JPH06134282A - Control of fan of autoclave - Google Patents

Control of fan of autoclave

Info

Publication number
JPH06134282A
JPH06134282A JP4311338A JP31133892A JPH06134282A JP H06134282 A JPH06134282 A JP H06134282A JP 4311338 A JP4311338 A JP 4311338A JP 31133892 A JP31133892 A JP 31133892A JP H06134282 A JPH06134282 A JP H06134282A
Authority
JP
Japan
Prior art keywords
motor
current value
fan
pressure
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4311338A
Other languages
Japanese (ja)
Inventor
Mamoru Nakamura
守 中村
Yoshihiro Matsuda
美洋 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashida Manufacturing Co Ltd
Original Assignee
Ashida Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashida Manufacturing Co Ltd filed Critical Ashida Manufacturing Co Ltd
Priority to JP4311338A priority Critical patent/JPH06134282A/en
Publication of JPH06134282A publication Critical patent/JPH06134282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To obtain a molded product of high quality by controlling the number of rotations of a fan so as to set the same to the rated current value of a motor corresponding to the load change due to the pressure fluctuations of an autoclave to smoothly circulate the gas in a pressure container. CONSTITUTION:In an autoclave wherein a molding material l is pressed and heated in a pressure container A equipped with a fan motor 20 circulating gas to be molded, when load is fluctuated by pressure fluctuations in a speed increasing stage, the current value of the fan motor 20 is compared with the set currant value of the motor 20 by a fan speed control means I and, when the load becomes excessive, the output frequency of an inverter 31 is lowered to decrease a speed and, when the current value of the motor 20 is smaller than the set current value, the output frequency of the inverter is raised to increase a speed and controlled so that the current value of the motor 20 always becomes the set current value thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機、宇宙機器、産
業機器などに用いられる繊維強化プラスチック(FR
P)の積層構造体や部品並びに電子機器部品として用い
る多層プリント配線板、建材用の合わせガラスや複合材
などの成形材をオートクレーブにて加圧加熱して成形す
る際、ガスを循環させるファンを制御する方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to a fiber reinforced plastic (FR) used for aircraft, space equipment, industrial equipment and the like.
P) a laminated structure or component, a multilayer printed wiring board used as an electronic device component, a molding material such as a laminated glass or a composite material for building materials, which is heated under pressure in an autoclave to mold a fan for circulating a gas. It is about how to control.

【0002】[0002]

【従来の技術】従来、オートクレーブのガスを循環させ
るファンを制御する技術として、実開昭63ー1765
33号公報記載のものが知られている。
2. Description of the Related Art Conventionally, as a technique for controlling a fan that circulates gas in an autoclave, there has been a practice of using a full-practice Sho 63-1765.
The one described in Japanese Patent No. 33 is known.

