JPH01236933A - Fan driver of autoclave - Google Patents
Fan driver of autoclaveInfo
- Publication number
- JPH01236933A JPH01236933A JP63061674A JP6167488A JPH01236933A JP H01236933 A JPH01236933 A JP H01236933A JP 63061674 A JP63061674 A JP 63061674A JP 6167488 A JP6167488 A JP 6167488A JP H01236933 A JPH01236933 A JP H01236933A
- Authority
- JP
- Japan
- Prior art keywords
- pressure vessel
- pressure
- motor
- gas
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 27
- 238000009423 ventilation Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 abstract description 9
- 238000000465 moulding Methods 0.000 abstract description 3
- 238000007664 blowing Methods 0.000 abstract description 2
- 230000002093 peripheral effect Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 68
- 239000012778 molding material Substances 0.000 description 15
- 239000000498 cooling water Substances 0.000 description 10
- 210000004907 gland Anatomy 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/002—Component parts of these vessels not mentioned in B01J3/004, B01J3/006, B01J3/02 - B01J3/08; Measures taken in conjunction with the process to be carried out, e.g. safety measures
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、航空機、産業機器等の部品として用いられる
繊維強化プラスチック(FRP)の積層構造体並びに電
子機器部品として用いる多層プリント配線板等の成形材
をオートクレーブにて加熱加圧して成形するに際し、加
熱高圧ガスを容器内に循環させるファンの駆動装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to laminated structures of fiber reinforced plastics (FRP) used as parts of aircraft, industrial equipment, etc., and molded materials such as multilayer printed wiring boards used as parts of electronic equipment. This invention relates to a fan drive device that circulates heated high-pressure gas into a container when molding the container by heating and pressurizing it in an autoclave.
従来の技術
従来、FRPやプリント配線板などの成形材をオートク
レーブにて加熱加圧して成形する技術として、例えば、
特開昭58−62018号公報、特開昭60−2589
96号公報、特開昭61−43543号公報、特開昭6
1−43565号公報記載のものなど多数が知られてい
る。Conventional technology Conventionally, as a technology for molding materials such as FRP and printed wiring boards by heating and pressurizing them in an autoclave, for example,
JP-A-58-62018, JP-A-60-2589
No. 96, JP-A-61-43543, JP-A-6
Many such methods are known, including those described in Japanese Patent No. 1-43565.
これらの技術は、第4図、第5図に示すように、成形材
lを収容可能に設けると共にガスを循環させる風洞を備
えた圧力容器Aと、該圧力容器内に高圧ガスを供給して
成形材lを加圧する第一加圧手段Bと、前記前記容器内
に供給された高圧ガスを圧力容器内部後方に設置した熱
交換器5を介して加熱、冷却する加熱冷却手段Cと、前
記加熱冷却手段により加熱または冷却されたガスを、圧
力容器Aの外部モータ50によるモータ軸または中間軸
よりメカニカル・シール、グランド・シールなどの密封
装置51を介して突出させた軸先端部の送風ファン38
により送風し風洞7を介して循環できるよう設けたファ
ン駆動手段Iと、成形材1を密封した真空バッグ12内
を減圧して高真空にする減圧手段りとより構成している
。As shown in FIGS. 4 and 5, these technologies include a pressure vessel A that is capable of accommodating a molding material l and is equipped with a wind tunnel for circulating gas, and a pressure vessel A that supplies high pressure gas into the pressure vessel. a first pressurizing means B that pressurizes the molding material l; a heating and cooling means C that heats and cools the high-pressure gas supplied into the container via a heat exchanger 5 installed at the rear inside the pressure container; A blower fan at the tip of a shaft in which gas heated or cooled by a heating and cooling means is projected from a motor shaft or an intermediate shaft by an external motor 50 of the pressure vessel A through a sealing device 51 such as a mechanical seal or a gland seal. 38
The fan drive means I is provided to blow air and circulate it through the wind tunnel 7, and the pressure reduction means depressurizes the inside of the vacuum bag 12 in which the molded material 1 is sealed to create a high vacuum.
そして、第6図に示すように、成形材lを定盤11の治
具9上に載置し、ブリーザクロス53にて覆い、更に、
真空バッグ12にて被覆しシーラント54(シリコン封
じ剤)にて密封して、第4図、第5図に示すように、圧
力容器A内に搬入し、前記真空バッグ12内を外部の減
圧手段りに接続し圧力容器A内を密閉した後、前記真空
バッグ12内を減圧し、次いで、圧力容器A内に高圧ガ
ス(不活性ガス)を供給して成形材1を加圧すると共に
該ガスを加熱し、前記ファン38により二重の風洞7の
外胴を通り扉2の内壁にて反転し内洞を介して加熱高圧
ガスを循環させて成形材1を加熱加圧し接着硬化せしめ
成形するようにしたものである。Then, as shown in FIG. 6, the molded material l is placed on the jig 9 of the surface plate 11, covered with a breather cloth 53, and further,
Covered with a vacuum bag 12 and sealed with a sealant 54 (silicon sealant), the vacuum bag 12 is transported into a pressure vessel A as shown in FIGS. After connecting the pressure vessel A and sealing the inside of the pressure vessel A, the inside of the vacuum bag 12 is depressurized, and then high pressure gas (inert gas) is supplied into the pressure vessel A to pressurize the molded material 1 and release the gas. The molded material 1 is heated, passed through the outer shell of the double wind tunnel 7 by the fan 38, turned over at the inner wall of the door 2, and circulated heated high-pressure gas through the inner cavity to heat and pressurize the molding material 1 to harden the adhesive and form it. This is what I did.
発明が解決しようとする問題点
しかしながら、これらの技術には、下記のような問題点
がある。Problems to be Solved by the Invention However, these techniques have the following problems.
