JPH0239450B2 - - Google Patents

Info

Publication number
JPH0239450B2
JPH0239450B2 JP57167958A JP16795882A JPH0239450B2 JP H0239450 B2 JPH0239450 B2 JP H0239450B2 JP 57167958 A JP57167958 A JP 57167958A JP 16795882 A JP16795882 A JP 16795882A JP H0239450 B2 JPH0239450 B2 JP H0239450B2
Authority
JP
Japan
Prior art keywords
tin oxide
powder
oxide film
substrate
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57167958A
Other languages
Japanese (ja)
Other versions
JPS5957914A (en
Inventor
Yukihiro Kato
Hideo Kawahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP16795882A priority Critical patent/JPS5957914A/en
Priority to ES525935A priority patent/ES8507628A1/en
Priority to DE8383401875T priority patent/DE3369118D1/en
Priority to EP19830401875 priority patent/EP0106744B1/en
Publication of JPS5957914A publication Critical patent/JPS5957914A/en
Publication of JPH0239450B2 publication Critical patent/JPH0239450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase

Description

【発明の詳細な説明】 本発明はガラス、セラミツク、金属等の基体に
酸化錫膜を形成する方法に関し、更に詳しくは高
温のガラス、セラミツク、または金属等の基体表
面に有機錫化合物の粉末を接触させることによ
り、基体表面に酸化錫を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a tin oxide film on a substrate such as glass, ceramic, metal, etc., and more specifically to a method of forming an organic tin compound powder on the surface of a substrate such as high temperature glass, ceramic, or metal. The present invention relates to a method of forming tin oxide on a substrate surface by contacting the substrate.

一般に、酸化錫膜はすぐれた硬度を有している
ことからビン製品・食器などの表面の傷つき防止
に広く用いられている。また酸化錫膜の半導体的
性質を利用した広用例も多く、例えば酸化錫膜を
形成したガラスは液晶セルの電極板・防曇ガラス
などの透明な電導体としての用途に広く使用され
ており、酸化錫膜を有するセラミツクス薄板は抵
抗体など電気部品としても極めて有用である。更
には酸化錫膜の赤外線反射特性を利用し、ガラス
あるいは金属管上に酸化錫膜を形成させたもの
が、それぞれ太陽熱集熱器のカバーガラス、太陽
熱集熱管として用いられている。
In general, tin oxide films have excellent hardness and are therefore widely used to prevent scratches on the surfaces of bottle products, tableware, etc. In addition, there are many widespread applications that utilize the semiconducting properties of tin oxide films; for example, glass on which tin oxide films are formed is widely used as transparent conductors such as electrode plates of liquid crystal cells and anti-fog glass. Ceramic thin plates with tin oxide films are also extremely useful as electrical components such as resistors. Furthermore, by utilizing the infrared reflective properties of a tin oxide film, a tin oxide film formed on a glass or metal tube is used as a cover glass for a solar heat collector and a solar heat collection tube, respectively.

酸化錫膜をガラス・セラミツクスまたは金属等
の基体表面に形成させる方法には種々あるが、量
産に適した方法として古くから四塩化錫を有機溶
媒に溶かした溶液を高温状態にある前記の基体の
表面に吹付ける方法が用いられてきた。そして近
年、四塩化錫またはジメチル二塩化錫を加熱蒸発
させて得られる蒸気を高温のガラス、セラミツク
スまたは金属等の基体表面に接触させるいわゆる
CVDも広く採用されている。
There are various methods for forming a tin oxide film on the surface of a substrate such as glass, ceramics or metal, but a method suitable for mass production has long been used to form a solution of tin tetrachloride in an organic solvent on the substrate at a high temperature. Surface spraying methods have been used. In recent years, so-called so-called
CVD is also widely adopted.

更にこれらに代る方法として有機酸化合物の粉
末を直接高温のガラス表面に吹付けることから成
る酸化錫膜の形成方法(以下粉末法)も試みられ
ている。
Furthermore, as an alternative to these methods, a method of forming a tin oxide film (hereinafter referred to as a powder method) has also been attempted, which consists of directly spraying powder of an organic acid compound onto a hot glass surface.