【0003】この技術は、密閉した耐圧容器内に導入さ
れる高圧気体を加熱して循環ファンで循環対流させるオ
ートクレーブにおいて、前記循環ファンを回転駆動させ
るモータの回転速度が、前記耐圧容器内の圧力上昇に応
じて低下するようにインバータ制御されるよう構成され
ている。しかしながら、従来のインバータは増速段階で
は過負荷時の周波数を保持するのみで低下機能がなく、
一旦最高設定回転数(周波数)に到達した後でなければ
低下機能が働かないので、その後圧力の負荷が加わると
過電流となり遮断してしまう。そこで、現状ではファン
の回転を低負荷で最高設定回転数に到達させた後、加圧
を行ない運転している。
In this technique, in an autoclave in which a high-pressure gas introduced into a closed pressure vessel is heated and circulated and convected by a circulation fan, the rotation speed of a motor for rotating the circulation fan is determined by the pressure in the pressure vessel. Inverter control is performed so as to decrease as the temperature rises. However, the conventional inverter only holds the frequency at the time of overload in the acceleration stage and does not have a lowering function,
Since the lowering function does not work until the maximum set speed (frequency) is once reached, if a pressure load is applied thereafter, it will be cut off due to overcurrent. Therefore, under the present circumstances, the fan is operated by pressurizing it after reaching the maximum set speed with a low load.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
インバータでは停電、緊急停止などで加圧状態で起動す
る場合、過負荷保護機能が作動してそれ以上の圧力増加
に対応できず、インバータの過負荷遮断機能が作動して
モータが停止し、装置全体の機能を停止させざるを得な
い。ここで、過負荷保護機能とは、図7に示すように、
モータの定格電流以上にならないよう過負荷保護レベル
(電流制限レベル)を設け、その過負荷保護レベルに到
達すると増速停止を行ない過負荷遮断に至るのを防ぐ機
能をいう。また、過負荷遮断機能とは、図7に示すよう
に、過負荷保護機能が作動しなかった場合にインバータ
の保護のため、インバータの出力を止めモータを停止さ
せる機能をいう。
However, in the conventional inverter, when the inverter is started in a pressurized state due to power failure, emergency stop, etc., the overload protection function is activated and it is not possible to cope with further pressure increase, and the inverter is overloaded. The load cutoff function operates, the motor stops, and the function of the entire device must be stopped. Here, with the overload protection function, as shown in FIG.
It is a function that sets an overload protection level (current limit level) so that the current does not exceed the rated current of the motor, and when it reaches the overload protection level, it accelerates and stops to prevent overload cutoff. Further, as shown in FIG. 7, the overload cutoff function is a function of stopping the output of the inverter and stopping the motor to protect the inverter when the overload protection function does not operate.

【0005】本発明は、前述の課題を解決することを目
的として開発したものである。
The present invention was developed for the purpose of solving the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は、図1ないし図
7に示すように、ガスを循環させるファンモータ20を
備えた圧力容器A内で成形材1を加圧加熱し成形させる
オートクレーブにおいて、増速段階で圧力変動により負
荷が変動する場合、前記ファンモータ20の電流値を該
モータの設定電流値と比較し、過負荷になればインバー
タ31の出力周波数を下げて減速し、設定電流値より小
さい場合はインバータ31の出力周波数を上げて増速し
常にモータの設定電流値になるよう周波数を制御するよ
うにしたものである。
As shown in FIGS. 1 to 7, the present invention relates to an autoclave in which a molding material 1 is heated under pressure and molded in a pressure vessel A equipped with a fan motor 20 for circulating a gas. When the load fluctuates due to pressure fluctuation in the speed-up stage, the current value of the fan motor 20 is compared with the set current value of the motor, and if overloaded, the output frequency of the inverter 31 is reduced to decelerate, If it is smaller than the value, the output frequency of the inverter 31 is increased to increase the speed and the frequency is controlled so as to always be the set current value of the motor.

【0007】[0007]

【実施例】以下、添付図面に従い本発明の実施例を説明
する。最初に、本発明を実施するオートクレーブ成形装
置の一実施例を説明する。オートクレーブ成形装置は、
図2、図3に示すように、成形材1を収容する容器本体
2と、該容器2を密閉する扉2aとを備えた圧力容器A
と、前記圧力容器A内に高圧ガスを供給して成形材1を
加圧する加圧手段Bと、前記圧力容器A内に供給された
高圧ガスを加熱冷却する加熱冷却手段Cと、前記成形材
1を密封する真空バッグ18内を減圧し高真空にする減
圧手段Dと、前記加熱または冷却されたガスをファン2
2により送風され容器内壁2bと風洞壁5との間に形成
された外通風路6bから風洞6a内へと循環させるガス
循環手段Eと、前記ガス循環手段Eにより循環するガス
の圧力の変化に応じてモータ設定電流を維持しながらフ
ァンの回転数を制御するファン速度制御手段Iとより構
成したものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, an example of an autoclave molding apparatus for carrying out the present invention will be described. Autoclave molding equipment
As shown in FIGS. 2 and 3, a pressure container A including a container body 2 for accommodating the molding material 1 and a door 2a for sealing the container 2.
A pressurizing means B for supplying high pressure gas into the pressure vessel A to pressurize the molding material 1, a heating and cooling means C for heating and cooling the high pressure gas supplied into the pressure vessel A, and the molding material A depressurizing means D for depressurizing the inside of the vacuum bag 18 for sealing 1 to a high vacuum and a fan 2 for the heated or cooled gas.
Gas circulation means E for circulating air into the wind tunnel 6a from the outer ventilation passage 6b formed between the inner wall 2b of the container and the wind tunnel wall 5 by means of 2 and the change in the pressure of the gas circulated by the gas circulation means E. Accordingly, the fan speed control means I controls the rotation speed of the fan while maintaining the motor set current accordingly.

【0008】次に、各手段の詳細について説明する。圧
力容器Aは、図2、図3に示すように、容器本体2に密
閉する扉2aを設け、該容器本体2内には台車3を案内
するレール4を敷設したものである。
Next, the details of each means will be described. As shown in FIGS. 2 and 3, the pressure vessel A has a door 2a for sealing the vessel body 2 and a rail 4 for guiding the carriage 3 laid in the vessel body 2.

【0009】加圧手段Bは、図2に示すように、高圧チ
ッソガス、高圧炭酸ガス、高圧空気などのガスを高圧ガ
ス供給源7より自動弁8を介して供給できるよう設けた
もので、前記ガスはヒータ10および熱交換器11を介
して加熱または冷却される。そして、自動弁9を介して
排気される。
As shown in FIG. 2, the pressurizing means B is provided so that gases such as high-pressure nitrogen gas, high-pressure carbon dioxide gas, high-pressure air, etc. can be supplied from the high-pressure gas supply source 7 via the automatic valve 8. The gas is heated or cooled via the heater 10 and the heat exchanger 11. Then, it is exhausted through the automatic valve 9.

【0010】加熱冷却手段Cは、図2に示すように、圧
力容器A内後方部でレール4上にヒータ10と熱交換器
11(この場合はクーラとして使用)とを載置した第二
台車12を配設し、ガス体をヒータ10および熱交換器
11により加熱または冷却を行なうようにしたものであ
る。そして、自動弁13を介して圧力容器を貫通させ熱
交換器11に連通させて冷却水を供給すると共に、熱交
換器11の下方より圧力容器Aの下部を連通させ自動弁
14を介して冷却済みの水が排出できるよう設けたもの
である。なお、加熱冷却手段の他の例として、圧力容器
の外部で熱媒を加熱、冷却し、該熱媒を熱交換器を介し
てガス体を加熱、冷却するようにしてもよく、本発明実
施例には限定されない。
As shown in FIG. 2, the heating / cooling means C is a second carriage in which a heater 10 and a heat exchanger 11 (used as a cooler in this case) are mounted on a rail 4 in the rear part of the pressure vessel A. 12 is provided, and the gas body is heated or cooled by the heater 10 and the heat exchanger 11. Then, the pressure vessel is penetrated through the automatic valve 13 to communicate with the heat exchanger 11 to supply cooling water, and the lower portion of the pressure vessel A is communicated from below the heat exchanger 11 and is cooled via the automatic valve 14. It is provided so that the used water can be discharged. As another example of the heating / cooling means, the heating medium may be heated and cooled outside the pressure vessel, and the heating medium may be used to heat and cool the gas body through a heat exchanger. It is not limited to the example.

【0011】減圧手段Dは、図2、図3に示すように、
圧力容器Aの外部に設置された真空ポンプ15から自動
弁16を介して圧力容器A内部へ連通して配管したもの
で、その配管の先端部には、図3に示すように、真空継
手17aを設け、該真空継手は真空バッグ18内部より
連通せしめた治具19を介して気密を保持し接合せしめ
た真空継手17bと着脱可能に設けている。そして、真
空ポンプ15の作動により、成形材1を被覆密封せしめ
た真空バッグ18内部を自動弁16を介して減圧し高真
空にするよう構成したものである。なお、成形材によっ
ては、この減圧手段が不要の場合もあり、本発明は本実
施例には限定されない。
The depressurizing means D, as shown in FIGS.
A vacuum pump 15 installed outside the pressure vessel A communicates with the inside of the pressure vessel A through an automatic valve 16 and is connected to the inside of the pressure vessel A. At the tip of the piping, as shown in FIG. The vacuum joint is detachably attached to the vacuum joint 17b which is airtightly held and joined via a jig 19 which is communicated from the inside of the vacuum bag 18. Then, by operating the vacuum pump 15, the inside of the vacuum bag 18 in which the molding material 1 is covered and sealed is decompressed via the automatic valve 16 to a high vacuum. Depending on the molding material, this depressurizing means may be unnecessary, and the present invention is not limited to this embodiment.

【0012】ガス循環手段Eは、図2、図3に示すよう
に、圧力容器Aの後部にモータ20を内臓した小型容器
(小型圧力容器)21を密封可能に設けると共に圧力容
器Aの後部内部に突出させたモータ軸20aに嵌め合い
固着せしめたファン22とより成るファン駆動機構F
と、小型容器21内のガスの温度を検出する温度検出器
23とその検出信号を自動弁24に伝達して小型容器2
1内のモータ20を許容温度以下に冷却し制御するモー
タ冷却機構Gと、前記容器本体2の内壁2bに沿って円
筒状の薄板風洞壁5にて形成せしめた二重の通風路(外
通風路6bと風洞6a)を形成せしめた循環機構Hとよ
り成り、圧力容器A内に供給されたガスがファン22に
より送風され外通風路6bを通り案内羽根30にて旋回
し扉内壁2cにて反転し風洞6a内へと循環できるよう
構成したものである。なお、ガス循環手段の他の実施例
として、例えば、図4に示すように、ファン22により
ガスは、外通風路25から扉遮蔽板に遮られ下方へ、圧
力容器Aの下方部の格子板26より上方へ成形材1を通
り風洞27内から多孔板28を通り、仕切板29の上方
部から下方へと加熱冷却手段Cを介してファン22へと
循環するようにしてもよく、また、圧力容器を竪型にし
たガス循環手段にしてもよく、本発明はガス循環手段の
構成の違いには限定されない。また、ファン駆動機構の
他の実施例として、モータを圧力容器Aの後部外部位置
に設置し、該モータの軸部を密封機構を介して圧力容器
A内部に突出させ、該モータの軸先端部に送風用ファン
を嵌め合い固着せしめるようにしてもよく、本発明実施
例には限定されない。
As shown in FIGS. 2 and 3, the gas circulating means E is provided with a small container (small pressure container) 21 having a motor 20 therein in a sealable manner at the rear part of the pressure container A and at the inside of the rear part of the pressure container A. A fan drive mechanism F including a fan 22 fitted and fixed to a motor shaft 20a that is protruded in
The temperature detector 23 for detecting the temperature of the gas in the small container 21 and the detection signal thereof are transmitted to the automatic valve 24 to transmit the small container 2
A motor cooling mechanism G for cooling and controlling the motor 20 in 1 below an allowable temperature, and a double ventilation passage (outside ventilation) formed by a cylindrical thin-plate wind tunnel wall 5 along the inner wall 2b of the container body 2. It is composed of a passage 6b and a circulation mechanism H that forms a wind tunnel 6a), and the gas supplied into the pressure vessel A is blown by the fan 22 and passes through the outer ventilation passage 6b to swirl with the guide vanes 30 and at the door inner wall 2c. It is constructed so that it can be inverted and circulated into the wind tunnel 6a. As another embodiment of the gas circulation means, for example, as shown in FIG. 4, the gas is shielded by the fan 22 from the outside ventilation passage 25 by the door shielding plate, and the gas is directed downward to the lattice plate at the lower portion of the pressure vessel A. 26, the molding material 1 may be passed upward, the porous plate 28 may be passed from the inside of the wind tunnel 27, and the fan 22 may be circulated from the upper part of the partition plate 29 to the lower part via the heating / cooling means C. The pressure vessel may be a vertical gas circulation means, and the present invention is not limited to the difference in the configuration of the gas circulation means. Further, as another embodiment of the fan drive mechanism, a motor is installed at a rear external position of the pressure vessel A, and a shaft portion of the motor is projected into the pressure vessel A through a sealing mechanism, and a shaft tip portion of the motor is provided. An air blower fan may be fitted into and fixed to the fan, and is not limited to the embodiment of the present invention.