圧力容器は成形材を加熱高圧ガスで接着硬化させるため
高圧ガスを密封保持する必要があるが、従来のファン駆
動手段■を駆動するモータ50は、第4図に示すように
、圧力容器Aの外部にあって駆動軸52(モータ軸、中
間軸)が密封装置51を介しており、軸の回転によりメ
カニカル・シールやグランド・シールが摩耗して時間の
経過につれて圧力容器A内の高圧ガスが僅かずつ洩れて
くる。そして、次第にその洩れ量が大きくなりガス圧力
が低下し、成形性に悪影響を及ぼす。In a pressure vessel, the molded material is bonded and cured with heated high-pressure gas, so it is necessary to keep the high-pressure gas sealed. However, as shown in FIG. Externally, a drive shaft 52 (motor shaft, intermediate shaft) passes through a sealing device 51, and as the shaft rotates, mechanical seals and gland seals wear out and over time the high pressure gas inside the pressure vessel A leaks. It leaks out little by little. Then, the amount of leakage gradually increases and the gas pressure decreases, which adversely affects moldability.
そこで、定期的にメカニカル・シールやグランド・シー
ルを調整補修して極力気密性を保持するようにしている
が、その補修の際の時間的ロスと工数が大変で生産性を
阻害している。Therefore, mechanical seals and gland seals are regularly adjusted and repaired to maintain airtightness as much as possible, but these repairs require a great deal of time and man-hours, hindering productivity.
本発明は前述の問題点を解決することを目的として開発
したものである。The present invention was developed with the aim of solving the above-mentioned problems.
問題点を解決するための手段
本発明は、第1図ないし第6図に示すように、成形材1
を収容可能に設けると共にガスを循環させる風洞7を備
えた圧力容器Aと、前記圧力容器内に高圧ガスを供給し
て成形材を加圧する第一加圧手段Bと、前記圧力容器内
に供給された高圧ガスを加熱、冷却する加熱冷却手段C
とを備えたオートクレーブにおいて、前記圧力容器Aの
後部にモータ軸が挿通可能な貫通孔33を設け、該圧力
容器後部の外部位置には外部よりモータ軸32を前記貫
通孔33に挿入し該軸先端部に送風ファン37を固着せ
しめたモータ30を水平支持すると共に該モータを小型
容器31にて密閉せしめたファン駆動手段Eを設け、前
記ファン駆動手段Eには小型容器31内周部に沿って多
数の冷却パイプ39を水が循環可能に設けると共にその
供給を制御するモータ冷却手段Fを配設し、前記ファン
駆動手段Eには前記圧力容器Aに供給する同一の高圧ガ
スを小型容器31に供給する第二加圧手段Gを設けたも
のである。Means for Solving the Problems The present invention provides a molded material 1 as shown in FIGS. 1 to 6.
a pressure vessel A equipped with a wind tunnel 7 for accommodating gas and circulating gas; a first pressurizing means B for supplying high pressure gas into the pressure vessel to pressurize the molding material; Heating and cooling means C that heats and cools the high pressure gas
In an autoclave, a through hole 33 through which a motor shaft can be inserted is provided at the rear of the pressure vessel A, and a motor shaft 32 is inserted from the outside into the through hole 33 at an external position at the rear of the pressure vessel. A fan driving means E is provided, which horizontally supports a motor 30 having a blower fan 37 fixed to its tip and sealing the motor in a small container 31. A large number of cooling pipes 39 are provided so that water can circulate therein, and a motor cooling means F is provided to control the supply of water. A second pressurizing means G is provided for supplying pressure to the air.
また、成形材lを収容可能に設けると共にガスを循環さ
せる風洞7を備えた圧力容器Aと、前記圧力容器A内に
供給された高圧ガスを加熱、冷却する加熱冷却手段Cと
を備えたオートクレーブにおいて、前記圧力容器への後
部にモータ軸が挿通可能で且つ通気兼用の貫通孔33を
設け、該圧力容器後部の外部位置には外部よりモータ軸
32を前記貫通孔33に挿入し該軸先端部に送風ファン
37を固着せしめたモータ30を水平支持すると共に該
モータを小型容器31にて密閉せしめたファン駆動手段
Eを設け、前記ファン駆動手段Eには小型容器31内周
部に沿って多数の冷却パイプ39を水が循環可能に設け
ると共にその供給を制御するモータ冷却手段Fを配設し
、前記ファン駆動手段Eには高圧ガスを小型容器に供給
する加圧手段Hを設けたものである。Further, an autoclave is provided with a pressure vessel A equipped with a wind tunnel 7 capable of accommodating a molded material 1 and circulating gas, and a heating/cooling means C heating and cooling the high pressure gas supplied into the pressure vessel A. A through hole 33 through which a motor shaft can be inserted and which also serves as ventilation is provided at the rear part of the pressure vessel, and at an external position of the rear part of the pressure vessel, a motor shaft 32 is inserted from the outside into the through hole 33, and the tip of the shaft is inserted into the through hole 33 from the outside. A fan driving means E is provided, which horizontally supports a motor 30 to which a blower fan 37 is fixed, and the motor is sealed in a small container 31. A large number of cooling pipes 39 are provided to allow water to circulate, and a motor cooling means F is provided to control the supply of water, and the fan driving means E is provided with a pressurizing means H for supplying high pressure gas to a small container. It is.
そして、このように構成することにより、成形材lを圧
力容器A内に収容し密閉した後、高圧ガスを圧ノJ容器
へと小型容器31とに供給するか、または、小型容器3
1に供給し貫通孔33を介して圧力容器Aへと供給した
後、該高圧ガスを加熱すると共にモータ30を駆動して
送風ファン38を回転させ圧力容器A内の加熱高圧ガス
を風洞7を介して循環させて成形材1を加圧加熱する。With this configuration, after the molding material L is housed in the pressure vessel A and sealed, high pressure gas is supplied to the pressure vessel A and the small vessel 31, or the high pressure gas is supplied to the pressure vessel A and the small vessel 31.
1 and supplied to the pressure vessel A through the through hole 33, the high-pressure gas is heated and the motor 30 is driven to rotate the blower fan 38 to blow the heated high-pressure gas in the pressure vessel A through the wind tunnel 7. The molded material 1 is heated under pressure by being circulated through the molded material 1.
