JPH067665A - Method for controlling gas current of autoclave - Google Patents

Method for controlling gas current of autoclave

Info

Publication number
JPH067665A
JPH067665A JP22514291A JP22514291A JPH067665A JP H067665 A JPH067665 A JP H067665A JP 22514291 A JP22514291 A JP 22514291A JP 22514291 A JP22514291 A JP 22514291A JP H067665 A JPH067665 A JP H067665A
Authority
JP
Japan
Prior art keywords
gas
fan
molding material
autoclave
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22514291A
Other languages
Japanese (ja)
Inventor
Shoji Taniguchi
章二 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashida Manufacturing Co Ltd
Original Assignee
Ashida Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashida Manufacturing Co Ltd filed Critical Ashida Manufacturing Co Ltd
Priority to JP22514291A priority Critical patent/JPH067665A/en
Publication of JPH067665A publication Critical patent/JPH067665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To eliminate the temp. difference between the recessed part or shaded part of a formed article of intricate shape and the other parts and to obtain a high-quality formed article by circulating a gas through an outer passage and a duct properly backward and forward. CONSTITUTION:The pressure vessel A of an autoclave is provided with a door 2a, a gas duct 6a, an outer gas passage 6b formed between the vessel wall and gas duct wall and an axial fan 22. A forming material 1 is placed in the vessel which is then closed by the door and pressurized, heated and formed. In this case, a temp. control means H is provided, the control means is operated to drive the fan 22 properly forward or backward, and the gas is circulated forward or backward through the passage 6b and duct 6a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機、宇宙機器、産
業機器などに用いられる繊維強化プラスチック(FR
P)の積層構造体や部品並びに電子機器部品として用い
る多層プリント配線板、建材用の複合材などの成形材を
オートクレーブにて成形する際のガスの流れを制御する
方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a fiber reinforced plastic (FR) used for aircraft, space equipment, industrial equipment and the like.
The present invention relates to a method for controlling a gas flow when a molding material such as a laminated structure or a component of P), a multilayer printed wiring board used as an electronic device component, or a composite material for building materials is molded in an autoclave.

【0002】[0002]

【従来の技術】従来、オートクレーブのガスの流れを制
御する技術として、例えば、特開平2ー14730号が
知られている。
2. Description of the Related Art Conventionally, for example, Japanese Patent Laid-Open No. 2-14730 is known as a technique for controlling the gas flow in an autoclave.

【0003】この技術は、図5に示すように、成形材1
を収容し扉2aにて密閉可能に設けると共に送風用ター
ボファン22aによりガスを循環させる風洞6aを備え
た圧力容器A内で成形材1を加圧加熱し成形させるオー
トクレーブにおいて、容器A内壁と風洞壁5との間に形
成された外通風路6bより流出するガス流を、案内羽根
30により旋回流とした後、これに対面する扉内壁2b
で反転させ、その反転流が風洞6a内を旋回しつつ一方
向に流れるようにしたものである。
[0003] This technique, as shown in FIG.
In an autoclave in which a molding material 1 is heated under pressure in a pressure vessel A which is provided with a wind tunnel 6a in which a gas is circulated by a blower turbo fan 22a. The gas flow flowing out from the outer ventilation passage 6b formed between the wall 5 and the wall 5 is turned into a swirl flow by the guide vanes 30, and then the inner wall 2b of the door facing the swirl flow is faced.
The reverse flow is made to flow in one direction while swirling in the wind tunnel 6a.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この技
術は、ガスが風洞内の成形材全体を包むようにして流れ
るため、外通風路の末端部から風洞内に生じる空洞は極
めて小さく、風洞内各部の風速度分布を均一にすること
ができ、しかも、成形材の影の部分にも旋回流によって
或る程度風が通過し、成形材を全面より均一に加熱する
ことができる、という利点を有している反面、成形材の
影の部分が複雑な形状、例えば、図1、図2に示す成形
材のように凹みや凹凸があるような場合はガスが行き届
かず、即ち影の部分ができ、その結果、その凹み部分や
影の部分と他の部分とでは温度差が生じ、成形性に悪影
響を与え、その解決策が待たれている。
However, according to this technique, since gas flows so as to wrap around the entire molding material in the wind tunnel, the cavity generated in the wind tunnel from the end part of the external ventilation passage is extremely small, and the wind in each part of the wind tunnel is small. It has the advantage that the velocity distribution can be made uniform, and that the wind passes through the shadow of the molding material to a certain extent due to the swirling flow, and the molding material can be heated more uniformly than the entire surface. On the other hand, when the shadow portion of the molding material has a complicated shape, for example, when the molding material has dents or irregularities as shown in FIGS. 1 and 2, the gas does not reach, that is, the shadow portion is formed, As a result, a temperature difference occurs between the recessed portion or the shaded portion and the other portion, which adversely affects the formability, and a solution to this is awaited.

【0005】本発明は、前述の課題を解決することを目
的として開発したものである。
The present invention was developed for the purpose of solving the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は、図1に示すよ
うに、成形材1を収容し扉2aにて密閉可能に設けると
共にファンによりガスを循環させる容器内壁と風洞壁と
の間に形成された外通風路6bと風洞6aを備えた圧力
容器A内で成形材1を加圧加熱し成形させるオートクレ
ーブにおいて、前記ファンを軸流ファン22にすると共
に温度制御手段Hを設け、該温度制御手段を作用させて
前記ファン22の回転を適宜正逆転させ、外通風路6b
と風洞6a内を循環するガスの流れを適宜正逆方向に流
れるようにして成形材表部32の温度と成形材裏凹部3
3の温度とを略同じになるようにしたものである。
According to the present invention, as shown in FIG. 1, a molding material 1 is housed and provided so as to be hermetically sealed by a door 2a, and a gas is circulated by a fan between a container inner wall and a wind tunnel wall. In an autoclave in which a molding material 1 is heated under pressure in a pressure vessel A provided with the formed external ventilation passage 6b and a wind tunnel 6a, the fan serves as an axial flow fan 22 and a temperature control means H is provided. The control means is actuated to appropriately rotate the fan 22 in the forward and reverse directions, and the external ventilation passage 6b
The temperature of the molding material front portion 32 and the molding material back recessed portion 3 are controlled by appropriately flowing the gas flowing in the wind tunnel 6a in the forward and reverse directions.
The temperature of 3 is set to be substantially the same.

【0007】[0007]

【実施例】以下、添付図面に従い本発明の実施例を説明
する。最初に、本発明を実施するオートクレーブ成形装
置の一実施例を説明する。オートクレーブ成形装置は、
図1、図2に示すように、成形材1を容器2に収容し密
閉する扉2aと、ガスを循環させる容器内壁と風洞壁と
の間に形成された外通風路6bと風洞6aとを備えた圧
力容器Aと、前記圧力容器A内に高圧ガスを供給して成
形材1を加圧する加圧手段Bと、前記圧力容器A内に供
給された高圧ガスを加熱冷却する加熱冷却手段Cと、前
記成形材1を密封する真空バッグ18内を減圧し高真空
にする減圧手段Dと、前記加熱または冷却されたガスを
ファン22により送風され外通風路6bと風洞6a内を
循環するガスの流れを適宜に正逆方向に流れるよう制御
したファン制御手段Eとより構成したものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, an example of an autoclave molding apparatus for carrying out the present invention will be described. Autoclave molding equipment
As shown in FIGS. 1 and 2, a door 2a for accommodating and sealing the molding material 1 in a container 2, an outer ventilation passage 6b formed between an inner wall of the container for circulating gas and a wind tunnel wall, and a wind tunnel 6a are provided. A pressure vessel A provided, a pressurizing means B for supplying a high-pressure gas into the pressure vessel A to pressurize the molding material 1, and a heating / cooling means C for heating and cooling the high-pressure gas supplied in the pressure vessel A. And a decompression means D for decompressing the inside of the vacuum bag 18 that seals the molding material 1 to a high vacuum, and a gas that circulates the heated or cooled gas by the fan 22 and circulates in the outside ventilation passage 6b and the wind tunnel 6a. The fan control means E is configured to control the above flow so as to appropriately flow in the forward and reverse directions.

【0008】次に、各手段の詳細について説明する。圧
力容器Aは、第1図、第2図に示すように、容器本体2
に密閉する扉2aを設け、該容器本体2内には台車3を
案内するレール4を敷設すると共に容器本体2の内壁に
沿って円筒状の薄板風洞壁5にて二重の通風路(外通風
路6bと風洞6a)を形成せしめたものである。
Next, the details of each means will be described. As shown in FIGS. 1 and 2, the pressure vessel A has a container body 2
A door 2a for sealing is provided in the container main body 2, and a rail 4 for guiding the carriage 3 is laid inside the container main body 2, and a double ventilation passage (outside the outside) is formed along the inner wall of the container main body 2 by a cylindrical thin plate wind tunnel wall 5. The air passage 6b and the wind tunnel 6a) are formed.

【0009】加圧手段Bは、第1図に示すように、高圧
チッソガス、高圧炭酸ガス、高圧空気などのガスを高圧
ガス供給源7より自動弁8を介して供給できるよう設け
たもので、前記ガスはヒータ10および熱交換器11を
介して加熱または冷却される。そして、自動弁9を介し
て排気される。
As shown in FIG. 1, the pressurizing means B is provided so that gas such as high pressure nitrogen gas, high pressure carbon dioxide gas, high pressure air, etc. can be supplied from the high pressure gas supply source 7 through the automatic valve 8. The gas is heated or cooled via the heater 10 and the heat exchanger 11. Then, it is exhausted through the automatic valve 9.

【0010】加熱冷却手段Cは、圧力容器A内後方部で
レール4上にヒータ10と熱交換器11(この場合はク
ーラとして使用)とを載置した第二台車12を配設し、
ガス体をヒータ10および熱交換器11により加熱また
は冷却を行なうようにしたものである。そして、自動弁
13を介して圧力容器を貫通させ熱交換器11に連通さ
せて冷却水を供給すると共に、熱交換器11の下方より
圧力容器Aの下部を連通させ自動弁14を介して冷却済
みの水が排出できるよう設けたものである。なお、加熱
冷却手段の他の例として、圧力容器の外部で熱媒を加
熱、冷却し、該熱媒を熱交換器を介してガス体を加熱、
冷却するようにしてもよく、本発明実施例には限定され
ない。
The heating / cooling means C is provided with a second carriage 12 on which a heater 10 and a heat exchanger 11 (used as a cooler in this case) are mounted on a rail 4 at the rear of the pressure vessel A,
The gas body is heated or cooled by the heater 10 and the heat exchanger 11. Then, the pressure vessel is penetrated through the automatic valve 13 to communicate with the heat exchanger 11 to supply cooling water, and the lower portion of the pressure vessel A is communicated from below the heat exchanger 11 and is cooled via the automatic valve 14. It is provided so that the used water can be discharged. As another example of the heating / cooling means, a heating medium is heated and cooled outside the pressure vessel, and the heating medium is heated through a heat exchanger to heat a gas body,
It may be cooled and is not limited to the embodiment of the present invention.

【0011】減圧手段Dは、図1、図2に示すように、
圧力容器Aの外部に設置された真空ポンプ15から自動
弁16を介して圧力容器A内部へ連通して配管したもの
で、その配管の先端部には、図2に示すように、真空継
手17aを設け、該真空継手は真空バッグ18内部より
連通せしめた治具19を介して気密を保持し接合せしめ
た真空継手17bと着脱可能に設けている。そして、真
空ポンプ15の作動により、成形材1を被覆密封せしめ
た真空バッグ18内部を自動弁16を介して減圧し高真
空にするよう構成したものである。
The depressurizing means D, as shown in FIGS.
A vacuum pump 15 installed outside the pressure vessel A communicates with the inside of the pressure vessel A through an automatic valve 16 and is piped. At the tip of the pipe, as shown in FIG. The vacuum joint is detachably attached to the vacuum joint 17b which is airtightly held and joined via a jig 19 which is communicated from the inside of the vacuum bag 18. Then, by operating the vacuum pump 15, the inside of the vacuum bag 18 in which the molding material 1 is covered and sealed is decompressed via the automatic valve 16 to a high vacuum.

【0012】ファン制御手段Eは、図1、図2に示すよ
うに、圧力容器Aの後部にモータ20を内臓した小型容
器(小型圧力容器)21を密封可能に設けると共に圧力
容器Aの後部内部に突出させたモータ軸20aに嵌め合
い固着せしめたファン22とより成るファン駆動手段F
と、小型容器21内のガスの温度を検出する温度検出器
23とその検出信号を自動弁24に伝達して小型容器2
1内のモータ20を許容温度以下に冷却し制御するモー
タ冷却手段Gと、ファン駆動手段のファン22を正逆転
させ、ガスの流れを軸方向に適宜正逆させて成形材1に
接触する温度を制御する温度制御手段Hとより構成した
ものである。なお、ここでいうファンは、モータの回転
方向を正逆転させることにより、ガスを軸方向に吐き出
し、吸い込みができる軸流ファンを用いている。また、
ファン駆動手段の他の実施例として、図5に示すよう
に、モータ20を圧力容器Aの後部外部位置に設置し、
該モータの軸部を密封機構34を介して圧力容器A内部
に突出させ、該モータの軸先端部に送風用ファン22a
を嵌め合い固着せしめるようにしてもよく、また、モー
タ20もインバータなどの速度変換できるものを用いて
もよく、本発明実施例には限定されない。
As shown in FIGS. 1 and 2, the fan control means E is provided with a small container (small pressure container) 21 in which a motor 20 is incorporated in the rear part of the pressure container A in a sealable manner, and the inside of the rear part of the pressure container A. Fan drive means F comprising a fan 22 fitted and fixed to a motor shaft 20a which is projected to
The temperature detector 23 for detecting the temperature of the gas in the small container 21 and the detection signal thereof are transmitted to the automatic valve 24 to transmit the small container 2
The temperature at which the motor cooling means G that cools and controls the motor 20 in 1 to a temperature below the permissible temperature and the fan 22 of the fan driving means are normally and reversely rotated and the gas flow is appropriately reversed in the axial direction to contact the molding material 1. And temperature control means H for controlling the temperature. The fan used here is an axial-flow fan capable of discharging and sucking gas in the axial direction by reversing the rotation direction of the motor. Also,
As another embodiment of the fan driving means, as shown in FIG. 5, a motor 20 is installed at a rear outer position of the pressure vessel A,
The shaft portion of the motor is projected into the pressure vessel A through the sealing mechanism 34, and the fan 22a for blowing air is attached to the tip portion of the shaft of the motor.
The motor 20 may be fitted and fixed, and the motor 20 may be an inverter or the like capable of speed conversion, and is not limited to the embodiment of the present invention.

【0013】温度制御手段Hは、図3に示すように、成
形材表部温度と成形材裏凹部温度とを調節計28にて温
度検出器26と温度検出器27とを比較調節してモータ
20を作動させファン22を回転させ、両者の温度が略
同じになるようガスの流れを交互に正逆させ制御するよ
う構成したものである。なお、成形材の形状が比較的単
純であれば、例えば、経験値によりモータの正逆転時間
をプログラムするようにすれば回路は簡素化でき成形材
によって回路は異なり、本発明実施例には限定されな
い。
As shown in FIG. 3, the temperature control means H controls the temperature of the molding material surface portion and the temperature of the molding material back recess portion by the controller 28 by comparing and adjusting the temperature detector 26 and the temperature detector 27. 20 is operated and the fan 22 is rotated, and the flow of gas is alternately controlled so that the temperatures of the two become substantially the same. If the shape of the molding material is relatively simple, for example, the circuit can be simplified by programming the forward / reverse rotation time of the motor based on an empirical value, and the circuit differs depending on the molding material. Not done.

【0014】また、外通風路6bに設けた案内羽根30
は、容器内壁と風洞壁5との間に形成された外通風路6
b末端より流出するガス流を旋回流とするもので、図
1、図2に示すように、外通風路6bの流出部全周域に
多数設けたものである。そして、外通風路6bより流出
するガス流を、案内羽根30により旋回流とした後、こ
れに対面する扉内壁2bで反転させ、その反転流が風洞
6a内を旋回しつつ一方向に流れるよう構成したもので
ある。なお、本発明実施例では外通風路に案内羽根を設
けているが、例えばこの案内羽根を設けなくても本発明
は実施でき、本発明実施例には限定されない。
Further, the guide vanes 30 provided in the outer ventilation passage 6b
Is an external ventilation passage 6 formed between the inner wall of the container and the wind tunnel wall 5.
The gas flow flowing out from the end b is a swirl flow, and as shown in FIGS. 1 and 2, a large number of gas flows are provided in the entire circumference of the outflow portion of the external ventilation passage 6b. Then, after the gas flow flowing out from the outer ventilation passage 6b is made into a swirling flow by the guide vanes 30, it is reversed by the door inner wall 2b facing this so that the reverse flow swirls in the wind tunnel 6a and flows in one direction. It is composed. In the embodiment of the present invention, the guide vanes are provided in the external ventilation passage, but the present invention can be implemented without providing the guide vanes, for example, and the present invention is not limited thereto.

【0015】次に、その作用を説明する。先ず、準備段
階においては、図1、図2に示す圧力容器A内に成形材
1を収容し、減圧手段Dにて真空バッグ18内を減圧し
て成形の準備が完了する。
Next, the operation will be described. First, in the preparation stage, the molding material 1 is housed in the pressure container A shown in FIGS. 1 and 2, and the decompression means D decompresses the inside of the vacuum bag 18 to complete the preparation for molding.

【0016】次に、図1、図2に示す加圧手段Bを作動
させて圧力容器A内に高圧ガスを供給すると共にファン
駆動手段Fを作動させて前記高圧ガスを、図1の実線の
矢印に示すように、外通風路6bを通り、該外通風路よ
り流出するガス流を、案内羽根30により旋回流とした
後、これに対面する扉内壁2bで反転させ、その反転流
が風洞6a内を旋回しつつ流れ圧力容器A内を循環させ
る。そして、温度制御手段Hにより成形材裏凹部33が
成形材表部32との温度差が設定値より大になると、モ
ータに信号を送り、モータを逆転させ、ファン22が逆
回転し、ガスは、図1の鎖線の矢印に示すように、風洞
6a内を通り扉内壁2bで反転して外通風路6bを逆方
向に流れファン22へと吸い込まれる。そして、ヒータ
10、熱交換器11を介して風洞6a内へとガスは循環
する。このようなガスの流れを適宜に変換しながら、図
4に示すような成形パターンにより加圧加熱して成形を
行なう。そして、このようにガスの流れを適宜に変化さ
せることにより、案内羽根30にて風洞6a内を旋回し
つつ流れるガスが、複雑な形状による成形材裏凹部33
に流れなくても、逆方向の流れで成形材裏凹部33に接
触することができ、このガスの流れが交互に作用するた
め、成形材表部32と略同じ程度の温度になるよう均一
に加熱することができる。
Next, the pressurizing means B shown in FIGS. 1 and 2 is operated to supply the high-pressure gas into the pressure vessel A, and the fan driving means F is operated to remove the high-pressure gas by the solid line in FIG. As shown by the arrow, after the gas flow passing through the outer ventilation passage 6b and flowing out from the outer ventilation passage is made into a swirling flow by the guide vanes 30, it is reversed by the door inner wall 2b facing this, and the reversal flow is the wind tunnel. It circulates in the pressure vessel A while turning in 6a. Then, when the temperature difference between the molding material back recess 33 and the molding material surface portion 32 becomes larger than the set value by the temperature control means H, a signal is sent to the motor to rotate the motor in the reverse direction, the fan 22 rotates in the reverse direction, and the gas is discharged. As shown by the chain line arrow in FIG. 1, the air flows through the wind tunnel 6a, is inverted by the inner wall 2b of the door, flows in the opposite direction through the outer ventilation passage 6b, and is sucked into the fan 22. Then, the gas circulates into the wind tunnel 6a via the heater 10 and the heat exchanger 11. While appropriately converting such a gas flow, molding is performed by heating under pressure according to a molding pattern as shown in FIG. By appropriately changing the gas flow in this manner, the gas flowing while swirling in the wind tunnel 6a by the guide vanes 30 has a complicated shape back recess 33 of the molding material.
Even if the molding material does not flow into the molding material, the molding material can be brought into contact with the recess 33 in the back of the molding material in a reverse direction, and the flow of the gas acts alternately. It can be heated.

【0017】次いで、冷却段階に入ると、図4に示すよ
うな成形パターンに従い減圧すると共に冷却されるが、
ガスの流れは加熱と同じく適宜交互に作用せしめ、成形
材1を冷却して成形が終了する。次いで、扉2aを開き
成形材1を搬出して一工程が完了する。
Next, when entering the cooling stage, the pressure is reduced and cooled according to the molding pattern as shown in FIG.
Like the heating, the gas flows are made to alternately act, and the molding material 1 is cooled to complete the molding. Next, the door 2a is opened and the molding material 1 is carried out to complete one step.

【0018】[0018]

【発明の効果】本発明は、以上のように構成しているか
ら、ガスの流れを適宜正逆させ温度制御することができ
るため、成形材表部温度と成形材裏凹部温度とが略同じ
にすることができ、従来、複雑な成形品の凹み部分や影
の部分と他の部分とに生じていた温度差による成形性の
悪影響が解消され、高品質な成形品が得られる。
Since the present invention is configured as described above, the temperature of the molding material can be controlled by reversing the flow of gas as appropriate, so that the temperature of the molding material surface and the temperature of the molding material back recess are substantially the same. Therefore, the adverse effect of the moldability due to the temperature difference that has conventionally occurred between the recessed portion or the shaded portion and the other portion of the complicated molded product is eliminated, and a high quality molded product can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するオートクレーブ成形装置の一
部破断した概略側面図。
FIG. 1 is a partially cutaway schematic side view of an autoclave molding apparatus for carrying out the present invention.

【図2】図1をXーX矢視したオートクレーブ成形装置
の概略正面図。
FIG. 2 is a schematic front view of the autoclave molding apparatus as viewed in the direction of arrow XX in FIG.

【図3】本発明を実施する温度制御手段のブロック図を
示す。
FIG. 3 shows a block diagram of a temperature control means embodying the present invention.

【図4】本発明を実施するオートクレーブの成形パター
ンの一実施例を示す。
FIG. 4 shows an example of a molding pattern of an autoclave for carrying out the present invention.

【図5】従来のオートクレーブにおけるガスの流れを制
御する技術の一実施例を示す一部破断した概略側面図。
FIG. 5 is a partially cutaway schematic side view showing an embodiment of a technique for controlling a gas flow in a conventional autoclave.

【符号の説明】[Explanation of symbols]

A 圧力容器 B 加圧手段 C 加熱冷却手段 D 減圧手段 E ファン制御手段 F ファン駆動手段 G モータ冷却手段 H 温度制御手段 1 成形材 2 容器本体 2a 扉 2b 扉内壁 3 台車 4 レール 5 風洞壁 6a 風洞 6b 外通風路 7 高圧ガス供給源 8 自動弁 9 自動弁 10 ヒータ 11 熱交換器 12 第2台車 13 自動弁 14 自動弁 15 真空ポンプ 16 自動弁 17a 真空継手 17b 真空継手 18 真空バッグ 19 治具 20 モータ 20a モータ軸 21 小型容器 22 ファン 22a ファン 23 温度検出器 24 自動弁 26 温度検出器 27 温度検出器 28 調節計 30 案内羽根 32 成形材表部 33 成形材裏凹部 34 密封機構 A pressure vessel B pressurizing means C heating / cooling means D depressurizing means E fan control means F fan driving means G motor cooling means H temperature control means 1 molding material 2 container body 2a door 2b door inner wall 3 trolley 4 rail 5 wind tunnel wall 6a wind tunnel 6b Outside ventilation passage 7 High-pressure gas supply source 8 Automatic valve 9 Automatic valve 10 Heater 11 Heat exchanger 12 Second trolley 13 Automatic valve 14 Automatic valve 15 Vacuum pump 16 Automatic valve 17a Vacuum joint 17b Vacuum joint 18 Vacuum bag 19 Jig 20 Motor 20a Motor shaft 21 Small container 22 Fan 22a Fan 23 Temperature detector 24 Automatic valve 26 Temperature detector 27 Temperature detector 28 Controller 30 Guide vane 32 Molding material front part 33 Molding material back recess 34 Sealing mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 成形材を収容し扉にて密閉可能に設ける
と共にファンによりガスを循環させる容器内壁と風洞壁
との間に形成された外通風路と風洞を備えた圧力容器内
で成形材を加圧加熱し成形させるオートクレーブにおい
て、 前記ファンを軸流ファンにすると共に温度制御手段を設
け、該温度制御手段を作用させて前記ファンの回転を適
宜正逆転させ、外通風路と風洞内を循環するガスの流れ
を適宜正逆方向に流れるよう制御したことを特徴とする
オートクレーブのガス流制御方法。
1. A molding material in a pressure container having an air passage and an outer ventilation passage formed between an inner wall of a container and a wind tunnel wall in which the molding material is housed so as to be hermetically sealed by a door and a fan circulates gas. In an autoclave for heating and molding under pressure, the fan is an axial flow fan and temperature control means is provided, and the temperature control means is actuated to rotate the fan forward and backward as appropriate, so that the external ventilation passage and the wind tunnel are A method for controlling gas flow in an autoclave, characterized in that the circulating gas flow is controlled so as to flow in forward and reverse directions as appropriate.
JP22514291A 1991-08-09 1991-08-09 Method for controlling gas current of autoclave Pending JPH067665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22514291A JPH067665A (en) 1991-08-09 1991-08-09 Method for controlling gas current of autoclave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22514291A JPH067665A (en) 1991-08-09 1991-08-09 Method for controlling gas current of autoclave

Publications (1)

Publication Number Publication Date
JPH067665A true JPH067665A (en) 1994-01-18

Family

ID=16824612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22514291A Pending JPH067665A (en) 1991-08-09 1991-08-09 Method for controlling gas current of autoclave

Country Status (1)

Country Link
JP (1) JPH067665A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011934A1 (en) * 2011-07-15 2013-01-24 株式会社ブリヂストン Vulcanizer and method for manufacturing tires
US20220026939A1 (en) * 2020-07-27 2022-01-27 Shao-Chi Liu Material processing apparatus and operating method thereof
CN114284179A (en) * 2021-12-24 2022-04-05 南京屹立芯创半导体科技有限公司 Temperature adjusting method and pressure oven

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011934A1 (en) * 2011-07-15 2013-01-24 株式会社ブリヂストン Vulcanizer and method for manufacturing tires
US9758001B2 (en) 2011-07-15 2017-09-12 Bridgestone Corporation Autoclave and tire manufacturing method
US20220026939A1 (en) * 2020-07-27 2022-01-27 Shao-Chi Liu Material processing apparatus and operating method thereof
US12051600B2 (en) * 2020-07-27 2024-07-30 Shao-Chi Liu Material processing apparatus and operating method thereof
CN114284179A (en) * 2021-12-24 2022-04-05 南京屹立芯创半导体科技有限公司 Temperature adjusting method and pressure oven

Similar Documents

Publication Publication Date Title
JPH0214730A (en) Method and apparatus for gas circulation of autoclave
JP4782887B1 (en) Gas laser device
US3412573A (en) Cryogenic quick freezing apparatus
CA2117848A1 (en) Apparatus for the heating or cooling of plate-like or sheet-like flat glass
JPH04331245A (en) Device for surface treatment of workpiece over plasma torch
EP0231999A2 (en) Gas shroud and method
JPH067665A (en) Method for controlling gas current of autoclave
JP6338314B2 (en) Heat treatment equipment
JPH05329355A (en) Gas circulating device of autoclave
JP2006088049A (en) Method and apparatus for circulating hot wind in autoclave
JP2007278595A (en) High frequency heating device
JP2007083594A (en) Resin pellet drying device
JPH06134282A (en) Control of fan of autoclave
JP2542212B2 (en) Method and device for pneumatic transfer of resin material
JPS60152616A (en) Heat treating device
JPH04144717A (en) Method and device for controlling local heating in autoclave molding
JP2000015432A (en) Method and device for sealing in-chamber atmosphere
JPH01236933A (en) Fan driver of autoclave
CN213441107U (en) Blanking device of blow molding machine
JP2799633B2 (en) Material temperature control method in autoclave molding
JP3456294B2 (en) Drying equipment
CN218455325U (en) Improved water cooling equipment
JPH04164610A (en) Heating method of slush mold
CN218467871U (en) Energy-conserving formula new fan of control by temperature change
JPH09243505A (en) Turbulent flow generator