粉末法は細く粉砕した粉末状有機錫化合物を浮
遊懸濁させた空気またはその他の気体を高温のガ
ラス表面と接触させもので、溶融スプレー法・
CVD法に比べ被膜形成速が速く量産能力にすぐ
れているのが特徴である。通常、粉末状有機錫化
合物としてはジブチル錫オキサイド
〔(C4H92SnO以下DBTOとする〕が多く試みら
れ、この場合得られる酸化錫膜の電導性を高める
ためドーパントとして弗化水素ガスが前記粉末懸
濁気流中に加えられる。
The powder method involves contacting air or other gas in which finely ground powdered organotin compounds are suspended with a hot glass surface.
Compared to the CVD method, this method is characterized by faster film formation speed and superior mass production capacity. Usually, dibutyltin oxide [hereinafter referred to as (C 4 H 9 ) 2 SnO, DBTO] is often used as a powdered organic tin compound, and in this case, hydrogen fluoride gas is used as a dopant to increase the conductivity of the resulting tin oxide film. is added to the powder suspension stream.

また、ドーパントとして弗化アンモニウム〔以
下NH4Fとする〕または酸性弗化アンモニウムを
用い、これらの粉末と粉末有機錫化合物の混合粉
末を酸化錫膜形成の出発物質とする方法も提案さ
れている。しかしながらこのような種々の試みに
もかかわらず大面積の防曇用ガラス・太陽電池の
電極ガラスにおいては更に電導性にすぐれた酸化
錫膜が要求されている。
Additionally, a method has been proposed in which ammonium fluoride (hereinafter referred to as NH 4 F) or acidic ammonium fluoride is used as a dopant, and a mixed powder of these powders and a powdered organic tin compound is used as the starting material for forming a tin oxide film. . However, despite these various attempts, tin oxide films with even better conductivity are required for large-area antifogging glasses and electrode glasses for solar cells.

本発明者らは酸化錫膜の電気抵抗に関し鋭意研
究の結果、出発物質である有機錫化合物の粉末よ
り粒子径が10μmに満たない微粒子を除去するこ
とで得られる酸化錫膜の電導性が向上することを
見い出した。すなわち本発明は加熱した基体に有
機錫化合物の粉末を接触させて、熱分解酸化反応
により基体に酸化錫膜を形成する方法において該
有機錫化合物の粉末の粒子が10μm乃至60μmで
あつて、且つ10μm未満の粒径の有機錫化合物を
含まないことを特徴とする基体に酸化錫膜を形成
する方法である。
As a result of intensive research into the electrical resistance of tin oxide films, the present inventors found that the conductivity of tin oxide films obtained by removing fine particles with a particle size of less than 10 μm from the starting material, organic tin compound powder, was improved. I found something to do. That is, the present invention provides a method for forming a tin oxide film on a substrate by a thermal decomposition oxidation reaction by contacting powder of an organotin compound with a heated substrate, wherein the particles of the powder of the organotin compound are 10 μm to 60 μm, and This is a method for forming a tin oxide film on a substrate, characterized in that it does not contain an organic tin compound with a particle size of less than 10 μm.

本発明は有機錫化合物としてジブチル錫オキサ
イド、ジプロピル錫ジトリフルオロアセテート
〔(C3H72Sn(CF3COO)2〕又はジブチル錫ジトリ
フルオロアセテート〔(C4H92Sn(CF3COO)2)〕
等が用いられるのが好ましく、これらの有機錫化
合物は含水率が1%以下、望ましくは0.5%以下
となるまで乾燥された後、粒径3μm乃至60μmに
なるように粉砕され、分級機により粒径が10μm
に満たない微粒子が除去される。
The present invention uses dibutyltin oxide, dipropyltin ditrifluoroacetate [(C 3 H 7 ) 2 Sn (CF 3 COO) 2 ] or dibutyltin ditrifluoroacetate [(C 4 H 9 ) 2 Sn (CF 3 ) as an organic tin compound. COO) 2 )〕
These organic tin compounds are dried until the moisture content is 1% or less, preferably 0.5% or less, and then ground to a particle size of 3 μm to 60 μm, and then granulated using a classifier. Diameter is 10μm
Particulates less than 100% are removed.

このようにして調整された有機錫化合物の粉末
はキヤリヤーガス中に浮遊懸濁され、次いで該有
機錫化合物の粉末の懸濁気流は350℃以上、望ま
しくは500℃以上に加熱された基体に接触せしめ
られ、該基体表面に酸化錫膜が形成される。
The organotin compound powder prepared in this way is suspended in a carrier gas, and then the suspended air stream of the organotin compound powder is brought into contact with a substrate heated to 350°C or higher, preferably 500°C or higher. A tin oxide film is formed on the surface of the substrate.

この有機錫化合物の粉末を懸濁するキヤリヤー
ガス中には得られる酸化錫膜の電導性を高めるた
めのドーパントとして弗化水素ガスを加えること
ができる。またこのドーパントとして弗化アンモ
ニウムまたは酸性弗化アンモニウムの粉末を有機
錫化合物の粉末に混入させることもできる。
Hydrogen fluoride gas can be added to the carrier gas in which the organic tin compound powder is suspended as a dopant to increase the electrical conductivity of the resulting tin oxide film. Further, ammonium fluoride or acidic ammonium fluoride powder can be mixed into the organotin compound powder as the dopant.

また本発明は基体としてガラス、セラミツク、
金属等が用いられ、それらの形状は板状体、管状
体のものが用いられる。
Further, the present invention uses glass, ceramic,
A metal or the like is used, and the shape thereof is a plate-like body or a tubular body.

本発明によれば、10μm未満の粒径の有機錫化
合物を含まない10μm乃至60μmの粒径の有機錫
化合物の粉末を用いることにより、ヘイズのない
電気電導度の大なる透明酸化錫膜を形成できる。
10μm乃至60μmの粒径の有機錫化合物の粉末を
用いるとヘイズのない電気伝導度の大なる透明酸
化錫膜を形成できるかについては定かではない
が、径の微細な10μm未満の有機錫化合物の粉末
を含まないため基体表面で熱分解による酸化錫膜
を形成するスピードが早すぎず適当になり、酸化
錫膜の結晶が比較的大きく成長して電気伝導度の
高い膜を形成でき、また60μmを超える径の大な
る有機錫化合物の粉末を含まないので、キヤリヤ
ーガスに均一に浮遊できるので均一な膜の形成が
容易となり、また膜中に未分解の有機錫化合物が
残らないためヘイズのない透明な酸化錫膜を形成
できるものと推測される。
According to the present invention, a transparent tin oxide film with high electrical conductivity without haze is formed by using powder of an organic tin compound with a particle size of 10 μm to 60 μm, which does not contain an organic tin compound with a particle size of less than 10 μm. can.
It is not certain whether a transparent tin oxide film with high electrical conductivity and no haze can be formed using organotin compound powder with a particle size of 10 μm to 60 μm. Since it does not contain powder, the speed at which a tin oxide film is formed by thermal decomposition on the surface of the substrate is not too fast and appropriate, and the crystals of the tin oxide film can grow relatively large to form a film with high electrical conductivity. Since it does not contain large organotin compound powders with diameters exceeding It is assumed that a tin oxide film can be formed.

また本発明によれば有機錫化合物としてジブチ
ル錫オキサイド、ジプロピル錫ジトリフルオロア
セテート又はジブチル錫ジトリフルオロアセテー
トを用いれば電気伝導度の一層高い酸化錫膜の形
成ができる。
According to the present invention, a tin oxide film with even higher electrical conductivity can be formed by using dibutyltin oxide, dipropyltin ditrifluoroacetate, or dibutyltin ditrifluoroacetate as the organotin compound.

また本発明によれば有機錫化合物の含水率を1
%以下、好ましくは0.5%以下にすることにより、
キヤリヤーガス中にその粉末を均一に浮遊させる
ことができ容易となり、ひいては均一な酸化錫膜
の形成ができる。
Further, according to the present invention, the water content of the organotin compound is reduced to 1
% or less, preferably 0.5% or less,
The powder can be uniformly suspended in the carrier gas, making it easy to form a uniform tin oxide film.

以下に本発明の実施例を説明する。 Examples of the present invention will be described below.