−方、小型容器31に供給され加熱された高圧ガスと同
圧にして、加熱ガスが小型容器31内に侵入しないよう
保持すると共に温度センサ42の検出信号によりモータ
冷却手段Fを作動させ冷却パイプ39に冷却水を供給し
てモータ30を冷却し、該モータが許容温度以下に成る
よう制御して小型容器内の密封を保持すると共にモータ
の焼損を防止するようにしたものである。- On the other hand, the pressure is maintained at the same pressure as the heated high-pressure gas supplied to the small container 31 so that the heated gas does not enter into the small container 31, and the motor cooling means F is activated by the detection signal of the temperature sensor 42, and the cooling pipe is Cooling water is supplied to the motor 39 to cool the motor 30, and the temperature of the motor is controlled to be below the allowable temperature, thereby maintaining the seal inside the small container and preventing burnout of the motor.
実施例 以下、添付図面に従い本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
本発明を実施する装置は、第1図ないし第6図に、示す
ように、成形材1を収容し密閉する扉2とガスを循環さ
せる二重の風洞7とを備えた圧力容器へと、前記圧力容
器A内に高圧ガスを供給して成形材1を加圧する第一加
圧手段Bまたは加圧手段Hと、前記圧力容器内に供給さ
れた高圧ガスを圧力容器内部後方に設置した熱交換器5
を介して加熱、(または電気ヒータにて加熱)冷却する
加熱冷却手段Cと、前記成形材lを密封する真空バッグ
12内を減圧して高真空にする減圧手段りと、前記加熱
冷却手段により加熱または冷却されたガスを圧力容器内
に送風するファン駆動装置とより構成したものである。As shown in FIGS. 1 to 6, the apparatus for carrying out the present invention includes a pressure vessel equipped with a door 2 for accommodating and sealing a molded material 1 and a double air tunnel 7 for circulating gas. A first pressurizing means B or pressurizing means H that supplies high pressure gas into the pressure vessel A to pressurize the molded material 1, and a heat source installed at the rear inside the pressure vessel to supply the high pressure gas supplied into the pressure vessel. Exchanger 5
(or by heating and cooling with an electric heater), a depressurizing means to reduce the pressure in the vacuum bag 12 for sealing the molding material 1 to create a high vacuum, and the heating and cooling means It consists of a fan drive device that blows heated or cooled gas into the pressure vessel.
次に、各手段及び装置についてその詳細を説明する。Next, details of each means and device will be explained.
圧力容器Aは、第4図、第5図に示すように、定盤11
(プラテンともいう)上に真空バッグ12にて密封され
た成形材1を載置する台車3をレール4へと搬入、搬出
可能で且つ扉2にて密閉できるよう設け、更に、熱交換
器5の手前位置で且つ圧力容器Aの内周部に沿って円筒
状の薄板風洞板6にて二重の風洞7を形成せしめ、圧力
容器Aの後部位置には、後述する本発明のファン駆動装
置を配設したものである。なお、圧力容器の容器内部に
は断熱材8を全内周面に施こしている。As shown in FIGS. 4 and 5, the pressure vessel A has a surface plate 11.
A trolley 3 (also referred to as a platen) on which a molded material 1 sealed in a vacuum bag 12 is placed can be carried in and out of the rail 4 and sealed with a door 2, and a heat exchanger 5 A double wind tunnel 7 is formed by a thin cylindrical wind tunnel plate 6 along the inner circumference of the pressure vessel A at a position in front of the pressure vessel A, and a fan drive device of the present invention, which will be described later, is installed at a rear position of the pressure vessel A. is arranged. Note that a heat insulating material 8 is applied to the entire inner peripheral surface inside the pressure vessel.
定盤11は、第6図に示すように、その表面を平滑に形
成せしめ、更に、該定盤の略中央部には真空路14を設
けたもので、該真空路は真空バッグ12にて密封された
積層成形材内の空気を、第5図、第6図に示すように、
真空継手13b、13aを介して外部の減圧手段りに連
通、遮断できるよう設けたものである。また、航空機構
造体や大型部品などの場合は、図示していないが、定盤
上に通気性のあるブリーザクロスにて成形材1を覆い、
その上に真空バッグを被せ、該真空バッグの適所より真
空引き可能に設けている。As shown in FIG. 6, the surface plate 11 has a smooth surface and is provided with a vacuum path 14 approximately in the center of the surface plate. As shown in Figures 5 and 6, the air inside the sealed laminated molded material is
It is provided so that it can be communicated with and cut off from external pressure reducing means via vacuum joints 13b and 13a. In addition, in the case of aircraft structures or large parts, the molded material 1 is covered with a breathable breather cloth on the surface plate, although not shown.
A vacuum bag is placed on top of the vacuum bag, and a vacuum can be drawn from a suitable position on the vacuum bag.
第一加圧手段Bは、第1図、第4図に示すように、一般
には、圧力容器A内に20kg/−以下の高圧チッソガ
ス、高圧炭酸ガス、高圧空気などの高圧ガスを高圧ガス
供給装置15により自動弁16を介して供給できるよう
設けたもので、前記ガスは熱交換器5を介して加熱また
は冷却される。As shown in FIGS. 1 and 4, the first pressurizing means B generally supplies high-pressure gas such as high-pressure nitrogen gas, high-pressure carbon dioxide gas, high-pressure air, etc. of 20 kg/- or less into the pressure vessel A. The device 15 is provided so that it can be supplied via an automatic valve 16, and the gas is heated or cooled via a heat exchanger 5.
そして、自動弁17を介して排気される。また、圧力容
器A内が所定の圧力を超えた時に減圧するための安全弁
18を設けている。The air is then exhausted via the automatic valve 17. Additionally, a safety valve 18 is provided to reduce the pressure inside the pressure vessel A when it exceeds a predetermined pressure.