【0013】ファン速度制御手段Iは、図1に示すよう
に、ファンモータ20を従来のインバータ31にて結線
し、該モータの負荷電流を検出する電流検出器32と、
該電流検出器より検出された電流を設定器33にて設定
電流と比較する比較器34と、該比較器にて比較されそ
の差を増速または減速信号に変換する変換器35と、該
変換器の信号により出力電流値が変化する可変電流発生
器36と、該可変電流発生器により発生された周波数設
定信号(例えば4〜20mA DC)をインバータに伝達
し周波数を増減させるよう閉ループ回路を構成したもの
である。そして、図1に示すように、圧力の増減により
変化するファンモータの負荷電流値をモータの設定電流
値と比較し、図1及び図6の点線で示すように、過負荷
になればインバータ31の出力周波数を下げ、設定電流
値より小さい場合はインバータ31の出力周波数を上げ
て常にモータ20の設定電流値になるよう周波数を制御
するようにして、ファンモータ20が常時設定電流値
(モータの定格電流値)で運転できるようしたものであ
る。
The fan speed control means I, as shown in FIG. 1, connects the fan motor 20 with a conventional inverter 31 and detects a load current of the motor, and a current detector 32.
A comparator 34 that compares the current detected by the current detector with a set current in a setter 33, a converter 35 that is compared in the comparator and converts the difference into an acceleration or deceleration signal, and the conversion Current generator 36 whose output current value changes according to the signal of the generator, and a closed loop circuit configured to transmit the frequency setting signal (for example, 4 to 20 mA DC) generated by the variable current generator to the inverter and increase or decrease the frequency. It was done. Then, as shown in FIG. 1, the load current value of the fan motor, which changes according to the increase or decrease of the pressure, is compared with the set current value of the motor. As shown by the dotted lines in FIGS. When the output frequency of the fan motor 20 is lower than the set current value, the output frequency of the inverter 31 is increased to control the frequency so that the motor 20 always has the set current value. It is designed to operate at the rated current value).

【0014】次に、その作用を説明する。先ず、準備段
階においては、図2、図3に示す圧力容器A内に成形材
1を収容し、減圧手段Dにて真空バッグ18内を減圧し
て成形の準備が完了する。
Next, the operation will be described. First, in the preparatory stage, the molding material 1 is housed in the pressure container A shown in FIGS. 2 and 3, and the depressurizing means D depressurizes the inside of the vacuum bag 18 to complete the preparation for molding.

【0015】次に、図2に示す加圧手段Bを作動させて
圧力容器A内に高圧ガスを供給すると共にファン駆動機
構Fを作動させて前記高圧ガスを、図2の実線の矢印に
示すように、外通風路6bを通り、該外通風路より流出
するガス流を、案内羽根30により旋回流とした後、こ
れに対面する扉内壁2cで反転させ、その反転流が風洞
6a内を旋回しつつ流れ圧力容器A内を通りヒータ1
0、熱交換器11を介してファン22へと吸い込まれ、
ファン22によりガスを循環させる。
Next, the pressurizing means B shown in FIG. 2 is operated to supply the high-pressure gas into the pressure vessel A and the fan drive mechanism F is operated to indicate the high-pressure gas by a solid arrow in FIG. As described above, after the gas flow passing through the outer ventilation passage 6b and flowing out from the outer ventilation passage is made into a swirling flow by the guide vanes 30, it is reversed by the inner wall 2c of the door facing the swirling flow, and the reversal flow is generated in the wind tunnel 6a. The heater 1 swirling and flowing through the pressure vessel A
0, sucked into the fan 22 via the heat exchanger 11,
The gas is circulated by the fan 22.

【0016】そして、図5に示すような成形パターンに
より加圧加熱して成形を行なうが、この成形パターン
は、圧力を徐々に増加させ、所定の圧力になると一定圧
力を維持し、更に圧力を増加させ、所定の圧力になると
その圧力を一定時間維持した後、減圧するようにしてい
る。そこで、圧力の増減により変化するファンモータ2
0の負荷電流値を、図1に示すモータ20の設定電流値
と比較し、過負荷になればインバータ31の出力周波数
を下げて減速し、設定電流値より小さい場合はインバー
タ31の出力周波数を上げて増速し、常にモータ20の
設定電流値になるよう周波数を制御することによって、
図6の点線で示すように、圧力の変化に従って周波数が
対応して、過負荷になることなく、即ち、図7に示す過
負荷遮断レベルに到達することなく制御レベルで、ファ
ン22のモータ20は運転される。
Then, the molding is performed by pressurizing and heating according to a molding pattern as shown in FIG. 5, and this molding pattern gradually increases the pressure, maintains a constant pressure at a predetermined pressure, and further increases the pressure. The pressure is increased, and when the pressure reaches a predetermined pressure, the pressure is maintained for a certain period of time, and then the pressure is reduced. Therefore, the fan motor 2 that changes depending on the increase and decrease in pressure
The load current value of 0 is compared with the set current value of the motor 20 shown in FIG. 1, and if overloaded, the output frequency of the inverter 31 is reduced to decelerate. If it is smaller than the set current value, the output frequency of the inverter 31 is changed. By increasing the speed to increase the speed and controlling the frequency so that the set current value of the motor 20 is constantly maintained,
As indicated by the dotted line in FIG. 6, the frequency of the motor 20 of the fan 22 corresponds to the frequency according to the change in pressure and does not cause overload, that is, the control level without reaching the overload cutoff level shown in FIG. Is driven.

【0017】次いで、冷却段階に入ると、図5に示す成
形パターンに従い減圧すると共に冷却されるが、電流一
定の場合、圧力の変化に対する周波数特性は、図6に示
すように、圧力は減少するため周波数は増加しファンの
モータ20の回転数も増加するが、過負荷になることな
く設定電流値(モータの定格電流値)で運転される。そ
して、成形材1の成形が終了し、扉2aを開き成形材1
を搬出して一工程が完了する。
Next, in the cooling stage, the pressure is reduced and cooled in accordance with the molding pattern shown in FIG. 5, but when the current is constant, the frequency characteristic with respect to changes in pressure decreases as shown in FIG. Therefore, although the frequency increases and the rotation speed of the motor 20 of the fan also increases, the fan is operated at the set current value (the rated current value of the motor) without being overloaded. Then, the molding of the molded material 1 is completed, the door 2a is opened, and the molded material 1
Is completed and one step is completed.

【0018】[0018]

【発明の効果】本発明は、以上のように構成しているか
ら、ファンモータの負荷電流を検出して設定したモータ
定格電流値になるよう常に周波数を制御しているため、
オートクレーブの圧力変動による負荷変動に対応するこ
とができ、ファンモータは停止することなく、常にモー
タ定格電流値で運転でき、ガスの循環がスムーズに行な
われる。その結果、成形性のよい高品質な成形品が得ら
れる。
Since the present invention is constructed as described above, the frequency is constantly controlled so that the motor rated current value set by detecting the load current of the fan motor is set.
The load fluctuation due to the pressure fluctuation of the autoclave can be coped with, and the fan motor can be always operated at the motor rated current value without stopping, and the gas circulation is smoothly performed. As a result, a high-quality molded product having good moldability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するオートクレーブにおけるファ
ン速度制御手段のブロック図の一実施例を示す。
FIG. 1 shows an example of a block diagram of fan speed control means in an autoclave for carrying out the present invention.

【図2】本発明を実施するオートクレーブ成形装置の一
部破断した概略側面図。
FIG. 2 is a partially cutaway schematic side view of an autoclave molding apparatus for carrying out the present invention.

【図3】図2をXーX矢視したオートクレーブ成形装置
の概略正面図。
FIG. 3 is a schematic front view of the autoclave molding apparatus as viewed in the direction of arrow XX in FIG.

【図4】本発明を実施するガス循環手段の他の実施例を
示す一部破断した概略側面図。
FIG. 4 is a partially cutaway schematic side view showing another embodiment of the gas circulating means for carrying out the present invention.

【図5】本発明を実施するオートクレーブの成形パター
ンの一実施例を示す。
FIG. 5 shows an example of a molding pattern of an autoclave for carrying out the present invention.

【図6】本発明を実施するファン速度制御手段の圧力に
対する周波数特性を示す。
FIG. 6 shows frequency characteristics with respect to pressure of the fan speed control means for carrying out the present invention.

【図7】従来のインバータの機能に本発明の機能を付加
した、負荷に対するモータ電流特性を示す。
FIG. 7 shows a motor current characteristic with respect to a load in which the function of the present invention is added to the function of a conventional inverter.

【符号の説明】[Explanation of symbols]

A 圧力容器 B 加圧手段 C 加熱冷却手段 D 減圧手段 E ガス循環手段 F ファン駆動機構 G モータ冷却機構 H 循環機構 I ファン速度制御手段 1 成形材 2 容器本体 2a 扉 2b 容器内壁 2c 扉内壁 3 台車 4 レール 5 風洞壁 6a 風洞 6b 外通風路 7 高圧ガス供給源 8 自動弁 9 自動弁 10 ヒータ 11 熱交換器 12 第2台車 13 自動弁 14 自動弁 15 真空ポンプ 16 自動弁 17a 真空継手 17b 真空継手 18 真空バッグ 19 治具 20 モータ 20a モータ軸 21 小型容器 22 ファン 23 温度検出器 24 自動弁 25 外通風路 26 格子板 27 風洞 28 多孔板 29 仕切板 30 案内羽根 31 インバータ 32 電流検出器 33 設定器 34 比較器 35 変換器 36 可変電流発生器 A pressure vessel B pressurizing means C heating / cooling means D depressurizing means E gas circulation means F fan drive mechanism G motor cooling mechanism H circulation mechanism I fan speed control means 1 molding material 2 container body 2a door 2b container inner wall 2c door inner wall 3 trucks 4 rail 5 wind tunnel wall 6a wind tunnel 6b outside ventilation passage 7 high pressure gas supply source 8 automatic valve 9 automatic valve 10 heater 11 heat exchanger 12 second truck 13 automatic valve 14 automatic valve 15 vacuum pump 16 automatic valve 17a vacuum joint 17b vacuum joint 18 Vacuum Bag 19 Jig 20 Motor 20a Motor Shaft 21 Small Container 22 Fan 23 Temperature Detector 24 Automatic Valve 25 Outer Ventilation Path 26 Lattice Plate 27 Wind Tunnel 28 Perforated Plate 29 Partition Plate 30 Guide Blade 31 Inverter 32 Current Detector 33 Setter 34 comparator 35 converter 36 variable current generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスを循環させるファンモータを備えた
圧力容器内で成形材を加圧加熱し成形させるオートクレ
ーブにおいて、 増速段階で圧力変動により負荷が変動する場合、前記フ
ァンモータの電流値を該モータの設定電流値と比較し、
過負荷になればインバータの出力周波数を下げて減速
し、設定電流値より小さい場合はインバータの出力周波
数を上げて増速し常にモータの設定電流値になるよう周
波数を制御するようにしたことを特徴とするオートクレ
ーブのファン制御方法。
1. An autoclave in which a molding material is pressurized and heated in a pressure vessel equipped with a fan motor that circulates gas and is molded, when the load fluctuates due to pressure fluctuation in the acceleration stage, the current value of the fan motor is changed. Compared with the set current value of the motor,
If it becomes overloaded, the inverter output frequency is reduced to decelerate, and if it is smaller than the set current value, the inverter output frequency is raised to increase the speed and the frequency is controlled so that it always becomes the motor set current value. Characteristic autoclave fan control method.
JP4311338A 1992-10-26 1992-10-26 Control of fan of autoclave Pending JPH06134282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4311338A JPH06134282A (en) 1992-10-26 1992-10-26 Control of fan of autoclave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4311338A JPH06134282A (en) 1992-10-26 1992-10-26 Control of fan of autoclave

Publications (1)

Publication Number Publication Date
JPH06134282A true JPH06134282A (en) 1994-05-17

Family

ID=18015947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4311338A Pending JPH06134282A (en) 1992-10-26 1992-10-26 Control of fan of autoclave

Country Status (1)

Country Link
JP (1) JPH06134282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130038264A1 (en) * 2011-08-11 2013-02-14 Yen Sun Technology Corp. Method of fan speed control
CN110081575A (en) * 2019-06-03 2019-08-02 珠海格力电器股份有限公司 Frequency converter control method, device, frequency converter and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130038264A1 (en) * 2011-08-11 2013-02-14 Yen Sun Technology Corp. Method of fan speed control
CN110081575A (en) * 2019-06-03 2019-08-02 珠海格力电器股份有限公司 Frequency converter control method, device, frequency converter and air conditioner
CN110081575B (en) * 2019-06-03 2023-10-03 珠海格力电器股份有限公司 Frequency converter control method and device, frequency converter and air conditioner

Similar Documents

Publication Publication Date Title
JPH0661449B2 (en) Method and apparatus for circulating gas in autoclave
US4870833A (en) Car air conditioning apparatus and controlling method therefor
US6491428B1 (en) X-ray computed tomography apparatus
JPH06134282A (en) Control of fan of autoclave
JPS637170A (en) Energizing apparatus for hermetic motor
JPH0259048A (en) Hot air thermostatic tank equipped with oxygen concentration controller
JPH067665A (en) Method for controlling gas current of autoclave
JP2799633B2 (en) Material temperature control method in autoclave molding
JP2003284289A (en) Controller for cooling device for rotary electric machine
EP0328654A1 (en) Gas laser
JPH04144717A (en) Method and device for controlling local heating in autoclave molding
JP2009113960A (en) Car top control device of elevator
JP2001108800A (en) Electron beam irradiation device
JPH09215362A (en) Overvoltage protecting apparatus for inverter
CN220706001U (en) Hierarchical open-loop fan control system
JPH0777345A (en) Control device for ventilation device
JPH03123636A (en) Control of rotational speed of circulating fan in autoclave molding
JPS60257737A (en) Cooler of fully-closed electric device
JPH0661450B2 (en) Fan drive device in autoclave
JPH06295735A (en) Fuel cell power generation system
JPH03213943A (en) Controlling method of air-conditioner
JPS59110379A (en) Controller for air conditioner
JP2011063424A (en) Elevator control device
JPS58167219A (en) Controlling method of car air conditioner
JPH05260617A (en) Ventilation-control method for switch board