DBTO粉末を含水率0.4%となるまで熱風循環
乾燥機で乾燥した後、粉砕機で粉砕した。この時
のDBTO粉末の粒径は3μm乃至60μmに分布し、
平均粒径は23μmであつた。次にこのDBTO粉末
を分級機で分級し、粒径が10μm未満の粒子を除
去して10μm乃至60μmに分布した平均粒径が27μ
mのDBTO粉末を用意した。次いでこのDBTO
粉末をサンドブラストガンに供給し、弗化水素を
含む高圧空気で575〜580℃のガラス表面に吹付け
た。この時、DBTO粉末の供給量は、12g/分
で、吹付け時間を2〜4秒間の範囲で変えること
により膜厚2000〜4000Aの酸化錫膜をガラス表面
に形成させた。なお、この時のガラス厚味は3
mm、寸法15cm×15cmであり、吹付に用いた高圧空
気は圧力4.0Kg/cm2、流量は100/分であつた。
また弗化水素ガスの高圧空気への混入量は空気中
弗素量とDBTO中の錫との比率、すなわちF/
Snで2.0となるようにした。得られた酸化錫膜の
電気抵抗を測定した後、膜厚をタリサーフで測定
した。被膜の電気抵抗と膜厚の関係を第1図に実
線で示した。次に比較例を得るため粒径が3μm
乃至60μmに分布し、平均粒径が23μmの分級し
ないDBTO粉末を前記と同じサンドブラストガ
ンに供給し、前記と全く同様の方法でガス表面に
吹付け、ガラス表面に酸化錫膜を付着した。この
被膜の電気抵抗と膜厚の関係を第1図に破線で示
した。
The DBTO powder was dried in a hot air circulation dryer until the moisture content was 0.4%, and then ground in a grinder. The particle size of the DBTO powder at this time is distributed from 3μm to 60μm,
The average particle size was 23 μm. Next, this DBTO powder was classified with a classifier to remove particles with a particle size of less than 10 μm, and the average particle size was 27 μm, which was distributed from 10 μm to 60 μm.
m DBTO powder was prepared. Then this DBTO
The powder was fed into a sandblasting gun and blasted onto the glass surface at 575-580°C with high pressure air containing hydrogen fluoride. At this time, the amount of DBTO powder supplied was 12 g/min, and the spraying time was varied in the range of 2 to 4 seconds to form a tin oxide film with a thickness of 2000 to 4000 A on the glass surface. In addition, the glass thickness at this time is 3
mm, dimensions 15 cm x 15 cm, and the high pressure air used for spraying had a pressure of 4.0 Kg/cm 2 and a flow rate of 100/min.
In addition, the amount of hydrogen fluoride gas mixed into high-pressure air is determined by the ratio of the amount of fluorine in the air to the tin in DBTO, that is, F/
The Sn value was set to 2.0. After measuring the electrical resistance of the obtained tin oxide film, the film thickness was measured using Talysurf. The relationship between the electrical resistance and film thickness of the film is shown in FIG. 1 by a solid line. Next, to obtain a comparative example, the particle size was 3 μm.
Unclassified DBTO powder having a particle size distribution of 23 μm to 60 μm was supplied to the same sandblasting gun as above, and was blown onto the gas surface in exactly the same manner as above to deposit a tin oxide film on the glass surface. The relationship between the electrical resistance and film thickness of this film is shown in FIG. 1 by a broken line.

第1図から明らかなように本発明により形成さ
れる酸化錫膜の電導性が比較例のものより向上し
ている。
As is clear from FIG. 1, the electrical conductivity of the tin oxide film formed according to the present invention is improved compared to that of the comparative example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化錫膜の膜厚と被膜の電気抵抗との
関係を示す図である。
FIG. 1 is a diagram showing the relationship between the thickness of the tin oxide film and the electrical resistance of the film.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱した基体に有機錫化合物の粉末を接触さ
せて、熱分解酸化反応により基体に酸化錫膜を形
成する方法において、該有機錫化合物の粉末の粒
径が10μm乃至60μmであつて、且つ10μm未満の
粒径の有機錫化合物を含まないことを特徴とする
基体に酸化錫膜を形成する方法。
1. A method of forming a tin oxide film on the substrate by a thermal decomposition oxidation reaction by bringing an organotin compound powder into contact with a heated substrate, wherein the organotin compound powder has a particle size of 10 μm to 60 μm, and 10 μm. A method for forming a tin oxide film on a substrate, characterized in that it does not contain an organotin compound having a particle size of less than
JP16795882A 1982-09-27 1982-09-27 Formation of tin oxide film on substrate Granted JPS5957914A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16795882A JPS5957914A (en) 1982-09-27 1982-09-27 Formation of tin oxide film on substrate
ES525935A ES8507628A1 (en) 1982-09-27 1983-09-26 Process for coating a substrate with a tin oxide layer.
DE8383401875T DE3369118D1 (en) 1982-09-27 1983-09-26 Process for coating a substrate with a tin oxide layer
EP19830401875 EP0106744B1 (en) 1982-09-27 1983-09-26 Process for coating a substrate with a tin oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16795882A JPS5957914A (en) 1982-09-27 1982-09-27 Formation of tin oxide film on substrate

Publications (2)

Publication Number Publication Date
JPS5957914A JPS5957914A (en) 1984-04-03
JPH0239450B2 true JPH0239450B2 (en) 1990-09-05

Family

ID=15859193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16795882A Granted JPS5957914A (en) 1982-09-27 1982-09-27 Formation of tin oxide film on substrate

Country Status (4)

Country Link
EP (1) EP0106744B1 (en)
JP (1) JPS5957914A (en)
DE (1) DE3369118D1 (en)
ES (1) ES8507628A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706462B1 (en) * 1993-06-17 1995-09-22 Saint Gobain Vitrage Int Organo-metallic powdery compounds intended to form a layer of tin oxide on a substrate, process for using it and substrate thus coated.
JP3796069B2 (en) * 1999-07-15 2006-07-12 三洋電機株式会社 Solar cell module
US20100126227A1 (en) * 2008-11-24 2010-05-27 Curtis Robert Fekety Electrostatically depositing conductive films during glass draw

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52919A (en) * 1975-06-24 1977-01-06 Nippon Sheet Glass Co Ltd Method of depositing thin film of metallic oxide on glass surface
JPS56134538A (en) * 1980-03-15 1981-10-21 Nippon Sheet Glass Co Ltd Application of tin oxide layer doped by halogen, especially by fluorine to glass surface by pyrolysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2380997A1 (en) * 1977-02-16 1978-09-15 Saint Gobain PROCESS FOR MANUFACTURING HEAT PROTECTING GLAZING
FR2391966A1 (en) * 1977-05-23 1978-12-22 Saint Gobain Coating glass with metal oxide - to impart antistatic properties, for use in cockpits
JPS5663844A (en) * 1979-10-31 1981-05-30 Nippon Sheet Glass Co Ltd Forming method of metal oxide coat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52919A (en) * 1975-06-24 1977-01-06 Nippon Sheet Glass Co Ltd Method of depositing thin film of metallic oxide on glass surface
JPS56134538A (en) * 1980-03-15 1981-10-21 Nippon Sheet Glass Co Ltd Application of tin oxide layer doped by halogen, especially by fluorine to glass surface by pyrolysis

Also Published As

Publication number Publication date
EP0106744B1 (en) 1987-01-14
ES525935A0 (en) 1985-09-01
JPS5957914A (en) 1984-04-03
DE3369118D1 (en) 1987-02-19
ES8507628A1 (en) 1985-09-01
EP0106744A1 (en) 1984-04-25

Similar Documents

Publication Publication Date Title
US4371740A (en) Conductive elements for photovoltaic cells
JPS63139059A (en) Material resistant to metal and salt melt, manufacture and use
JP2001089168A (en) Production of synthetic silica glass powder of high purity
US3014815A (en) Method of providing articles with metal oxide layers
US4965137A (en) Liquid preparation for the production of electrically conductive and infrared-reflecting fluorine-doped tin oxide layers on glass or glass-ceramic surfaces, as well as a method for the production of such layers
EP0384284B1 (en) Process for preparing silica having a low silanol content
JPH0239450B2 (en)
JPH064497B2 (en) Method for forming tin oxide film
JPH05193943A (en) Method for preparing reduced titanium oxide
JPH1053418A (en) Tin oxide ternary function thin film and its production
US2743196A (en) Process of producing reduced glass resistance elements
JPS6018090B2 (en) Method of forming conductive thin film
US3119717A (en) Electrically conductive silicate ceramics and method of making the same
CA1070655A (en) Method of grinding solder glasses
JPS5945926A (en) Formation of film of tin oxide on substrate
JPS6214221B2 (en)
JPS63242947A (en) Formation of clear conductive film of tin oxide
JP2527666B2 (en) Glassy carbon coated article
JPH0228395Y2 (en)
US4963437A (en) Liquid preparation for the production of electrically conductive and infrared-reflecting fluorine-doped tin oxide layers on glass or glass-ceramic surfaces, as well as a method for the production of such layer
JPS59162269A (en) Method for forming tin oxide film on base body
JPH0586605B2 (en)
JPS6157910B2 (en)
JPH0121107B2 (en)
JP2002220257A (en) Quartz glass, quartz glass jig, and method of manufacturing them