JPH0676667B2 - Manufacturing method of vanadium lower oxide thin film - Google Patents

Manufacturing method of vanadium lower oxide thin film

Info

Publication number
JPH0676667B2
JPH0676667B2 JP60132682A JP13268285A JPH0676667B2 JP H0676667 B2 JPH0676667 B2 JP H0676667B2 JP 60132682 A JP60132682 A JP 60132682A JP 13268285 A JP13268285 A JP 13268285A JP H0676667 B2 JPH0676667 B2 JP H0676667B2
Authority
JP
Japan
Prior art keywords
thin film
gas
substrate
hydrated gel
lower oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60132682A
Other languages
Japanese (ja)
Other versions
JPS61291977A (en
Inventor
好 北井
浩 新垣
誠 内沖
Original Assignee
新興化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新興化学工業株式会社 filed Critical 新興化学工業株式会社
Priority to JP60132682A priority Critical patent/JPH0676667B2/en
Publication of JPS61291977A publication Critical patent/JPS61291977A/en
Publication of JPH0676667B2 publication Critical patent/JPH0676667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はバナジウム低級酸化物の薄膜を形成する方法
に関するもので、主として、感温素子材料、熱電素子材
料、スイツチング材料などの製造乃至は表面処理のため
に用いられる。
Description: TECHNICAL FIELD The present invention relates to a method for forming a thin film of vanadium lower oxide, and mainly relates to the production or surface of temperature sensitive element materials, thermoelectric element materials, switching materials and the like. Used for processing.

〔従来の技術〕[Conventional technology]

従来メタバナジン酸アンモン(NH4VO3)あるいはV2O5
末をNH3ガス、1乃至20倍(バナジウム原料モル比)で4
50乃至700℃で1乃至6時間還元することによりV2O3
末を得ることが特開昭49−47294号によつて知られてい
るがこの方法は薄膜が形成できない。
Conventionally, ammonium metavanadate (NH 4 VO 3 ) or V 2 O 5 powder was mixed with NH 3 gas at 1 to 20 times (vanadium raw material molar ratio) 4
It is known from JP-A-49-47294 that V 2 O 3 powder can be obtained by reduction at 50 to 700 ° C. for 1 to 6 hours, but this method cannot form a thin film.

またV2O5水和ゲルを絶縁基体に塗布し、単に乾燥させる
方法は特公昭57−29502号によつて知られている。この
ときV2O5水和ゲル中に元より含まれているV4+イオンに
より導電性が付与され、帯電防止効果を奏するが、一般
にはV2O5水和ゲル中には大半が導電性のないV5+イオン
が含まれており、V4+イオンを多く含まれるようにする
にはV2O5水和ゲル製造時の温度管理を極めて厳密に高温
度にしなければならず、高温度にするとV2O5水和ゲルの
回収量が低下し、コスト高となる。また塗布乾燥後の膜
の形成については、この特公昭57−29502号には記述な
く、追試の結果、そのまゝでは膜の形成はなく、別に造
膜剤の添加を要する。
A method of applying a V 2 O 5 hydrated gel to an insulating substrate and simply drying it is known from JP-B-57-29502. At this time, conductivity is imparted by the V 4 + ions originally contained in the V 2 O 5 hydrated gel, and an antistatic effect is exhibited, but in general, most of the V 2 O 5 hydrated gel is conductive. Since it contains non- active V 5 + ions, in order to contain a large amount of V 4 + ions, the temperature control during the production of V 2 O 5 hydrated gel must be extremely strictly high, When the temperature is elevated, the amount of V 2 O 5 hydrated gel recovered decreases, resulting in high cost. The formation of a film after coating and drying is not described in JP-B-57-29502, and as a result of an additional test, no film is formed until then, and it is necessary to add a film-forming agent separately.

またV2O5と還元剤としての金属を共に減圧容器に入れ、
これらを昇華させて、気体の状態において還元して生成
したVO2、V2O3などを冷却固化したものを取り出す方法
が特開昭50−72894号によつて知られているが、密封減
圧容器を必要とし、面倒で生産性が悪く、コスト高とな
る。
Also, put V 2 O 5 and the metal as a reducing agent together in a vacuum vessel,
These subliming, a method of and to VO 2, V 2 O 3 produced by reducing retrieve those cooled and solidified are known Te cowpea in JP-A-50-72894 in the gaseous state, the sealing vacuum A container is required, which is troublesome, the productivity is low, and the cost is high.

〔解決しようとする問題点〕[Problems to be solved]

この発明は方法が簡便で、低温度の還元処理により、基
体表面にバナジウム低級酸化物膜を形成するためであ
る。
This invention is because the method is simple and a vanadium lower oxide film is formed on the surface of a substrate by a reduction treatment at a low temperature.

〔解決しようとする課題〕[Problems to be solved]

この発明はV2O5を溶融し、溶融温度より100℃乃至150℃
高い温度に保持したものを純水、アセトン10乃至30%程
度含有の水のうちの一種の液中に流し込んで先ずV2O5
和ゲルを得る第1ステップと、 このV2O5水和ゲルを希釈して基体に塗布する第2ステッ
プと、 150℃乃至700℃の還元ガス気流中において、30分乃至3
時間加熱して、前記基体上の塗布されたV2O5水和ゲルを
V2O5より低級のバナジウム低級酸化物薄膜とする第3ス
テップよりなることを特徴とするバナジウム低級酸化物
薄膜の製法とする。
This invention melts V 2 O 5 and melts it to 100 ℃ -150 ℃
The first step to obtain a V 2 O 5 hydrated gel by pouring what is kept at a high temperature into pure water and one kind of water containing 10 to 30% of acetone, and this V 2 O 5 water The second step is to dilute the Japanese gel and apply it to the substrate, and in a reducing gas stream at 150 ° C to 700 ° C for 30 minutes to 3 minutes.
Heat for hours to remove the applied V 2 O 5 hydrated gel on the substrate.
A method for producing a vanadium lower oxide thin film is characterized by comprising a third step of forming a vanadium lower oxide thin film lower than V 2 O 5 .

この発明の方法を更に具体的に説明する。The method of the present invention will be described more specifically.

a)V2O5水和ゲルの製法 V2O5水和ゲルを得る方法としては特に限定はないが例え
ばV2O5をるつぼに入れ、これを溶融し、溶融温度よりも
100乃至150℃高い温度を若干保持し、均一な溶融状態と
した後、素早く純水若くは水にアセントンを10乃至30%
程度含有する液体中に流し込んでV2O5水和ゲルを得、こ
れを使用するに先立つてV2O510g/l濃度に希釈する。
a) V 2 O 5 is not particularly limited put but for example, V 2 O 5 the crucible as a method of obtaining a preparation V 2 O 5 hydrated gel of hydrated gel, then melting the same, than the melting temperature
After maintaining a high temperature of 100 to 150 ° C for a uniform molten state, quickly add 10 to 30% of acetone to pure water or water.
V 2 O 5 hydrated gel is obtained by pouring into a liquid containing about 5 %, and this is diluted to a concentration of 10 g / l V 2 O 5 prior to use.

b)塗布すべき基体としては磁気製品素材、写真製品素
材などのガラス、セラミツク、合成樹脂板などで融点が
70℃以上のものを用いる。
b) The substrate to be coated is magnetic product material, glass such as photographic product material, ceramics, synthetic resin plate, etc.
Use a temperature of 70 ° C or higher.

c)塗布方法としては、刷子又はローラ塗り、スプレ
ー、静電塗装、浸漬など、この発明の塗布方法に入るも
のとする。
c) As a coating method, brush or roller coating, spraying, electrostatic coating, dipping and the like are included in the coating method of the present invention.

d)乾燥及び加熱する方法に用いる加熱器は外気と遮断
できるものであれば特に限定はなく、目的とする加熱温
度に調整できるものがよく、電気炉が一番便利である。
d) The heater used in the method of drying and heating is not particularly limited as long as it can be shielded from the outside air, and a heater capable of adjusting to a desired heating temperature is preferable, and an electric furnace is most convenient.

加熱温度は、前記基体の溶融温度以下とする。The heating temperature is not higher than the melting temperature of the substrate.

先ず前記b)項に記載した基体の表面に、前記a)項の
V2O5水和ゲルをc)項に示した塗布方法により塗布す
る。
First, on the surface of the substrate described in the above item b),
The V 2 O 5 hydrated gel is applied by the application method described in the item c).

而して通常還元ガスとして用いられているNH3ガス、H2
ガス、SO2ガス、若くはCOガスを加熱炉中に流し、前記V
2O5水和ゲルを塗布した基体を加熱炉中に入れ、加熱炉
中の温度を前記基体の溶融乃至は変形温度以下に調整
し、30分乃至3時間加熱し、基体表面中のV2O5水和ゲル
層を還元して、V2O3、V2O4などのバナジウム低級酸化物
膜を基体表面に形成させる。
Thus, NH 3 gas, H 2 which is usually used as a reducing gas.
Gas, SO 2 gas, or CO gas is passed through the heating furnace and
The substrate coated with the 2 O 5 hydrated gel is placed in a heating furnace, the temperature in the heating furnace is adjusted to the melting or deformation temperature of the substrate or lower, and the mixture is heated for 30 minutes to 3 hours, and V 2 on the surface of the substrate is adjusted. The O 5 hydrated gel layer is reduced to form a vanadium lower oxide film such as V 2 O 3 or V 2 O 4 on the substrate surface.

〔効果〕〔effect〕

先ずこの方法の第1ステップで製造されるV2O5水和ゲル
は非晶質で、かつ、数100Åの超微粒子となり、このV2O
5水和ゲルを基体に塗布する方法を採用しているため塗
布し易く、殊にゲル状であるため、ガラス、セラミック
表面は勿論のこと、各種のプラスチック表面も容易に塗
布できる。またV2O5は非晶質かつ数100Åの超微粒子で
あるため活性度が高く、これと接触させる還元ガスは少
量で、還元温度も比較的低温で還元時間も短かくてよ
く、基体の選択の自由度がきわめて高く、しかも生成し
たバナジウム低級酸化物は基体表面において膜となる。
First, in V 2 O 5 hydrogels produced in the first step of the method is amorphous, and becomes a number 100Å ultrafine particles, the V 2 O
Since the method of applying pentahydrate gel to the substrate is adopted, it is easy to apply. Especially, since it is in the form of gel, not only glass and ceramic surfaces but also various plastic surfaces can be easily applied. In addition, V 2 O 5 is amorphous and has a high activity because it is ultra-fine particles of several hundred liters. The reducing gas to be contacted with it is small, the reduction temperature is relatively low, and the reduction time is short. The degree of freedom in selection is extremely high, and the vanadium lower oxide produced forms a film on the surface of the substrate.

しかも還元反応は常圧(勿論、加圧、減圧下でも反応す
る)で行えるため、多量連続反応も可能となる。
Moreover, since the reduction reaction can be carried out at normal pressure (reacting even under increased pressure or reduced pressure), a large amount of continuous reaction is also possible.

殊にV2O5水和ゲル中のV4+イオンには全く依存しないた
め、V2O5水和ゲルの製造には特にその製法に限定なく、
もつともV2O5水和ゲルの収率のよい方法が選択できるた
めコストの低廉が計れ、極めて有用性の高いものであ
る。
In particular, since it does not depend on V 4 + ions in V 2 O 5 hydrated gel at all, there is no particular limitation on the method for producing V 2 O 5 hydrated gel,
Since it is possible to select a method with a high yield of V 2 O 5 hydrated gel, the cost is low and it is extremely useful.

実験例1 V2O550gを磁器製るつぼに入れ、電気炉内で30分間800℃
(V2O5の融点690℃)に保ちその後、この溶湯を1の
純水中に素早く流し込み、V2O5水和ゲルを得、これをV2
O5濃度1%に希釈し、基体として磁器製板(50×50mm)
を用いこの表面に20×20mmの面積に厚さ100μmになる
ように上記溶液を塗布し、自然乾燥の後、電気炉内にH2
ガスを10ml/minで供給しながら、1時間、570℃で反応
後、室温まで温度を低下させた後、基体表面に生成した
膜をX線回折によつて大部分がV2O3の薄膜と確認した。
Experimental Example 1 50 g of V 2 O 5 was placed in a porcelain crucible and kept in an electric furnace for 30 minutes at 800 ° C.
(V 2 mp 690 ° C. in O 5) to keep then poured quickly the molten metal in pure water of 1, to give a V 2 O 5 hydrogels, which V 2
O 5 concentration diluted to 1%, porcelain plate (50 x 50 mm) as a substrate
The above solution was applied to this surface in an area of 20 × 20 mm so as to have a thickness of 100 μm, and after natural drying, H 2 was placed in an electric furnace.
After supplying gas at 10 ml / min for 1 hour, after reacting at 570 ° C., the temperature was lowered to room temperature, and the film formed on the substrate surface was mostly a V 2 O 3 thin film by X-ray diffraction. I confirmed.

実験例2 実験例1と同じ基体に同様にV2O5水和ゲルを塗布したも
のを、前記と同じ電気炉にNH3ガスを10ml/minで供給し
ながら380℃で1時間反応させたところ基体表面にVO2
薄膜が形成された。
Experimental Example 2 The same substrate as in Experimental Example 1 was coated with V 2 O 5 hydrated gel in the same manner, and reacted for 1 hour at 380 ° C. while supplying NH 3 gas at 10 ml / min to the same electric furnace as described above. However, a VO 2 thin film was formed on the surface of the substrate.

実験例3 実験例1、2と同一のものを還元ガスをSO2ガスとし、5
ml/minの気流中で240℃2時間反応させたところV6O13
V3O7が混合している薄膜が得られた。
Experimental Example 3 The same thing as Experimental Examples 1 and 2 was used with SO 2 gas as the reducing gas.
After reacting at 240 ° C for 2 hours in a stream of ml / min, V 6 O 13
A thin film mixed with V 3 O 7 was obtained.

実験例4(比較実験) 前記実験例1乃至3と同一のものを還元ガスを用いるこ
となく、空気中で30分、300℃で反応させたところV2O5
の薄膜が形成された。
Experimental Example 4 (Comparative Experiment) The same thing as Experimental Examples 1 to 3 was reacted at 300 ° C. for 30 minutes in air without using reducing gas, and V 2 O 5
Thin film was formed.

実験例5(比較実験) 前記各実験例と同一のものを単に空気中で、自然乾燥さ
れたものは、表面に膜は形成されず、非晶質V2O5が附着
形成された。
Experimental Example 5 (Comparative Experiment) When the same thing as each of the above experimental examples was simply dried in air, no film was formed on the surface, and amorphous V 2 O 5 was attached and formed.

また還元ガスとしてNH3、H2、SO2を用い還元温度と基体
表面に生成される酸化物との凡その関係は次表に示す通
りである。
Further, using NH 3 , H 2 , and SO 2 as the reducing gas, the relationship between the reducing temperature and the oxides formed on the surface of the substrate is as shown in the following table.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内沖 誠 大阪府堺市築港新町3丁目27番13号 新興 化学工業株式会社堺臨海工場内 (56)参考文献 特開 昭51−147281(JP,A) 特開 昭49−47294(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Uchioki 3-27-13 Chikko Shinmachi, Sakai City, Osaka Prefecture Inside the Sakai Seaside Plant, Shinko Chemical Industry Co., Ltd. (56) Reference JP-A-51-147281 (JP, A) JP-A-49-47294 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】V2O5を溶融し、溶融温度より100℃乃至150
℃高い温度に保持したものを純水、アセトン10乃至30%
程度含有の水のうちの一種の液中に流し込んで先ずV2O5
水和ゲルを得る第1ステップと、 このV2O5水和ゲルを希釈して基体に塗布する第2ステッ
プと、 150℃乃至700℃の還元ガス気流中において、30分乃至3
時間加熱して、前記基体上の塗布されたV2O5水和ゲルを
V2O5より低級のバナジウム低級酸化物薄膜とする第3ス
テップよりなることを特徴とするバナジウム低級酸化物
薄膜の製法。
1. V 2 O 5 is melted, and the melting temperature is 100 ° C. to 150 ° C.
What is kept at ℃ higher temperature is pure water, acetone 10 to 30%
First V 2 O 5 is poured into the liquid of one of a degree-containing water
The first step of obtaining a hydrated gel, the second step of diluting the V 2 O 5 hydrated gel and applying it to the substrate, and 30 minutes to 3 minutes in a reducing gas stream at 150 ° C to 700 ° C.
Heat for hours to remove the applied V 2 O 5 hydrated gel on the substrate.
A method for producing a vanadium lower oxide thin film, comprising a third step of forming a vanadium lower oxide thin film lower than V 2 O 5 .
【請求項2】前記還元ガスとしてNH3ガス、COガス、H2
ガス、SO2ガスのうちの一種若しくはこのうちの二種維
持用の混合ガスを用いる方法よりなる特許請求の範囲第
1項記載のバナジウム低級酸化物薄膜の製法。
2. NH 3 gas, CO gas, H 2 as the reducing gas
The method for producing a vanadium lower oxide thin film according to claim 1, which comprises a method of using one of gas and SO 2 gas or a mixed gas for maintaining two of these gases.
JP60132682A 1985-06-18 1985-06-18 Manufacturing method of vanadium lower oxide thin film Expired - Lifetime JPH0676667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60132682A JPH0676667B2 (en) 1985-06-18 1985-06-18 Manufacturing method of vanadium lower oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60132682A JPH0676667B2 (en) 1985-06-18 1985-06-18 Manufacturing method of vanadium lower oxide thin film

Publications (2)

Publication Number Publication Date
JPS61291977A JPS61291977A (en) 1986-12-22
JPH0676667B2 true JPH0676667B2 (en) 1994-09-28

Family

ID=15087051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60132682A Expired - Lifetime JPH0676667B2 (en) 1985-06-18 1985-06-18 Manufacturing method of vanadium lower oxide thin film

Country Status (1)

Country Link
JP (1) JPH0676667B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2958926B2 (en) * 1989-03-09 1999-10-06 触媒化成工業株式会社 Method for forming silicon oxide film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947294A (en) * 1972-09-06 1974-05-07
JPS51147281A (en) * 1975-06-13 1976-12-17 Hitachi Ltd Manufacturing process for thin film switching element

Also Published As

Publication number Publication date
JPS61291977A (en) 1986-12-22

Similar Documents

Publication Publication Date Title
US3252831A (en) Electrical resistor and method of producing the same
CA2216339C (en) Process for preparing metal powder
JPH06207118A (en) White conductive titanium dioxide powder and its production
US3014815A (en) Method of providing articles with metal oxide layers
US6096285A (en) Indium tin oxide fine powder and method for preparing the same
DE60120036D1 (en) Process for producing metal powder by thermal decomposition
US6311545B1 (en) Anhydrous zinc antimonate semiconductor gas sensor and method for producing the same
JPH0676667B2 (en) Manufacturing method of vanadium lower oxide thin film
EP0344324B1 (en) Process for producing particulate metal powder
KR960701451A (en) Process for Making Electroconductive Powders
JP2697431B2 (en) Zinc oxide crystal and method for producing the same
JPS63242946A (en) Glass ceramics and their production
JPS6357921B2 (en)
JP2516251B2 (en) Manufacturing method of oxide superconducting film
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
JP2004084069A5 (en)
JPS58209002A (en) Method of producing white conductive powder
JPH03287707A (en) Production of copper powder
JPH0239450B2 (en)
JPS5867871A (en) Application of parting agent for high-temperature annealing directional electromagnetic steel sheet
JPH0222003B2 (en)
JPS60161602A (en) Manufacture of magnetic particulate
JPH04114905A (en) Production of finely divided metal oxide particles
JPH02225333A (en) Alumina silica system, oxygen purifier and electrically conductive type heating unit
JPH05319847A (en) Production of flaky glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term