加熱冷却手段Cは、第4図に示すように、圧力容器Aの
外部より内部後方の第二台車20上の熱交換器5に高圧
蒸気や冷却水を供給して圧力容器内のガスを加熱または
冷却するようにしたもので、高圧蒸気を供給する自動弁
21と冷却水を供給する自動弁22とを圧力容器Aを貫
通し熱交換器5に連通し、該熱交換器の下方より圧力容
器Aの下部を連通して自動弁23を介しして蒸気のドレ
ンや冷却水が排出できるよう設けたものである。As shown in FIG. 4, the heating and cooling means C supplies high pressure steam and cooling water from the outside of the pressure vessel A to the heat exchanger 5 on the second truck 20 at the rear of the inside to heat the gas inside the pressure vessel. Alternatively, an automatic valve 21 for supplying high-pressure steam and an automatic valve 22 for supplying cooling water are communicated with the heat exchanger 5 through the pressure vessel A, and the pressure is applied from below the heat exchanger. The lower part of the container A is connected so that steam drain and cooling water can be discharged via an automatic valve 23.
なお、加熱冷却手段の他の例として、圧力容器Aの外部
で加熱および冷却する手段を設け、その加熱および冷却
されたガスを圧力容器A内に供給するようにしてもよい
。また、加熱手段として高圧蒸気の代りに、第3図に示
すように、電気ヒータ1oを用いてもよい。但し、この
場合、熱交換器5は冷却専用として用いる。In addition, as another example of the heating and cooling means, a means for heating and cooling may be provided outside the pressure vessel A, and the heated and cooled gas may be supplied into the pressure vessel A. Moreover, as a heating means, an electric heater 1o may be used instead of high-pressure steam, as shown in FIG. However, in this case, the heat exchanger 5 is used only for cooling.
減圧手段りは、第4図、第5図に示すように圧力容器A
の外部に設置された真空ポンプ24から自動弁25を介
して圧力容器A内部へ連通して配管したものである。そ
して、その配管の先端部には、第5図、第6図に示すよ
うに、真空継手13aを設け、該真空継手は真空バッグ
12内部より連通して、しかも、気密を保持して接合せ
しめた真空継手13bと着脱可能に設けている。そして
、真空ポンプ24の作動により成形材1を被覆し密封せ
しめた真空バッグ12内部を減圧し高真空にすることが
できる。The pressure reducing means is a pressure vessel A as shown in FIGS. 4 and 5.
A vacuum pump 24 installed outside of the pressure vessel A is connected to the inside of the pressure vessel A via an automatic valve 25. As shown in FIGS. 5 and 6, a vacuum joint 13a is provided at the tip of the piping, and the vacuum joint 13a communicates with the inside of the vacuum bag 12 and is connected in an airtight manner. It is provided to be detachable from the vacuum joint 13b. Then, by operating the vacuum pump 24, the pressure inside the vacuum bag 12, which covers and seals the molded material 1, can be reduced to a high vacuum.
ファン駆動装置は、第1図ないし第3図に示すように、
圧力容器Aの後部にモータ30を内蔵した小型容器31
(小型圧力容器)を密封可能に設けたファン駆動手段
Eと、前記小型容器内のモータを許容温度以下に冷却し
制御するモータ冷却手段Fと、前記小型容器内に高圧ガ
スを供給する第二加圧手段Gまたは加圧手段Hとより構
成したものである。The fan drive device, as shown in FIGS. 1 to 3,
A small container 31 with a built-in motor 30 at the rear of the pressure container A
(a small pressure vessel); a motor cooling means F for cooling and controlling the motor within the small vessel to a permissible temperature or below; and a second fan driving means E for supplying high pressure gas into the small vessel. It is composed of pressurizing means G or pressurizing means H.
ファン駆動手段Eは、第1図、第3図に示すように、圧
力容器Aの後部にモータ軸32が挿通できる貫通孔33
を設け、該圧力容器後部の外部にはモータ台34を水平
状態にして固着支持し、更に、その外部には円筒状のフ
ランジ35を前記圧力容器後部位置に固着せしめている
。一方、前記モータ台34にはモータ軸32(出力軸)
を長くせしめた30を、該モータ軸が前記貫通孔33に
挿入するようにして取付け、該モータ軸の圧力容器Aの
外部位置にはガス攪拌用の小型ファン36を、圧力容器
A内部位置には送風ファン37を取付けている。また、
前記フランジ35にはモータ用のキャップ38(蓋)を
取付け、フランジ35と一体化して高圧ガスに耐えられ
る小型容器31を形成して、モータ30を圧力容器Aと
小型容器31とで密封できるよう構成したものである。As shown in FIGS. 1 and 3, the fan driving means E includes a through hole 33 in the rear part of the pressure vessel A through which a motor shaft 32 can be inserted.
A motor stand 34 is fixedly supported in a horizontal position on the outside of the rear part of the pressure vessel, and a cylindrical flange 35 is fixed on the outside of the motor stand 34 at the rear part of the pressure vessel. On the other hand, the motor stand 34 has a motor shaft 32 (output shaft).
A small fan 36 for stirring the gas is attached to the motor shaft at a position outside the pressure vessel A, and a small fan 36 for stirring the gas is installed at a position inside the pressure vessel A on the motor shaft. A blower fan 37 is installed. Also,
A cap 38 (lid) for the motor is attached to the flange 35, and is integrated with the flange 35 to form a small container 31 that can withstand high pressure gas, so that the motor 30 can be sealed between the pressure container A and the small container 31. It is composed of
モータ冷却手段Fは、前記モータ30の外周部で且つ小
型容器31の内周部に沿って多数の冷却パイプ39を水
が循環できるよう配設し、その−端部は小型容器31の
外部より自動弁40を介して冷却水が供給され、他の一
端部は加熱された水を自動弁41を介して排出、または
、図示していないが、チラーなどにて冷却し水の再利用
できるよう配管されている。更に、前記小型容器31の
適宜な位置には温度センサ42を取付け、該温度センサ
は小型容器内のガス温度がモータ30の許容温度を超え
ないようにその温度を検知し、その検知信号を自動弁4
0に伝達して冷却パイプ39に冷却水を供給して小型容
器31内のガスを冷却し、モータ30の自己発熱を取り
去るよう構成したものである。The motor cooling means F has a large number of cooling pipes 39 arranged around the outer circumference of the motor 30 and along the inner circumference of the small container 31 so that water can circulate therein, and the lower ends of the cooling pipes 39 are connected to the outside of the small container 31. Cooling water is supplied through an automatic valve 40, and heated water is discharged from the other end through an automatic valve 41, or is cooled with a chiller or the like (not shown) so that the water can be reused. It is plumbed. Furthermore, a temperature sensor 42 is attached to an appropriate position of the small container 31, and the temperature sensor detects the gas temperature in the small container so that it does not exceed the permissible temperature of the motor 30, and automatically transmits the detection signal. valve 4
0 and supplies cooling water to the cooling pipe 39 to cool the gas inside the small container 31 and remove the self-heat generated by the motor 30.
そして、冷却されたガスは小型ファン36の回転により
攪拌されてモータ30をより効果的に冷却することがで
きる。The cooled gas is stirred by the rotation of the small fan 36, and the motor 30 can be cooled more effectively.
なお、冷却パイプ39の形状は角形でもよく、また、そ
の配設方法も小型容器の内周部で且つモータの外周部に
あればよく、要は、小型容器内のガスが冷却できる位置
に配設されていればよく、本発明の実施例に限定されな
い。The shape of the cooling pipe 39 may be rectangular, and its arrangement may be as long as it is located on the inner periphery of the small container and on the outer periphery of the motor. The present invention is not limited to the embodiments of the present invention.
第二加圧手段Gは、第1図に示すように、本体圧力容器
Aに供給する高圧ガスを高圧ガス供給装置15の配管か
ら第一加圧手段Bと並列して分岐させ、小型容器31に
自動弁43を介して供給できるようにして、小型容器3
1内と圧力容器A内の圧力が同圧になるよう設けたもの
である。これは、圧力容器A内の加熱高圧ガスと小型容
器31内の高圧ガスとを同圧にすると、モータ軸32が
挿通されている貫通孔33の隙間が小さいため、両容器
間のガスの移動は行なわれない。従って、小型容器31
内の高圧ガスは圧力容器A内の加熱高圧ガスに余り影響
を受けることなく、即ち、余り加熱されることなく、大
気中の雰囲気温度に近い状態を保持すると共に前記冷却
水による冷却効果と併せてモータ30の加熱を防止する
ことができる。As shown in FIG. 1, the second pressurizing means G branches the high pressure gas to be supplied to the main body pressure vessel A from the piping of the high pressure gas supply device 15 in parallel with the first pressurizing means B. through the automatic valve 43, the small container 3
The pressure inside pressure vessel A is set to be the same as that inside pressure vessel A. This is because when the heated high-pressure gas in the pressure vessel A and the high-pressure gas in the small vessel 31 are at the same pressure, the gap between the through hole 33 through which the motor shaft 32 is inserted is small, so that the gas moves between the two vessels. is not carried out. Therefore, the small container 31
The high-pressure gas inside the pressure vessel A is not significantly affected by the heated high-pressure gas inside the pressure vessel A, that is, is not heated too much, and maintains a state close to the ambient temperature in the atmosphere, and also has the cooling effect of the cooling water. Thus, heating of the motor 30 can be prevented.
加圧手段Hは、第3図に示すように、高圧ガス供給装置
15の配管から自動弁44を介して単独供給できるよう
にして、小型容器31内と圧力容器A内の圧力が同圧に
なるよう設けたもので、この場合、圧力容器Aへ供給す
る第一加圧手段Bは不要である。そして、圧力容器Aへ
の高圧ガスの供給は、この加圧手段Hにより先ず小型容
器31内へ供給され、次いで、第3図の鎖線の矢印で示
すように、高圧ガスはモータ軸32と貫通孔33との隙
間部を通じて圧力容器A内へと供給できるよう構成した
ものである。そして、このようにすることにより、加圧
手段が簡素化され、しかも、小型容器31には冷却ガス
が通過するため、両容器が同圧になるまでは小型容器3
1内のガスは冷却され、同圧後においてもモータ軸32
と貫通孔33との隙間が小さいため、両容器間のガスの
移動は行なわれない。従って、前記第二加圧手段の場合
と同じく、小型容器31内の高圧ガスは余り加熱される
ことなく、大気中の雰囲気温度に近い状態を保持すると
共に前記冷却水による冷却効果と併せてモータの加熱を
防止することができる。As shown in FIG. 3, the pressurizing means H is configured so that it can be supplied independently from the piping of the high-pressure gas supply device 15 via an automatic valve 44, so that the pressures in the small container 31 and the pressure container A are the same. In this case, the first pressurizing means B for supplying pressure to the pressure vessel A is unnecessary. The high pressure gas is supplied to the pressure vessel A by first being supplied into the small vessel 31 by the pressurizing means H, and then, as shown by the chain line arrow in FIG. It is configured so that it can be supplied into the pressure vessel A through the gap with the hole 33. By doing this, the pressurizing means is simplified, and since the cooling gas passes through the small container 31, the small container 31 is closed until both containers have the same pressure.
The gas in the motor shaft 32 is cooled and even after the same pressure
Since the gap between the container and the through hole 33 is small, gas does not move between the containers. Therefore, as in the case of the second pressurizing means, the high-pressure gas in the small container 31 is not heated too much, and maintains a state close to the ambient temperature in the atmosphere, and in addition to the cooling effect of the cooling water, the motor heating can be prevented.
この場合、圧力容器A内で加熱された高圧ガスの減圧は
、第3図に示す圧力容器A内より自動弁17を介して排
気される。In this case, the reduced pressure of the high pressure gas heated in the pressure vessel A is exhausted from the pressure vessel A through the automatic valve 17 shown in FIG.
このようにして、小型容器31内のガスは冷却されてモ
ータ30を保護すると共に高圧ガスは圧力容器Aと小型
容器31とで完全に密封され気密性を保持することがで
きる。In this way, the gas in the small container 31 is cooled to protect the motor 30, and the high-pressure gas is completely sealed between the pressure container A and the small container 31 to maintain airtightness.
そして、圧力容器A内に取付けた送風ファン38を回転
させることにより、加熱または冷却ガスは、第1図、第
3図、第4図に示す二重の風洞7の外測を通り抜け、扉
2の内壁にて反転して内洞を通り成形材lとの間を矢印
に示すようにUターンして循環できるようにしたもので
ある。Then, by rotating the blower fan 38 installed in the pressure vessel A, the heated or cooled gas passes through the outer diameter of the double wind tunnel 7 shown in FIGS. The material is turned around at the inner wall of the material, passes through the inner cavity, and circulates between the material and the molded material 1 by making a U-turn as shown by the arrow.
次に、その作用を説明する。Next, its effect will be explained.
最初に、第6図に示すように、定盤11上に治具9(金
型)を載置し、更に、該治具に沿わせて成形材1を積層
し、その上に離型フィルム、ブリーザクロス53などを
被せ、真空バッグ12にて被覆しシーラント54にて完
全密封する。First, as shown in FIG. 6, a jig 9 (mold) is placed on the surface plate 11, and the molding material 1 is laminated along the jig, and a release film is placed on top of the molding material 1. , a breather cloth 53, etc., and then covered with a vacuum bag 12 and completely sealed with a sealant 54.
次いで、成形材lを載置した定盤11を台車3上に載せ
、第4図、第5図に示すように、圧力容器A内に搬入す
る。Next, the surface plate 11 on which the molded material 1 is placed is placed on the trolley 3, and is carried into the pressure vessel A as shown in FIGS. 4 and 5.
そして、真空継手13bを圧力容器内配管部の真空継手
13aに接続して扉2を閉じ圧力容器Aを密閉する。Then, the vacuum joint 13b is connected to the vacuum joint 13a of the piping inside the pressure vessel, and the door 2 is closed to seal the pressure vessel A.
吹いで、第4図に示す真空ポンプ24と自動弁25を作
動させて真空バッグ12の内部を減圧すこのように、真
空バッグ内部を減圧することにより、先ず、成形材1を
積層する際に介在している空気を真空作用により真空継
手13b〜13aを通じて外部へ排出する。By blowing, the vacuum pump 24 and automatic valve 25 shown in FIG. The intervening air is discharged to the outside through vacuum joints 13b to 13a by means of a vacuum action.
次いで、第1図に示す第一加圧手段Bの自動弁16と第
二加圧手段Gの自動弁43を作動させて圧力容器A内お
よび小型容器31内に高圧ガスを供給し真空バッグ12
を介して成形材lを加圧すると共に加熱冷却手段Cの自
動弁21を作動させて熱交換器5に高圧蒸気を付与し圧
力容器A内の高圧ガスを加熱する。そして、ファン駆動
手段Eのモータ30を作動させて送風ファン38を回転
させ、加熱されたガスを圧力容器A内の二重の風洞7の
外測を通り扉2の内壁で反転させ内洞へと循環させる。Next, the automatic valve 16 of the first pressurizing means B and the automatic valve 43 of the second pressurizing means G shown in FIG.
The molding material I is pressurized via the heating and cooling means C, and the automatic valve 21 of the heating and cooling means C is operated to apply high pressure steam to the heat exchanger 5, thereby heating the high pressure gas in the pressure vessel A. Then, the motor 30 of the fan driving means E is operated to rotate the blower fan 38, and the heated gas passes through the outer diameter of the double wind tunnel 7 in the pressure vessel A, is reversed on the inner wall of the door 2, and enters the inner cavity. and circulate.
そして、成形材lは真空バッグ12を介して加熱される
。この時、小型容器31内と圧力容器A内の圧力を同圧
にしているため、両容器間のガスの移動はほとんど行な
われない。従って、小型容器31へのガスの侵入が余り
ないため、モータ30を雰囲気から加熱することは少な
いが、モータ30の自己発熱によりガスは加熱されその
加熱がモータの許容温度を超えるような場合、モータ冷
却手段Aの温度センサ42がその温度を検知し、その検
知信号を自動弁40に伝達して作動させ、冷却パイプ3
9に冷却水を供給して小型容器31内のガスを冷却しす
る。そして、冷却されたガスは小型ファン36の回転に
より攪拌されてモータ30を許容温度以下になるよう制
御する。The molding material l is then heated through the vacuum bag 12. At this time, since the pressures in the small container 31 and the pressure container A are kept at the same pressure, there is almost no movement of gas between the two containers. Therefore, since there is little gas intrusion into the small container 31, the motor 30 is rarely heated from the atmosphere, but if the gas is heated by the self-heating of the motor 30 and the heating exceeds the allowable temperature of the motor, The temperature sensor 42 of the motor cooling means A detects the temperature, transmits the detection signal to the automatic valve 40 to operate it, and the cooling pipe 3
9 is supplied with cooling water to cool the gas inside the small container 31. Then, the cooled gas is stirred by the rotation of the small fan 36, and the motor 30 is controlled to keep the temperature below the allowable temperature.
そして、成形材lの加熱が進行するが、成形材1への熱
伝達は全面より均一に行なわれ、温度上昇につれて−様
な溶融状態となり、成形材の形状が複雑であったとして
も、所定の静水圧の特性により全面より均一に加圧加熱
される。Then, the heating of the molding material 1 progresses, but the heat transfer to the molding material 1 is uniform from the entire surface, and as the temperature rises, it becomes a -like molten state, and even if the shape of the molding material is complicated, it is Due to its hydrostatic properties, the entire surface is evenly pressurized and heated.
続いて、成形材1の温度を更に上昇させ、規定温度に至
りでしばらくその温度を維持し、成形材を接着硬化させ
る。Subsequently, the temperature of the molded material 1 is further increased until it reaches a specified temperature, and is maintained at that temperature for a while to bond and harden the molded material.
次に、第4図に示す自動弁21を逆作動させて高圧蒸気
の供給を止め加熱を停止し、続いて、自動が22を作動
させて熱交換器5に冷却水を供給し圧力容器A内の加熱
高圧ガスを冷却すると共に、冷却された高圧ガスは、第
4図に示すように、送風ファン38により送風され二重
の風洞7を介して圧力容器A内を循環し成形材1を冷却
する。Next, the automatic valve 21 shown in FIG. 4 is operated in reverse to stop the supply of high-pressure steam and stop heating, and then the automatic valve 22 is operated to supply cooling water to the heat exchanger 5 and pressure vessel A. As shown in FIG. 4, the cooled high-pressure gas is blown by a blower fan 38 and circulated inside the pressure vessel A through the double wind tunnel 7, and the molded material 1 is then cooled. Cooling.
次に、自動弁25を作動させて圧力容器A内の圧力を徐
々に低下させる。Next, the automatic valve 25 is operated to gradually reduce the pressure inside the pressure vessel A.
そして、成形材1が冷却されると、全ての作動を停止さ
せ、扉2を開き成形材lを外部へ搬出し一工程が完了す
る。When the molded material 1 is cooled, all operations are stopped, the door 2 is opened, and the molded material 1 is carried out to the outside, completing one process.
発明の効果
本発明は、以上のように構成しているから、成形材を収
容する圧力容器とファン駆動手段を密閉する小型容器と
が一体的に構成して完全密封され高圧ガスの洩れを全く
無くすることができるため、従来のメカニカル・シール
やグランド・シールなどの密封装置が不要となり、従っ
て、メカニカル・シールやグランド・シールなどを補修
する時間的ロスや工数が無くなり生産性向上が期待でき
る。Effects of the Invention Since the present invention is constructed as described above, the pressure container that houses the molding material and the small container that seals the fan driving means are integrally constructed and are completely sealed, thereby preventing any leakage of high-pressure gas. This eliminates the need for conventional sealing devices such as mechanical seals and gland seals, which eliminates the time loss and man-hours required to repair mechanical seals and gland seals, and can be expected to improve productivity. .
更に、ガスを供給する加圧手段を単独に用いているため
、ファン駆動用モータの冷却を促進すると共に加圧手段
が簡素化され経済的である。Furthermore, since the pressurizing means for supplying gas is used alone, cooling of the fan drive motor is facilitated, and the pressurizing means is simplified and economical.
第1図は本発明に係る装置の一実施例を示す一部破断し
た概略側面図。第2図は第1図のx−x矢視した概略正
面断面図。第3図は本発明の他の実施例の一部破断した
概略側面図、第4図は従来の装置でその一部を破断した
概略側面図。第5図は第4図の扉を開けた状態を示す概
略正面図、第6図は成形材を真空バッグにて定盤上に密
封した状態を示す概略正面断面図。
これらの図面において
A 圧力容器、B:第一加圧手段、C:加熱冷却手段、
D、減圧手段、E・ファン駆動手段、F:モータ冷却手
段、G、第一加圧手段、H−加圧手段、■・ファン駆動
手段、1・成形材、2:扉。
3゛台車、4 レール、5.熱交換器、6:風洞板、7
:二重の風洞、8:断熱材、9:治具、10°電気ヒー
タ、11.定盤、12:真空バッグ。
13a、13b:真空継手、14:真空路、15:高圧
ガス供給装置、16.17:自動弁、18:安全弁、2
0 第二台車、21,22,23:自動弁、24・真空
ポンプ、25 自動弁、30・モータ、31.小型容器
、32・モータ軸、33゜貫通孔、34・モータ台、3
5:フランジ、36゜小型ファン、38:送風ファン、
39:冷却パイプ、40,41,42,43,44:自
動弁、50、外部モータ、51:密封装置、52:駆動
軸。
手続補正害(自発)FIG. 1 is a partially cutaway schematic side view showing one embodiment of the device according to the present invention. FIG. 2 is a schematic front sectional view taken along the line xx in FIG. 1. FIG. 3 is a partially cutaway schematic side view of another embodiment of the present invention, and FIG. 4 is a partially cutaway schematic side view of a conventional device. 5 is a schematic front view showing a state in which the door of FIG. 4 is opened, and FIG. 6 is a schematic front sectional view showing a state in which the molded material is sealed on a surface plate in a vacuum bag. In these drawings, A: pressure vessel, B: first pressurizing means, C: heating and cooling means,
D, pressure reduction means, E-fan driving means, F: motor cooling means, G, first pressurizing means, H-pressurizing means, ■-fan driving means, 1. molded material, 2: door. 3. Trolley, 4. Rail, 5. Heat exchanger, 6: Wind tunnel board, 7
: Double wind tunnel, 8: Insulation material, 9: Jig, 10° electric heater, 11. Surface plate, 12: Vacuum bag. 13a, 13b: Vacuum joint, 14: Vacuum path, 15: High pressure gas supply device, 16.17: Automatic valve, 18: Safety valve, 2
0 Second truck, 21, 22, 23: Automatic valve, 24・Vacuum pump, 25 Automatic valve, 30・Motor, 31. Small container, 32・Motor shaft, 33° through hole, 34・Motor stand, 3
5: Flange, 36° small fan, 38: Blower fan,
39: Cooling pipe, 40, 41, 42, 43, 44: Automatic valve, 50, External motor, 51: Sealing device, 52: Drive shaft. Procedural amendment damage (voluntary)
Claims (1)
風洞を備えた圧力容器と、前記圧力容器内に高圧ガスを
供給して成形材を加圧する第一加圧手段と、前記圧力容
器内に供給された高圧ガスを加熱、冷却する加熱冷却手
段とを備えたオートクレーブにおいて、前記圧力容器の
後部にモータ軸が挿通可能な貫通孔を設け、該圧力容器
後部の外部位置には外部よりモータ軸を前記貫通孔に挿
入し該軸先端部に送風ファンを固着せしめたモータを水
平支持すると共に該モータを小型容器にて密閉せしめた
ファン駆動手段を設け、前記ファン駆動手段には小型容
器内周部に沿つて多数の冷却パイプを水が循環可能に設
けると共にその供給を制御するモータ冷却手段を配設し
、前記ファン駆動手段には前記圧力容器に供給する同一
の高圧ガスを小型容器に供給する第二加圧手段を設けた
ことを特徴とするオートクレーブにおけるファン駆動装
置。 2、成形材を収容可能に設けると共にガスを循環させる
風洞を備えた圧力容器と、前記圧力容器内に供給された
高圧ガスを加熱、冷却する加熱冷却手段とを備えたオー
トクレーブにおいて、前記圧力容器の後部にモータ軸が
挿通可能で且つ通気兼用の貫通孔を設け、該圧力容器後
部の外部位置には外部よりモータ軸を前記貫通孔に挿入
し該軸先端部に送風ファンを固着せしめたモータを水平
支持すると共に該モータを小型容器にて密閉せしめたフ
ァン駆動手段を設け、前記ファン駆動手段には小型容器
内周部に沿って多数の冷却パイプを水が循環可能に設け
ると共にその供給を制御するモータ冷却手段を配設し、
前記ファン駆動手段には高圧ガスを小型容器に供給する
加圧手段を設けたことを特徴とするオートクレーブにお
けるファン駆動装置。[Scope of Claims] 1. A pressure vessel capable of accommodating a molded material and equipped with a wind tunnel for circulating gas, and a first pressurizing means for supplying high pressure gas into the pressure vessel to pressurize the molded material. , an autoclave equipped with heating and cooling means for heating and cooling high-pressure gas supplied into the pressure vessel, wherein a through hole through which a motor shaft can be inserted is provided in the rear part of the pressure vessel, and an external position of the rear part of the pressure vessel is provided. is provided with a fan drive means which horizontally supports a motor having a motor shaft inserted into the through hole from the outside and a blower fan fixed to the tip of the shaft, and the motor is sealed in a small container, and the fan drive means A large number of cooling pipes are provided along the inner periphery of the small container to allow water to circulate, and a motor cooling means for controlling the supply of water is provided, and the fan driving means is provided with the same high pressure supplied to the pressure container. A fan drive device for an autoclave, characterized in that a second pressurizing means for supplying gas to a small container is provided. 2. An autoclave comprising a pressure vessel capable of accommodating a molded material and equipped with a wind tunnel for circulating gas, and a heating and cooling means for heating and cooling high pressure gas supplied into the pressure vessel, wherein the pressure vessel A through hole through which a motor shaft can be inserted and also used for ventilation is provided at the rear of the pressure vessel, a motor shaft is inserted into the through hole from the outside at an external position at the rear of the pressure vessel, and a blower fan is fixed to the tip of the shaft. A fan driving means is provided in which the motor is horizontally supported and the motor is hermetically sealed in a small container, and the fan driving means is provided with a number of cooling pipes along the inner periphery of the small container so that water can be circulated therein. A motor cooling means is provided to control the
A fan drive device for an autoclave, characterized in that the fan drive means is provided with pressurizing means for supplying high pressure gas to a small container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63061674A JPH0661450B2 (en) | 1988-03-14 | 1988-03-14 | Fan drive device in autoclave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63061674A JPH0661450B2 (en) | 1988-03-14 | 1988-03-14 | Fan drive device in autoclave |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01236933A true JPH01236933A (en) | 1989-09-21 |
JPH0661450B2 JPH0661450B2 (en) | 1994-08-17 |
Family
ID=13178030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63061674A Expired - Fee Related JPH0661450B2 (en) | 1988-03-14 | 1988-03-14 | Fan drive device in autoclave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0661450B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03224626A (en) * | 1990-01-31 | 1991-10-03 | Trinity Ind Corp | Autoclave |
-
1988
- 1988-03-14 JP JP63061674A patent/JPH0661450B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03224626A (en) * | 1990-01-31 | 1991-10-03 | Trinity Ind Corp | Autoclave |
Also Published As
Publication number | Publication date |
---|---|
JPH0661450B2 (en) | 1994-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0661449B2 (en) | Method and apparatus for circulating gas in autoclave | |
JP5266378B2 (en) | Painting equipment | |
US6619358B2 (en) | Method and system for bonding plastic parts together | |
JPH01236933A (en) | Fan driver of autoclave | |
KR20090005136A (en) | Seal structure for cooling treatment apparatus or multichamber heat treatment apparatus, and for the seal structure, method of pressure regulation and method of operating | |
EP1235680A1 (en) | Method and apparatus for thermoforming of plastic sheets | |
KR100320702B1 (en) | Method and apparatus for pressurizing and hardening on multi-layer printed circuit board | |
JP2799633B2 (en) | Material temperature control method in autoclave molding | |
JPH0333095B2 (en) | ||
US12059852B2 (en) | Composite material molding method and composite material molding device | |
JPS6287328A (en) | Attaching and detaching of vacuum joint in autoclave molding of printed wiring board | |
JPH0435129Y2 (en) | ||
CN216993146U (en) | Film blowing corona device of degradable plastic packaging bag | |
JPH0455563B2 (en) | ||
JP3433237B2 (en) | Powdering equipment | |
JPH067665A (en) | Method for controlling gas current of autoclave | |
JPH04144717A (en) | Method and device for controlling local heating in autoclave molding | |
JP4316076B2 (en) | Composite parts repair equipment | |
WO1989007551A1 (en) | Method and apparatus for vacuum sealing a precooked-food container | |
WO2021186659A1 (en) | Method for molding composite material and apparatus for molding composite material | |
JPH01203034A (en) | Heating and melting device | |
JPS6194742A (en) | Forming device of fiber reinforced plastic | |
JPH03123636A (en) | Control of rotational speed of circulating fan in autoclave molding | |
JP2714198B2 (en) | Laser processing equipment | |
WO2021019604A1 (en) | Composite material forming device and composite material forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |