸化物を用いると電池の
充放電サイクル特性および高率放電特性が著しく向上す
る。As described above, the ABD in the present invention is 0.
35-1.5 g / cm 3 , ATD 1.0-3.3 g /
When using the lithium composite cobalt oxides cm 3 charge-discharge cycle characteristics and high-rate discharge characteristics of the battery can be significantly improved.
【0054】また、ABDが0.5〜1.5g/c
m3 、ATDが1.4〜3.3g/cm 3 であるリチウ
ム複合コバルト酸化物は、電池の充放電サイクル特性お
よび高率放電特性が良好で、さらに好ましい。ABD is 0.5 to 1.5 g / c
m3, ATD 1.4-3.3 g / cm 3Is Richiu
The composite cobalt oxide has a high charge / discharge cycle characteristic.
And high rate discharge characteristics are good, and more preferable.
【0055】また、ABDおよびATDがそれぞれ0.
3〜1.2g/cm3 、0.8〜2.5g/cm3 の四
酸化三コバルトを炭酸リチウムと混合し、焼成すること
によりサイクル特性、高率放電特性の良好な活物質が得
られることが明らかとなった。Also, ABD and ATD are 0.
3~1.2g / cm 3, was mixed with tricobalt tetroxide lithium carbonate 0.8~2.5g / cm 3, the cycle characteristics, good active materials high rate discharge characteristics can be obtained by calcining It became clear.
【0056】また、本実施例1では、コバルト源とし
て、四酸化三コバルトを使用したが、炭酸コバルト、一
酸化コバルト、硝酸コバルト、水酸化コバルトなどのコ
バルト塩もしくはこれらコバルト塩の混合物を使用した
場合でも、合成されたリチウム複合コバルト酸化物のA
BDおよびATDが本発明の範囲にあれば同様の効果が
得られた。In Example 1, tricobalt tetraoxide was used as the cobalt source, but cobalt salts such as cobalt carbonate, cobalt monoxide, cobalt nitrate and cobalt hydroxide, or a mixture of these cobalt salts was used. Even if the synthesized lithium composite cobalt oxide A
Similar effects were obtained when BD and ATD were within the scope of the present invention.
【0057】(実施例3)本発明の実施例3を図面とと
もに説明する。尚、本実施例3では原料となる炭酸コバ
ルトと炭酸リチウムの混合比を変えることにより、リチ
ウム複合コバルト酸化物の見かけ密度の異なったものを
作成した。(Third Embodiment) A third embodiment of the present invention will be described with reference to the drawings. In Example 3, lithium cobalt composite oxides having different apparent densities were prepared by changing the mixing ratio of the raw material cobalt carbonate and lithium carbonate.
【0058】乾燥時のATDが1.20g/cm3 であ
る炭酸コバルトと、炭酸リチウムをCoとLiの比をC
o/Li=1.05の割合で混合し、空気雰囲気におい
て900℃で5時間焼成した。(サンプルI) このようにして合成したリチウム複合コバルト酸化物
(サンプルI)のABDおよびATDを測定したところ
それぞれ0.52、1.41g/cm3 であった。同様
にして、CoとLiの比をCo/Li=1.00、0.
95の割合で混合し、空気雰囲気において900℃で5
時間焼成した。Cobalt carbonate having an ATD of 1.20 g / cm 3 when dried, lithium carbonate, and the ratio of Co to Li are C
The mixture was mixed at a ratio of o / Li = 1.05 and fired at 900 ° C. for 5 hours in an air atmosphere. (Sample I) The ABD and ATD of the lithium composite cobalt oxide (Sample I) thus synthesized were measured and found to be 0.52 and 1.41 g / cm 3 , respectively. Similarly, the ratio of Co to Li is Co / Li = 1.00, 0.
Mix in a ratio of 95 and at 900 ° C in an air atmosphere for 5
Burned for hours.
【0059】上記の方法で得られたリチウム複合コバル
ト酸化物(サンプルI〜K)のABDおよびATDを表
2に示した。Table 2 shows the ABD and ATD of the lithium composite cobalt oxide (Samples I to K) obtained by the above method.
【0060】[0060]
【表2】 [Table 2]
【0061】(比較例3)比較例3として、乾燥後のA
TDが1.20g/cm3 である炭酸コバルトと、炭酸
リチウムをCoとLiの比をCo/Li=1.10の割
合で混合し、空気雰囲気において900℃5時間焼成し
た。Comparative Example 3 As Comparative Example 3, A after drying was used.
Cobalt carbonate having a TD of 1.20 g / cm 3 and lithium carbonate were mixed at a ratio of Co and Li of Co / Li = 1.10 and fired at 900 ° C. for 5 hours in an air atmosphere.
【0062】得られたリチウム複合コバルト酸化物のA
BDおよびATDはそれぞれ0.33g/cm3 、0.
96g/cm3 であった。(サンプルL) (比較例4)比較例4として、乾燥時のATDが1.2
0g/cm3 である炭酸コバルトと、炭酸リチウムをC
oとLiの比をCo/Li=0.9の割合で混合し、空
気雰囲気において900℃で5時間焼成した。A of the obtained lithium composite cobalt oxide
BD and ATD were 0.33 g / cm 3 , 0.
It was 96 g / cm 3 . (Sample L) (Comparative Example 4) As Comparative Example 4, the ATD during drying was 1.2.
Cobalt carbonate of 0 g / cm 3 and lithium carbonate as C
The ratio of o and Li was mixed at a ratio of Co / Li = 0.9, and the mixture was baked at 900 ° C. for 5 hours in an air atmosphere.
【0063】得られたリチウム複合コバルト酸化物のA
BDおよびATDはそれぞれ1.86g/cm3 、3.
58g/cm3 であった。(サンプルM) 上記サンプルI〜Mを用いているほかは、実施例1と同
様にして、電池を作成した。(電池I〜M) このようにして作成した電池をサイクル試験として充放
電電流100mA、充電終止電圧4.1V、放電終止電
圧3.0Vの条件下で定電流充放電を行った。また、放
電電流500mAで高率充放電試験を行った。A of the obtained lithium composite cobalt oxide
BD and ATD are 1.86 g / cm 3 , 3.
It was 58 g / cm 3 . (Sample M) A battery was prepared in the same manner as in Example 1 except that Samples I to M above were used. (Batteries I to M) As a cycle test, the batteries thus produced were subjected to constant current charge / discharge under the conditions of a charge / discharge current of 100 mA, a charge end voltage of 4.1 V, and a discharge end voltage of 3.0 V. Further, a high rate charge / discharge test was conducted at a discharge current of 500 mA.
【0064】サイクル試験を行った結果を図7に示す。
この試験結果から、ABDが0.33g/cm3 、AT
Dが0.96g/cm 3 のリチウム複合コバルト酸化物
を用いた電池Lは、酸化コバルトが過剰に混入している
ため、初期容量も小さく、極板を強固に圧延しているた
め、サイクルに伴う電池容量の減少も大きい。The results of the cycle test are shown in FIG.
From this test result, ABD was 0.33 g / cm3, AT
D is 0.96 g / cm 3Lithium composite cobalt oxide
In the battery L using, cobalt oxide is excessively mixed.
Therefore, the initial capacity is small and the electrode plate is rolled firmly.
Therefore, the battery capacity decreases greatly with the cycle.
【0065】これに対し、本発明によるリチウム複合コ
バルト酸化物を正極活物質に使用した電池(電池I〜
K)では、著しくサイクル特性が向上していることがわ
かる。On the other hand, a battery using the lithium composite cobalt oxide according to the present invention as the positive electrode active material (Batteries I to I
In K), it can be seen that the cycle characteristics are remarkably improved.
【0066】炭酸リチウムが非常に過剰に混合されてい
るサンプルMは、リチウム複合コバルト酸化物の焼結が
起こりやすく、一次粒子が非常に大きく、ABDおよび
ATDの大きいリチウム複合コバルト酸化物が得られ
る。In the sample M in which lithium carbonate was mixed in a very excessive amount, the lithium composite cobalt oxide was easily sintered, the primary particles were very large, and the lithium composite cobalt oxide having a large ABD and ATD was obtained. .
【0067】しかし、このような粉末をカルボキシメチ
ルセルロース水溶液に懸濁すると、比較例2におけるサ
ンプルHと同様に見かけ密度が大きいために活物質が沈
降し、ペースト中における分散性が悪くなる。このた
め、ペーストをアルミ箔表面に塗着すると塗りむらが発
生しやすく、活物質密度のバラツキを生じたり、乾燥後
圧延すると蛇行してしまうなど、極板構成が困難である
という問題が生じ、極板中の活物質密度がばらつくこと
から、放電容量も小さくなった。However, when such a powder is suspended in an aqueous carboxymethylcellulose solution, the active material precipitates due to the large apparent density as in Sample H of Comparative Example 2, and the dispersibility in the paste deteriorates. Therefore, when the paste is applied to the surface of the aluminum foil, uneven coating is likely to occur, variation in the active material density occurs, or meandering occurs after rolling after drying, which causes a problem that the electrode plate configuration is difficult, The discharge capacity also decreased because the active material density in the electrode plate varied.
【0068】さらに、このように一次粒子の非常に大き
いリチウム複合コバルト酸化物は、充放電サイクルを繰
り返すと、リチウムイオンの挿入、脱離に伴う粒子の膨
張、収縮によって、粒子の微細化が起こり、極板中から
活物質が脱落し、容量劣化を起こす。Furthermore, in such a lithium composite cobalt oxide having a very large primary particle, when the charge / discharge cycle is repeated, the particles are made finer due to the expansion and contraction of the particles accompanying the insertion and desorption of lithium ions. , The active material falls off from the electrode plate, causing capacity deterioration.
【0069】このように、Co/Li比を変えることに
よって合成したリチウム複合コバルト酸化物について
も、実施例1と同様にABDが0.35〜1.5g/c
m3 、ATDが1.0〜3.3g/cm3 の活物質を用
いることによりサイクル特性が向上することがわかる。As described in Example 1, the ABD of the lithium composite cobalt oxide synthesized by changing the Co / Li ratio was 0.35 to 1.5 g / c.
It can be seen that the cycle characteristics are improved by using the active material having m 3 and ATD of 1.0 to 3.3 g / cm 3 .
【0070】また、ABDが0.5〜1.5g/c
m3 、ATDが1.4〜3.3g/cm 3 のリチウム複
合コバルト酸化物は、さらに好ましい。ABD is 0.5 to 1.5 g / c
m3, ATD 1.4-3.3 g / cm 3The lithium compound
Compound cobalt oxide is more preferred.
【0071】実施例3及び比較例3、4で作成した電池
(I〜M)を、放電電流1Aで高率放電試験を行い、高
率充放電率(1Aでの放電容量/100mAでの放電容
量×100(%))を求めた。The batteries (I to M) produced in Example 3 and Comparative Examples 3 and 4 were subjected to a high rate discharge test at a discharge current of 1 A to obtain a high rate charge / discharge rate (discharge capacity at 1 A / discharge at 100 mA). The capacity x 100 (%) was determined.
【0072】高率放電試験の結果を図8に示した。図8
から明らかなように、本発明によるABDが0.5〜
1.5g/cm3 、ATDが1.4〜3.3g/cm3
のリチウム複合コバルト酸化物を正極活物質に使用した
電池(I〜K)は、ABDおよびATDが小さいリチウ
ム複合コバルト酸化物から作成した電池L(68%)、
およびABDが1.5g/cm3 、ATDが3.3g/
cm3 を越えるリチウム複合コバルト酸化物から作成し
た電池M(85%)における結果に比べて、高率放電率
特性が90%以上となり、明らかに向上していることが
認められる。The results of the high rate discharge test are shown in FIG. Figure 8
As is clear from the above, the ABD according to the present invention is 0.5 to
1.5 g / cm 3 , ATD 1.4-3.3 g / cm 3
The batteries (I to K) using the above lithium composite cobalt oxide as a positive electrode active material are batteries L (68%) made from lithium composite cobalt oxide having a small ABD and ATD,
And ABD is 1.5 g / cm 3 , ATD is 3.3 g /
It is recognized that the high rate discharge rate characteristics are 90% or more, which is clearly improved, as compared with the result in the battery M (85%) made from the lithium composite cobalt oxide exceeding cm 3 .
【0073】このように高率放電率が向上したのは、極
板作成工程において、ペーストで塗着したときの単位面
積あたりの活物質充填量が大きいため、乾燥後の圧延工
程において、圧延圧力もしくは圧延圧力を著しく減少で
きたため、正極極板の多孔度が大きくなり、高率で放電
を行ったときにおいても分極が大きくならないためであ
る。The high rate of discharge is improved as described above because the amount of the active material filled per unit area when applied with the paste is large in the electrode plate producing process, and therefore, the rolling pressure in the rolling process after drying is high. Alternatively, since the rolling pressure can be remarkably reduced, the porosity of the positive electrode plate becomes large, and the polarization does not become large even when discharging at a high rate.
【0074】また、電池Mの高率放電特性が85%と悪
いのは、一次粒子が大きいため活物質の単位重量あたり
の電解液に接する表面積(比表面積)が小さいためであ
る。The high rate discharge characteristic of the battery M is as bad as 85% because the primary particles are large and the surface area (specific surface area) in contact with the electrolytic solution per unit weight of the active material is small.
【0075】このようにCo/Li比を変えることによ
って合成したリチウム複合コバルト酸化物についても、
本発明で規定した範囲内のリチウム複合コバルト酸化物
を用いることにより高率放電率が向上する。Regarding the lithium composite cobalt oxide synthesized by changing the Co / Li ratio in this way,
The high rate discharge rate is improved by using the lithium composite cobalt oxide within the range specified in the present invention.
【0076】尚、本実施例3ではコバルト源として炭酸
コバルトを用いたが、炭酸コバルトの代わりに四酸化三
コバルト、一酸化コバルト、水酸化コバルト、硝酸コバ
ルトなどのコバルト塩、もしくはこれらの混合物であっ
ても同様の効果が得られた。In Example 3, cobalt carbonate was used as the cobalt source, but cobalt cobalt such as tricobalt tetraoxide, cobalt monoxide, cobalt hydroxide, cobalt nitrate, or a mixture thereof may be used instead of cobalt carbonate. Even if there was, the same effect was obtained.
【0077】尚、本実施例1〜3では活物質密度を3.
5g/cm3 に設定したが、4.5g/cm3 以下であ
れば同様の効果が得られた。ただし、活物質密度を4.
4g/cm3 以上にすると極板を強く圧延することが不
可欠となるため、同様の効果は得られなかった。In Examples 1 to 3, the active material density was set to 3.
Although it was set to 5 g / cm 3 , the same effect was obtained if it was 4.5 g / cm 3 or less. However, the active material density is 4.
If it is 4 g / cm 3 or more, it is indispensable to strongly roll the electrode plate, and the same effect cannot be obtained.
【0078】尚、このような正極活物質の粉体特性の一
つである粒度分布を規制することによって電池設計を行
う方法があるが、このような活物質を極板に構成する際
の充填性は、粒子粒径よりも粒子形状に大きく影響され
るため、むしろ静置法やタップ法による見かけ密度に影
響される。このため、見かけ密度を規制することによ
り、より厳密な電池設計が可能となる。There is a method of designing a battery by regulating the particle size distribution, which is one of the powder characteristics of such a positive electrode active material, but when filling such an active material into an electrode plate Since the shape is more affected by the particle shape than the particle size, it is rather affected by the apparent density by the stationary method or the tap method. Therefore, by regulating the apparent density, more rigorous battery design becomes possible.
【0079】上記実施例においては、円筒型の電池を用
いて評価を行ったが、角型など電池形状が異なっても同
様の効果が得られる。In the above examples, the evaluation was performed using a cylindrical battery, but the same effect can be obtained even when the battery shape is different, such as a prismatic battery.
【0080】また、上記実施例において負極には炭素質
材料を用いたが、リチウム金属や、リチウム合金を負極
として用いても同様の効果が得られる。Further, although the carbonaceous material is used for the negative electrode in the above embodiment, the same effect can be obtained by using lithium metal or lithium alloy as the negative electrode.
【0081】また、上記実施例において電解質として六
フッ化リン酸リチウムを使用したが、他のリチウム含有
塩、例えば過塩素酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ化
ヒ酸リチウムなどでも同様の効果が得られた。Although lithium hexafluorophosphate was used as the electrolyte in the above examples, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluorofluoride were used. Similar effects were obtained with lithium arsenate and the like.
【0082】さらに、上記実施例では炭酸エチレンと炭
酸ジエチルの混合溶媒を用いたが、他の非水溶媒例え
ば、プロピレンカーボネートなどの環状エステル、テト
ラヒドロフランなどの環状エーテル、ジメトキシエタン
などの鎖状エーテル、プロピオン酸メチルなどの鎖状エ
ステルなどの非水溶媒や、これらの多元系混合溶媒を用
いても同様の効果が得られた。Furthermore, although a mixed solvent of ethylene carbonate and diethyl carbonate was used in the above examples, other non-aqueous solvents such as cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, chain ethers such as dimethoxyethane, Similar effects were obtained using a non-aqueous solvent such as a chain ester such as methyl propionate or a multi-component mixed solvent thereof.
【0083】[0083]
【発明の効果】本発明によるABD0.35〜1.5g
/cm3 、ATD1.0〜3.3g/cm3 以上のリチ
ウム複合コバルト酸化物を正極活物質として用いること
によってサイクル特性が良好で、高率放電特性の優れた
非水電解液二次電池を提供することができる。EFFECT OF THE INVENTION ABD 0.35 to 1.5 g according to the present invention
/ Cm 3 , ATD 1.0 ~ 3.3 g / cm 3 or more by using a lithium composite cobalt oxide as a positive electrode active material, good cycle characteristics, excellent non-aqueous electrolyte secondary battery of high rate discharge characteristics. Can be provided.
【0084】さらに、ABD0.5〜1.5g/c
m3 、ATD1.4〜3.3g/cm3のリチウム複合
コバルト酸化物を用いることにより、生産性に優れ、容
量バラツキが小さく、サイクル特性、高率放電特性のさ
らに優れた非水電解液二次電池を提供することができ
る。Furthermore, ABD 0.5 to 1.5 g / c
m 3, by using a lithium composite cobalt oxide ATD1.4~3.3g / cm 3, excellent productivity, capacity variation is small, the cycle characteristics, superior non-aqueous electrolyte solution of the high-rate discharge characteristic two A secondary battery can be provided.
【0085】また、ABD0.3〜1.2g/cm3 、
ATD0.8〜2.5g/cm3 の四酸化三コバルト粉
末と炭酸リチウム粉末を混合し、焼成することによっ
て、サイクル特性、高率放電特性の優れた正極活物質を
提供することができる。ABD 0.3 to 1.2 g / cm 3 ,
A positive electrode active material having excellent cycle characteristics and high rate discharge characteristics can be provided by mixing a tricobalt tetraoxide powder having an ATD of 0.8 to 2.5 g / cm 3 and a lithium carbonate powder and firing the mixture.
【図1】極板における活物質密度と高率放電率との関係FIG. 1 Relationship between active material density and high discharge rate in electrode plate
【図2】本実施例における円筒型電池の縦断面図FIG. 2 is a vertical sectional view of a cylindrical battery according to this embodiment.
【図3】本実施例における静置法による見かけ密度測定
装置図FIG. 3 is a diagram of an apparent density measuring device by a stationary method in this example.
【図4】本実施例におけるタップ法による見かけ密度測
定装置図FIG. 4 is a diagram of an apparent density measuring device by a tap method in this embodiment.
【図5】本実施例1、2、比較例1、2におけるサイク
ル特性を示す図FIG. 5 is a diagram showing cycle characteristics in Examples 1 and 2 and Comparative Examples 1 and 2.
【図6】本実施例1、2、比較例1、2における高率放
電特性を示す図6 is a diagram showing high rate discharge characteristics in Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
【図7】本実施例3、比較例3、4におけるサイクル特
性を示す図FIG. 7 is a diagram showing cycle characteristics in Example 3 and Comparative Examples 3 and 4.
【図8】本実施例3、比較例3、4における高率放電特
性を示す図FIG. 8 is a diagram showing high rate discharge characteristics in Example 3 and Comparative Examples 3 and 4.
1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁リング 9 ふるい 10 漏斗 11 受器 12 受器台 13 漏斗台 14 メスシリンダ 15 ゴム栓 16 ゴム板 1 Battery Case 2 Sealing Plate 3 Insulating Packing 4 Electrode Plate Group 5 Positive Electrode Plate 5a Positive Electrode Lead 6 Negative Electrode Plate 6a Negative Lead 7 Separator 8 Insulating Ring 9 Sieve 10 Funnel 11 Receiver 12 Receiver Stand 14 Messy Cylinder 15 Rubber Plug 16 rubber plate
Claims (7)
してなる負極板、もしくはリチウムまたはリチウム合金
からなる負極板と、金属集電体の両面にリチウム複合コ
バルト酸化物の粉末を主たる正極活物質とした正極活物
質層を形成した正極板と、負極板と正極板との間にセパ
レータを介してなる非水電解液二次電池において、前記
正極板の正極活物質中のリチウム複合コバルト酸化物の
密度が2.5〜4.5g/cm3 の範囲にあり、前記リ
チウム複合コバルト酸化物粉末として静置法による見か
け密度が、0.35〜1.5g/cm3 のものを用いた
ことを特徴とする非水電解液二次電池。1. A negative electrode plate formed by forming a layer of a carbonaceous material on the surface of a metal current collector, or a negative electrode plate made of lithium or a lithium alloy, and a lithium composite cobalt oxide powder on both surfaces of the metal current collector. In a positive electrode plate having a positive electrode active material layer formed mainly of a positive electrode active material, and a non-aqueous electrolyte secondary battery having a separator between the negative electrode plate and the positive electrode plate, the positive electrode active material of the positive electrode plate The density of the lithium composite cobalt oxide is in the range of 2.5 to 4.5 g / cm 3 , and the apparent density by the standing method of the lithium composite cobalt oxide powder is 0.35 to 1.5 g / cm 3 . What is used is a non-aqueous electrolyte secondary battery.
ての静置法による見かけ密度が、0.5〜1.5g/c
m3 のものを用いたことを特徴とする前記請求項1記載
の非水電解液二次電池。2. The apparent density of the lithium composite cobalt oxide powder according to a stationary method is 0.5 to 1.5 g / c.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery has a m 3 value .
てのタップ法による見かけ密度が、1.0〜3.3g/
cm3 のものを用いたことを特徴とする前記請求項1記
載の非水電解液二次電池。3. The apparent density by the tap method as the lithium composite cobalt oxide powder is 1.0 to 3.3 g /
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery has a size of 3 cm 3 .
てのタップ法による見かけ密度が、1.4〜3.3g/
cm3 のものを用いたことを特徴とする前記請求項1記
載の非水電解液二次電池。4. The apparent density of the lithium composite cobalt oxide powder as measured by the tap method is 1.4 to 3.3 g /
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery has a size of 3 cm 3 .
て、その合成時のCoとLiの組成比率をCo/Liと
表わすとき、Co/Li=1.05〜0.95のものを
用いたことを特徴とする前記請求項1〜4記載の非水電
解液二次電池。5. The lithium composite cobalt oxide powder, wherein the composition ratio of Co and Li at the time of its synthesis is expressed as Co / Li, Co / Li = 1.05 to 0.95 is used. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, which is characterized in that.
酸リチウム粉末を混合し、熱処理することによって合成
されたリチウム複合コバルト酸化物であって、前記四酸
化三コバルト粉末の静置法による見かけ密度が、0.3
〜1.2g/cm3 であるものを用いたことを特徴とす
る非水電解液電池用正極活物質。6. A lithium composite cobalt oxide synthesized by mixing tricobalt tetraoxide powder (Co 3 O 4 ) and lithium carbonate powder and heat-treating the mixture, wherein the tricobalt tetraoxide powder is allowed to stand. Apparent density is 0.3
A positive electrode active material for a non-aqueous electrolyte battery, wherein the positive electrode active material has a content of up to 1.2 g / cm 3 .
見かけ密度が、0.8〜2.5g/cm3 であることを
特徴とする前記請求項6記載の非水電解液電池用正極活
物質。7. The positive electrode active material for a non-aqueous electrolyte battery according to claim 6, wherein the apparent density of the cobalt tetraoxide powder by a tap method is 0.8 to 2.5 g / cm 3. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22814892A JP3245987B2 (en) | 1992-08-27 | 1992-08-27 | Cathode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22814892A JP3245987B2 (en) | 1992-08-27 | 1992-08-27 | Cathode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0676823A true JPH0676823A (en) | 1994-03-18 |
JP3245987B2 JP3245987B2 (en) | 2002-01-15 |
Family
ID=16871985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22814892A Expired - Lifetime JP3245987B2 (en) | 1992-08-27 | 1992-08-27 | Cathode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3245987B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000049674A1 (en) * | 1999-02-19 | 2000-08-24 | Fujitsu Limited | Alkaline secondary battery |
JP2008041502A (en) * | 2006-08-08 | 2008-02-21 | Sony Corp | Positive electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery |
US8083812B1 (en) * | 1999-02-19 | 2011-12-27 | Sony Corporation | Solid-electrolyte battery and manufacturing method therefor |
-
1992
- 1992-08-27 JP JP22814892A patent/JP3245987B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000049674A1 (en) * | 1999-02-19 | 2000-08-24 | Fujitsu Limited | Alkaline secondary battery |
US8083812B1 (en) * | 1999-02-19 | 2011-12-27 | Sony Corporation | Solid-electrolyte battery and manufacturing method therefor |
JP2008041502A (en) * | 2006-08-08 | 2008-02-21 | Sony Corp | Positive electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP3245987B2 (en) | 2002-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3362564B2 (en) | Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate | |
JP3446639B2 (en) | Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery | |
JP2001076727A (en) | Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
JP3695366B2 (en) | Positive electrode active material for lithium ion secondary battery and method for producing the same | |
US8420039B2 (en) | Silicon oxide and negative electrode material for lithium-ion secondary battery | |
JP3951715B2 (en) | Cathode active material for lithium ion secondary battery and method for producing the same | |
JP3468098B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JPH01204361A (en) | Secondary battery | |
US20220052336A1 (en) | Cathode active material for lithium secondary battery, and lithium secondary battery comprising same | |
JPS63299056A (en) | Organic electrolyte secondary battery | |
JP2003288899A (en) | Positive electrode active material for nonaqueous electrolyte secondary cell | |
JP3245987B2 (en) | Cathode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte batteries | |
JP2003308837A (en) | Negative electrode material for lithium ion secondary battery and its manufacturing method | |
JP4168609B2 (en) | Positive electrode active material for lithium ion secondary battery | |
JPH10125324A (en) | Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof | |
JPH1116567A (en) | Nonaqueous electrolyte battery, and manufacture thereof | |
JPH07335221A (en) | Coin type nonelectrolytic secondary battery | |
JP3620744B2 (en) | Method for producing active material for lithium secondary battery | |
JP2002260661A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
JP3695365B2 (en) | Cathode active material for lithium ion secondary battery | |
EP4113662A1 (en) | Method for charging nonaqueous electrolyte secondary cell | |
JP4168608B2 (en) | Positive electrode active material for lithium ion secondary battery | |
JP4240853B2 (en) | Positive electrode active material for lithium ion secondary battery | |
JP3052670B2 (en) | Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode | |
CN108777292B (en) | Anthracite modified selenium/citric acid composite positive electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081102 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |