JPH0333095B2 - - Google Patents

Info

Publication number
JPH0333095B2
JPH0333095B2 JP60120795A JP12079585A JPH0333095B2 JP H0333095 B2 JPH0333095 B2 JP H0333095B2 JP 60120795 A JP60120795 A JP 60120795A JP 12079585 A JP12079585 A JP 12079585A JP H0333095 B2 JPH0333095 B2 JP H0333095B2
Authority
JP
Japan
Prior art keywords
pressure
airtight chamber
prepreg
gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60120795A
Other languages
Japanese (ja)
Other versions
JPS61277428A (en
Inventor
Masashi Nakaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashida Manufacturing Co Ltd
Original Assignee
Ashida Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashida Manufacturing Co Ltd filed Critical Ashida Manufacturing Co Ltd
Priority to JP60120795A priority Critical patent/JPS61277428A/en
Publication of JPS61277428A publication Critical patent/JPS61277428A/en
Publication of JPH0333095B2 publication Critical patent/JPH0333095B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多層プリント配線板並びに銅張積層
板、非銅張積層板等の積層板をオートクレーブに
て成形する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for molding multilayer printed wiring boards and laminates such as copper-clad laminates and non-copper-clad laminates in an autoclave.

従来の技術 従来、多層プリント配線板並びに該多層プリン
ト配線板に用いる銅張積層板、非銅張積層板等の
積層板を成形する技術として、一般に、熱盤プレ
ス方式が知られている。
BACKGROUND ART Conventionally, a hot platen press method is generally known as a technique for forming multilayer printed wiring boards and laminates such as copper-clad laminates and non-copper-clad laminates used in multilayer printed wiring boards.

熱盤プレス方式は、被成形材を複数のプレート
金型(鏡面板ともいう)を介して熱盤間に多数枚
重ね載置した後、大気中で加熱加圧して前記被成
形材におけるプリプレグの樹脂部を一旦軟化さ
せ、然る後、硬化させて被成形材を接着硬化せし
め成形するものである。
In the hot platen press method, a large number of sheets of the material to be formed are stacked between hot plates via multiple plate molds (also called mirror plates), and then the prepreg in the material to be formed is heated and pressurized in the atmosphere. The resin part is once softened and then hardened to bond and harden the material to be molded.

また、被成形材を真空加熱加圧し成形する技術
も知られている。
Furthermore, a technique is also known in which a material to be molded is vacuum-heated and pressurized to shape it.

この技術は、定盤(プラテン)20上に、被成
形材1を鏡面板24を挟んで多段に積載配置し、
更に、ブリーザ28を被せ、その上に耐熱性があ
り且つ柔軟性のある真空バツグフイルム30にて
被覆密封して圧力容器内に収容し密封した後、前
記真空バツグフイルム内を減圧すると共に前記容
器内に高圧ガスを供給し、該ガスを加熱して被成
形材を加熱加圧し接着硬化せしめ成形するもので
ある。
This technique involves stacking and arranging the to-be-formed materials 1 in multiple stages on a surface plate (platen) 20 with a mirror plate 24 in between.
Further, the breather 28 is placed on top of the breather 28, and a heat-resistant and flexible vacuum bag film 30 is coated and sealed, and the vacuum bag film 30 is placed in a pressure vessel and sealed, and then the pressure inside the vacuum bag film is reduced, and the vacuum bag film 30 is sealed. A high-pressure gas is supplied inside the mold, and the gas is heated to heat and pressurize the material to be molded to harden the adhesive and mold it.

発明が解決しようとする問題点 しかしながら、これらの技術には、下記のよう
な問題点を抱えている。
Problems to be Solved by the Invention However, these techniques have the following problems.

一般に、被成形材のプリプレグは若干の水分や
積層時の空気、塗工紙布に内包されている空気お
よび未反応の樹旨原料の揮発性物質などが気泡と
して含まれたまま加熱加圧成形されるため、積層
板(被成形材)内部にボイドが発生し、積層板の
特性を著しく低下させている。
In general, the prepreg material to be molded is heated and pressed while containing some moisture, air during lamination, air contained in the coated paper fabric, and volatile substances from unreacted wood raw materials as air bubbles. As a result, voids are generated inside the laminate (material to be formed), which significantly deteriorates the properties of the laminate.

そのため、熱盤プレス方式では、前記気泡を無
くするよう加熱により軟化したプリプレグの含浸
樹脂を高圧力にて流動させてプリプレグに内包さ
れている気泡を外部に押し出させる手段を試みて
いるが、プリプレグの端部(周辺部)は放熱され
ており加熱温度が低くなる。
Therefore, in the hot plate press method, in order to eliminate the air bubbles, an attempt has been made to flow the impregnated resin of the prepreg, which has been softened by heating, at high pressure and push out the air bubbles contained in the prepreg. Heat is radiated from the edge (periphery), and the heating temperature is lower.

一方、プリプレグの中央部は蓄熱されて加熱温
度が高くなり、従つて、この時プリプレグの中央
部では高温加熱されるために含浸樹脂の溶融粘度
が高くなつているものの、プリプレグの端部では
加熱温度が高温でないため、含浸樹脂の溶融粘度
が多く、熱盤による高圧力(一般には40Kg/cm2
上)でプリプレグの溶融樹脂が多量に流出して積
層板端部の厚みは中央部に比べて薄くなり板厚の
ばらつきが生じ、更に、高圧力で加圧されている
ため、ストレスによる収縮が大きく、その結果多
層回路板の回路線がずれ、その上、反りやねじれ
等も発生し製品として問題がある。
On the other hand, the central part of the prepreg accumulates heat and the heating temperature becomes high. Therefore, at this time, the central part of the prepreg is heated to a high temperature and the melt viscosity of the impregnated resin becomes high, but the end part of the prepreg is heated. Since the temperature is not high, the molten viscosity of the impregnated resin is high, and the high pressure (generally 40 kg/cm 2 or more) from the hot plate causes a large amount of the molten resin of the prepreg to flow out, making the edge of the laminate thicker than the center. In addition, since the board is subjected to high pressure, it shrinks significantly due to stress, and as a result, the circuit wires on the multilayer circuit board become misaligned, and in addition, warping and twisting occur, causing the product to deteriorate. There is a problem as.

そこで、従来、特開昭56−121734号、特開昭59
−62113号、特開昭59−76257号等に示されている
ような各種の改善がなされているが、それぞれ一
長一短であり適切な改善策が切望されている。
Therefore, in the past, JP-A-56-121734, JP-A-59
Although various improvements have been made, such as those shown in Japanese Patent Application Laid-open No. 59-62113 and Japanese Patent Application Laid-open No. 59-76257, each has advantages and disadvantages, and appropriate improvement measures are desperately needed.

また、真空加熱加圧し成形する技術は、例え
ば、被成形材を加熱加圧プログラムに従い加熱し
加圧した場合、被成形材は、一般に、4層、6層
に成形したとしても1〜2mm前後と薄いものであ
るが、面積は330mm×500mm、500mm×500mm、600
mm×600mm等と広く、しかも、加熱は熱風を用い
ているため被成形材の表面より加熱される。その
ため、被成形材は第10図に示すように多段に積
載された被成形材の上下面及び四側面から加熱さ
れるが、被成形材の芯部における、端部(周辺
部)35から中央部36への熱伝達が遅く、従つ
て、被成形材の端部(周辺部)35と中央部36
とは第11図のグラフの実線と二点鎖線で示すよ
うに大きな温度差が生じる。
In addition, in the vacuum heating and pressurizing molding technology, for example, when a material to be molded is heated and pressurized according to a heating and pressing program, the material to be molded is generally around 1 to 2 mm even if it is formed into 4 or 6 layers. Although it is thin, the area is 330mm x 500mm, 500mm x 500mm, 600mm
It is wide, such as mm x 600 mm, and because hot air is used for heating, the material to be formed is heated from the surface. Therefore, the material to be formed is heated from the upper and lower surfaces and the four sides of the material to be formed stacked in multiple stages as shown in FIG. The heat transfer to the part 36 is slow, therefore, the end part (periphery part) 35 and the central part 36 of the material to be formed are
As shown by the solid line and the two-dot chain line in the graph of FIG. 11, a large temperature difference occurs.

その温度差により、被成形材のプリプレグは熱
硬化性樹脂を含浸させたものを用いているため、
その特性により被成形材の端部(周辺部)35が
溶融しているにもかかわらず、その中央部36は
未だ溶融せず、従つて、加圧による上からの押圧
と減圧による横からの真空引きを行う手段を用い
ても、なお、プリプレグに内在している気泡(ガ
ス)の押し出しができず、従つて、プリプレグ外
部の真空中に排出させることが困難でありプリプ
レグ内部に気泡が残留する。
Due to the temperature difference, the prepreg material to be molded is impregnated with thermosetting resin, so
Due to its characteristics, even though the edges (periphery) 35 of the material to be formed are melted, the center part 36 is not yet melted, and therefore, pressure from above due to pressurization and from the side due to reduced pressure occur. Even if a means of vacuuming is used, the bubbles (gas) contained in the prepreg cannot be pushed out, and therefore it is difficult to expel them into the vacuum outside the prepreg, and the bubbles remain inside the prepreg. do.

そこで、この気泡の残留をなくするため、被成
形材1の昇温速度をゆつくりにして被成形材の端
部(周辺部)35と中央部36との温度差を少な
くし気泡の残留を防止しているが、反面、昇温が
遅いため成形時間が長くなり、生産能率を低下さ
せるという新たな問題が生じている。
Therefore, in order to eliminate the remaining air bubbles, the rate of temperature rise of the material to be formed 1 is slowed down to reduce the temperature difference between the edges (periphery) 35 and the center 36 of the material to be formed, thereby eliminating the remaining air bubbles. However, on the other hand, a new problem has arisen in that the temperature rise is slow, which lengthens the molding time and reduces production efficiency.

更に、真空バツグフイルムを用いているため、
再使用が効かず不経済であり、しかも、密封の作
業性も悪く自動化への対応ができない等の問題点
を抱えている。
Furthermore, since vacuum bag film is used,
It is not economical because it cannot be reused, and it also has problems such as poor sealing efficiency and not being compatible with automation.

本発明は前述の各種問題点を解決することを目
的として開発したものである。
The present invention was developed with the aim of solving the various problems mentioned above.

問題点を解決するための手段 本発明である積層板の成形方法は、積層板をオ
ートクレーブにて真空加熱加圧成形するにおい
て、被成形材を空隙をもたせて収容でき且つ該被
成形材を上面より加圧でき側面からの圧力は防止
できるようにした開閉可能な気密室を設け、該気
密室内を減圧する減圧手段と着脱可能に設け、前
記気密室内に被成形材を収容し密封して圧力容器
内に搬入し、前記気密室を減圧手段に接続して気
密室内を減圧し、次いで、前記容器内に高圧ガス
を供給して被成形材を上面より加圧すると共に、
該高圧ガスを加熱し該加熱ガスを循環させて被成
形材を上下面より加熱し接着硬化せしめ成形する
ものである。
Means for Solving the Problems The method for forming a laminate according to the present invention is such that when a laminate is vacuum-heated and pressure-molded in an autoclave, the material to be formed can be accommodated with a gap, and the material to be formed can be placed on the upper surface. An airtight chamber that can be opened and closed is provided so that pressure can be increased and pressure from the sides can be prevented, and a decompression means for reducing the pressure inside the airtight chamber is detachably provided. The molded material is carried into a container, the airtight chamber is connected to a pressure reducing means to reduce the pressure inside the airtight chamber, and then high pressure gas is supplied into the container to pressurize the material to be formed from the upper surface,
The high-pressure gas is heated and the heated gas is circulated to heat the material to be formed from the upper and lower surfaces to harden the adhesive and form it.

実施例 以下、添付図面に従い本発明の実施例を説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

最初に、説明に先立ち本発明でいう積層板につ
いて説明する。
First, prior to the explanation, the laminate as used in the present invention will be explained.

本発明でいう積層板とは、多層プリント配線板
並びに該多層プリント配線板に用いる銅張積層
板、非銅張積層板(例えばアルミニウム張積層
板)等の積層板のことをいう。
The laminate used in the present invention refers to a multilayer printed wiring board and a laminate such as a copper-clad laminate, a non-copper-clad laminate (for example, an aluminum-clad laminate), etc. used in the multilayer printed wiring board.

被成形材とは、前記積層板を成形するための材
料であり、内層回路板を含み、プリプレグ、銅箔
などにより構成したものである。
The material to be molded is a material for molding the laminate, includes an inner layer circuit board, and is made of prepreg, copper foil, or the like.

プリプレグとは、紙、ガラス布などの基材にフ
エノール樹脂ワニスやエポキシ樹脂ワニスなど熱
硬化性樹旨ワニスを含浸させて樹脂含浸シートを
作成し、この樹脂含浸シートを乾燥させてBステ
ージ化したものである。
Prepreg is made by impregnating a base material such as paper or glass cloth with thermosetting resin varnish such as phenol resin varnish or epoxy resin varnish to create a resin-impregnated sheet, and then drying this resin-impregnated sheet to make it B-stage. It is something.

銅張積層板とは、前記プリプレグを定寸法に切
断し、該プリプレグを複数枚重ねてプリプレグの
面または両面に銅箔を貼り合わせ加熱加圧し接着
硬化成形したものである。
A copper-clad laminate is obtained by cutting the above prepreg to a fixed size, stacking a plurality of sheets of the prepreg, pasting copper foil on one or both sides of the prepreg, and applying heat and pressure to adhesively cure and mold.

多層プリント配線板とは、1例として片面銅張
積層板、プリプレグ、内層回路板、プリプレグ、
片面銅張積層板を順次積層し加熱加圧し接着硬化
せしめ成形したもので、その後、孔明け〜ホーニ
ング〜メツキ〜ラミネート〜焼付、現像〜2次銅
メツキ……〜外形加工などの各処理工程を経て製
品となるものである。
Examples of multilayer printed wiring boards include single-sided copper-clad laminates, prepregs, inner layer circuit boards, prepregs,
Single-sided copper-clad laminates are sequentially laminated, heated and pressed to harden the adhesive, and then formed.After that, various processing steps such as drilling, honing, plating, laminating, baking, development, secondary copper plating, etc. are carried out. After that, it becomes a product.

更に、本発明で用いる特殊な用語について説明
する。
Furthermore, special terms used in the present invention will be explained.

ボイドとは、積層板に用いるプリプレグには若
干の水分、積層時の空気、塗工紙布に内包されて
いる空気および未反応の樹脂原料の揮発性物質等
が気泡として含まれており、その状態のまま加熱
加圧成形した場合に積層板内部に発生するガス状
の物体のことをいう。そして、このボイドの残溜
は積層板の特性を著しく低下させる。
Voids are air bubbles that are contained in the prepreg used for laminates, such as some moisture, air during lamination, air contained in coated paper cloth, and volatile substances from unreacted resin raw materials. This is a gaseous substance that is generated inside the laminate when it is heated and pressure-molded in its original state. The remaining voids significantly deteriorate the properties of the laminate.

真空バツグフイルムとは、耐熱性があり、しか
も柔軟性のあるフイルムで被成形材を外部から遮
断し、真空圧によつて被成形材に密着させるもの
である。そして、一般に、ナイロン6、ナイロン
66、ポリテトラフルオロエチレン等のプラスチツ
クフイルムが用いられている。
A vacuum bag film is a heat-resistant and flexible film that isolates a material to be molded from the outside and brings it into close contact with the material by vacuum pressure. And generally, nylon 6, nylon
66, plastic films such as polytetrafluoroethylene are used.

ブリーザとは、真空バツグフイルム内が減圧さ
れ、容器内に圧力が負荷された時でも空気や反応
によつて発生したガス(気泡)を通過させ均一な
圧力負荷を維持できるようにしたもので、一般
に、耐熱性のあるガラスクロスが用いられてい
る。
A breather is a device that allows air and gas (bubbles) generated by reaction to pass through to maintain a uniform pressure load even when the pressure inside the vacuum bag film is reduced and pressure is applied to the container. Generally, heat-resistant glass cloth is used.

シーラントとは、被成形材を定盤(プラテン)
に対して完全に密封し、成形中気密性を確保する
もので、一般に、粘着性のある粘土状の物体が用
いられている。
A sealant is used to seal the material to be formed on a surface plate (platen).
A sticky clay-like substance is generally used to completely seal the mold and ensure airtightness during molding.

定盤(プラテン)とは、被成形材を積層載置す
ると共に被成形材の上面より加圧される圧力を受
圧する平板状の治具であり、一般に、加熱による
歪が少なく、かつ上面を平滑に加工した金属製の
平板が用いられている。
A surface plate (platen) is a flat jig that stacks materials to be formed and receives pressure from the top surface of the materials. A flat, smooth metal plate is used.

次に、実施例の構成を説明する。 Next, the configuration of the embodiment will be explained.

第1図、第2図に示すように、1は内層回路
板、プリプレグ、銅箔などの被成形材、2は被成
形材を収容する圧力容器、3は容器2を気閉する
ための開閉用扉である。
As shown in Figures 1 and 2, 1 is a material to be molded such as an inner layer circuit board, prepreg, copper foil, etc., 2 is a pressure vessel that accommodates the material to be molded, and 3 is an opening/closing device for airtightly closing the container 2. It is a door for use.

Aは、前記圧力容器2内に高圧ガス(例えば高
圧チツソガス、高圧炭酸ガス、高圧空気など)を
供給する高圧ガス供給手段である。
A is a high-pressure gas supply means for supplying high-pressure gas (for example, high-pressure nitrogen gas, high-pressure carbon dioxide gas, high-pressure air, etc.) into the pressure vessel 2.

Bは、前記容器2内に供給されたガスを熱交換
器4を介して加熱し、または、冷却する加熱冷却
手段である。
B is a heating/cooling means that heats or cools the gas supplied into the container 2 via the heat exchanger 4.

Cは、前記加熱冷却手段により加熱または冷却
されたガスを容器2内に搬入せしめた気密室へと
送風し循環するようにした循環手段である。
C is a circulation means that blows and circulates the gas heated or cooled by the heating/cooling means into the airtight chamber introduced into the container 2.

Dは、被成形材を空隙をもたせて収容でき且つ
該被成形材を上面より押し圧する押圧部材を備え
た気密室であり、更に、該気密室内を減圧する減
圧手段と着脱可能に設けている。
D is an airtight chamber that can accommodate the material to be formed with a gap and is equipped with a pressing member that presses the material to be formed from the upper surface, and is also detachably provided with a pressure reducing means for reducing the pressure in the airtight chamber. .

Eは、前記気密室内を減圧する減圧手段であ
る。
E is a pressure reducing means for reducing the pressure inside the airtight chamber.

次に、各手段および各部材についてその詳細を
説明する。
Next, details of each means and each member will be explained.

高圧ガス供給手段Aは、一般には、容器2内に
20Kg/cm2以下の高圧チツソガス、高圧炭酸ガス、
高圧空気などの高圧ガスを自動弁6を介して供給
するよう設けたもので、前記ガスは熱交換器4を
介して加熱または冷却される。そして、自動弁7
を通じて排気される。また、容器2内が所定の圧
力を越えた時に減圧するための安全弁11を設け
ている。
The high pressure gas supply means A is generally provided within the container 2.
High pressure chitso gas less than 20Kg/ cm2 , high pressure carbon dioxide gas,
A high-pressure gas such as high-pressure air is supplied through an automatic valve 6, and the gas is heated or cooled through a heat exchanger 4. And automatic valve 7
Exhausted through. Furthermore, a safety valve 11 is provided to reduce the pressure inside the container 2 when it exceeds a predetermined pressure.

加熱冷却手段Bは、第1図、第2図に示すよう
に容器2の外部より内部の熱交換器4に高圧蒸気
を供給するようにしたもので、高圧蒸気を供給す
る自動弁8と冷却水を供給する自動弁9とを容器
2を貫通し熱交換器4に連通して設け、更に、該
熱交換器の下方より容器2の下部を連通して排水
用自動弁10を設けたものである。
The heating and cooling means B is designed to supply high pressure steam from the outside of the container 2 to the heat exchanger 4 inside the container 2 as shown in FIGS. 1 and 2. An automatic valve 9 for supplying water is provided to penetrate the container 2 and communicate with the heat exchanger 4, and an automatic drain valve 10 is further provided in communication with the lower part of the container 2 from below the heat exchanger. It is.

なお、加熱冷却手段の他の例として、容器2の
外部で加熱および冷却する手段を設け、その加熱
および冷却ガスを容器2内に供給するようにして
もよく、また、熱源も電気ヒータ等を用いてもよ
い。
In addition, as another example of the heating and cooling means, a means for heating and cooling may be provided outside the container 2, and the heating and cooling gas may be supplied into the container 2. Also, the heat source may be an electric heater or the like. May be used.

循環手段Cは、容器2の内部にフアン12を設
け、更に、該フアンを駆動するモータ13を容器
2の外部に気密を保持できるようにして設置した
ものである。そして、フアン12により送られる
加熱または冷却ガスは第1図に示す風胴板14の
外周を通り抜け、該風胴板と被成形材1との間を
矢印に示すようにUターンして循環できるよう構
成している。
The circulation means C includes a fan 12 provided inside the container 2, and a motor 13 for driving the fan installed outside the container 2 so as to be airtight. The heating or cooling gas sent by the fan 12 passes through the outer periphery of the wind barrel plate 14 shown in FIG. It is configured like this.

気密室Dは、第3図に示すように定盤20上に
積載した被成形材1を、方形の枠より成る側圧防
止部材Fにて適宜な隙間を設けて囲い、定盤20
と側圧防止部材Fとはシール部材Jにてシールし
更に、前記被成形材1を気密するため、側圧防止
部材Fの上部には被成形材1を押圧する平板状の
押圧部材Cを側圧防止部材Fに上下移動可能に設
け、シール部材Hにてシールして側圧防止部材F
の内部を気密するように設け、被成形材1を簡単
に挿入、取り出しでき、しかも、気密室を容易に
分解、組立できるよう構成したものである。更
に、前記定盤20には気密室を減圧するための真
空路21を設けて後述する減圧手段Eへカプラー
27にて着脱して連通、遮断可能に設けている。
As shown in FIG. 3, in the airtight chamber D, the workpiece 1 loaded on the surface plate 20 is surrounded by a side pressure prevention member F made of a rectangular frame with an appropriate gap provided.
The lateral pressure prevention member F is sealed with a sealing member J, and in order to make the material 1 to be formed airtight, a flat pressing member C that presses the material 1 to be formed is placed on the upper part of the lateral pressure prevention member F to prevent lateral pressure. The lateral pressure prevention member F is installed on the member F so as to be movable up and down, and sealed with the seal member H.
The inside of the chamber is airtight, and the molded material 1 can be easily inserted and removed, and the airtight chamber can be easily disassembled and assembled. Further, the surface plate 20 is provided with a vacuum path 21 for reducing the pressure in the airtight chamber, and is connected to and disconnected from a pressure reducing means E, which will be described later, by a coupler 27.

第4図は第3図の上面図を示したもので気密室
Dは被成形材1よりやや大きい方形状を形成して
いる。
FIG. 4 shows a top view of FIG. 3, and the airtight chamber D has a rectangular shape slightly larger than the material 1 to be formed.

第5図は気密室Dの他の実施例を示したもの
で、側圧防止部材Fの上面で且つ押圧部材Gの外
周にはシール部材Hを介在せしめ上下移動可能に
構成している。
FIG. 5 shows another embodiment of the airtight chamber D, in which a sealing member H is interposed on the upper surface of the side pressure preventing member F and on the outer periphery of the pressing member G, and is configured to be movable up and down.

減圧手段Eは、第1図、第2図に示すように容
器2外部に設置された真空ポンプ17から自動弁
18を介して容器2内部へ連通して配管したもの
である。そして、その先端部のカプラー27は、
気密室D内部を減圧するため定盤20の真空路2
1の配管部のカプラー27と着脱できるよう設け
ている。
As shown in FIGS. 1 and 2, the pressure reducing means E is a vacuum pump 17 installed outside the container 2, which is connected via an automatic valve 18 to the inside of the container 2 via piping. And the coupler 27 at the tip is
Vacuum path 2 of surface plate 20 to reduce pressure inside airtight chamber D
It is provided so that it can be attached to and detached from the coupler 27 of the first piping section.

そして、前記定盤20て押圧部材Gとは、被成
形材1に接する面を平面状にして且つその表面を
平滑に仕上げた熱伝導性のよい平面板を形成して
いる。
The pressing member G of the surface plate 20 is a flat plate having good thermal conductivity and having a flat surface in contact with the material to be formed 1 and a smooth surface.

ここで、本発明において、被成形材を積層載置
する状態を説明する。
Here, in the present invention, a state in which the materials to be formed are stacked and placed will be explained.

第6図に示すように定盤20上には真空路21
を設けた通気板26を配置し、次いで、鏡面板2
4〜離型フイルム31〜銅箔32〜プリプレグ3
3〜内層回路板34〜プリプレグ33〜銅箔32
〜離型フイルム31〜鏡面板24〜離型フイルム
31〜銅箔32〜プリプレグ33〜内層回路板3
4〜プリプレグ33〜銅箔32〜離型フイルム3
1〜鏡面板24と順次積載し、この積重ねを複数
段に重ねる。
As shown in FIG. 6, there is a vacuum path 21 on the surface plate 20.
The ventilation plate 26 provided with
4 ~ Release film 31 ~ Copper foil 32 ~ Prepreg 3
3 ~ Inner layer circuit board 34 ~ Prepreg 33 ~ Copper foil 32
~ Release film 31 ~ Mirror plate 24 ~ Release film 31 ~ Copper foil 32 ~ Prepreg 33 ~ Inner layer circuit board 3
4 ~ Prepreg 33 ~ Copper foil 32 ~ Release film 3
1 to 24 are stacked one after another, and this stacking is performed in multiple stages.

そして、前記被成形材1を側圧防止部材Fにて
囲みシール部材Jにてシールし、更に、被成形材
1の上に押圧部材Gを載せ、シール部材Hにより
被成形材1を気密し、その気封状態を確認する。
Then, the material to be formed 1 is surrounded by a lateral pressure prevention member F and sealed with a sealing member J, furthermore, a pressing member G is placed on the material to be formed 1, and the material to be formed 1 is airtighted by a sealing member H, Check its air seal condition.

なお、この密封する手段として、先に側圧防止
部材F、押圧部材G、シール部材Hを一体的に組
合せ定盤20上に積載した被成形材1に被せるよ
うにして密封してもよく、また、成形後の取り外
しも前記どちらかの手段を用いてもよく手段に限
定されない。
As a means for sealing, the lateral pressure prevention member F, the pressing member G, and the sealing member H may be first assembled integrally and placed over the molded material 1 loaded on the surface plate 20 for sealing. Also, removal after molding may be performed using any of the above methods, and is not limited to the above methods.

次に、その作用を第7図に示す加熱加圧プログ
ラムに従い説明する。
Next, the operation will be explained according to the heating and pressurizing program shown in FIG.

気密室D内部に収容し密封して準備された被成
形材1を、第1図および第2図に示す台車38の
棚に載せ圧力容器2内に搬入する。次に、定盤2
0の真空路の配管部を減圧手段Eの容器内配管部
にカプラー27にて接続し扉3を閉じ容器2を密
閉する。
The material to be formed 1, which has been prepared by being housed and sealed inside the airtight chamber D, is placed on a shelf of a cart 38 shown in FIGS. 1 and 2 and carried into the pressure vessel 2. Next, surface plate 2
The piping section of the vacuum path No. 0 is connected to the container internal piping section of the pressure reducing means E with a coupler 27, and the door 3 is closed to seal the container 2.

次に、真空ポンプ17と自動弁18とを作動さ
せて前記気密室D内を減圧する。次いで、自動弁
6を作動させて容器2内に高圧ガスを供給すると
共に、自動弁8を作動させて容器2内の熱交換器
4に高圧蒸気を供給し、前記高圧ガスを加熱す
る。
Next, the vacuum pump 17 and automatic valve 18 are operated to reduce the pressure in the airtight chamber D. Next, the automatic valve 6 is operated to supply high-pressure gas into the container 2, and the automatic valve 8 is operated to supply high-pressure steam to the heat exchanger 4 in the container 2, thereby heating the high-pressure gas.

次いで、モータ13を駆動しフアン12の回転
により、前記加熱された高圧ガスは風胴板14を
介し気密室を通り循環する。
Next, by driving the motor 13 and rotating the fan 12, the heated high-pressure gas is circulated through the airtight chamber via the wind barrel plate 14.

そして、被成形材1は上方からの加圧により押
し圧され、上下面より加熱される。
Then, the material to be formed 1 is pressed by pressure from above and heated from the upper and lower surfaces.

そして、被成形材1への加熱加圧が行なわれ
る。
Then, the material to be formed 1 is heated and pressurized.

このように、被成形材1は上下方向より加熱さ
れ、被成形材1の上下面より熱伝達が行なわれる
が、気密室D内の隙間部37が高真空になつてい
るため被成形材1の端部(周辺部)の放熱がな
く、被成形材1のプリプレグ平面上端部(周辺
部)35と中央部36とは、ほぼ均一に加熱で
き、従つて、前記被成形材1のプリプレグ平面上
の中央部36と端部(周辺部)35との温度差が
なくなり、各段毎のプリプレグ平面上の中央部3
6と端部(周辺部)35との溶融粘度はほぼ等し
くなる。
In this way, the material to be formed 1 is heated from above and below, and heat is transferred from the upper and lower surfaces of the material to be formed 1, but since the gap 37 in the airtight chamber D is in a high vacuum, the material to be formed 1 There is no heat dissipation from the edges (periphery) of the prepreg plane of the material 1 to be formed, and the upper end (periphery) 35 and center 36 of the prepreg plane of the material 1 to be formed can be heated almost uniformly. The temperature difference between the upper central part 36 and the edge (peripheral part) 35 is eliminated, and the central part 3 on the prepreg plane of each stage is
The melt viscosities of the melt viscosity at the end portion 6 and the end portion (periphery portion) 35 are approximately equal.

そして、積層された被成形材1の加熱が進行
し、プリプレグ樹脂部の溶融粘度が最小になる
と、プリプレグ樹脂部内に存在している気泡は、
樹脂部の上方へ浮いた状態となるが、上からの圧
力と横からの真空引きにより、プリプレグと銅箔
との間を通り、プリプレグの端部(周辺部)へと
移動し真空中へ排出される。
Then, as the heating of the laminated material 1 to be formed progresses and the melt viscosity of the prepreg resin portion reaches its minimum, the air bubbles existing in the prepreg resin portion will be removed.
It will float above the resin part, but due to pressure from above and vacuum from the side, it will pass between the prepreg and copper foil, move to the edge (periphery) of the prepreg, and be discharged into the vacuum. be done.

続いて、被成形材1の温度を更に上昇させ、規
定温度に至りてしばらくその温度を維持し、被成
形材1を接着硬化させる。
Subsequently, the temperature of the material to be formed 1 is further increased, and once it reaches a specified temperature, that temperature is maintained for a while, and the material to be formed 1 is bonded and hardened.

次に、自動弁8を逆作動させて高圧蒸気の供給
を止め、次いで、自動弁9を作動させて冷却水を
熱交換器4に供給し、容器2内を循環しているガ
スを冷却して気密室D内の被成形材1を冷却させ
る。
Next, the automatic valve 8 is operated in reverse to stop the supply of high-pressure steam, and then the automatic valve 9 is operated to supply cooling water to the heat exchanger 4 to cool the gas circulating in the container 2. The molded material 1 in the airtight chamber D is cooled.

次に、自動弁6を逆作動させて前記容器2内の
圧力を徐々に低下させる。
Next, the automatic valve 6 is operated in reverse to gradually reduce the pressure inside the container 2.

そして、被成形材1が冷却されると、全ての作
動を停止させ、扉3を開き被成形材1を外部へ搬
出し一工程が完了する。
When the material to be formed 1 is cooled, all operations are stopped, the door 3 is opened, and the material to be formed 1 is carried out to the outside, completing one process.

なお、冷却の際、前記気密室D内に空気を導入
する手段を用いると冷却されたガスの冷却熱は気
密室〜空気〜被成形材1へと伝達されて被成形材
を短時間に冷却することができる。
Note that during cooling, if a means for introducing air into the airtight chamber D is used, the cooling heat of the cooled gas is transmitted from the airtight chamber to the air to the workpiece 1, thereby cooling the workpiece in a short time. can do.

ここで、寸法:330mm×500mmのプリプレグ、銅
箔および内層回路板を第6図に示すように鏡面板
にて挟み、順次重ねて60mm程度の高さに積載す
る。この時、温度検出器25を被成形材1の端部
(周辺部)35と中央部36とに適宜挿入する。
そして、第7図に示す加熱加圧プログラムの条件
にて成形したところ、被成形材1のプリプレグの
中央部と端部(周辺部)とは、第8図に示すよう
に温度差が無くなり、その結果、ボイドの無い均
一な板厚の4層銅張積層板を所定時間内で成形す
ることができた。
Here, the prepreg, copper foil, and inner layer circuit board with dimensions: 330 mm x 500 mm are sandwiched between mirror plates as shown in Fig. 6, and stacked one on top of the other to a height of about 60 mm. At this time, the temperature detector 25 is appropriately inserted into the end portion (periphery portion) 35 and center portion 36 of the material to be formed 1 .
Then, when molding was performed under the conditions of the heating and pressing program shown in FIG. 7, there was no temperature difference between the center part and the edge part (periphery part) of the prepreg of the material to be molded 1, as shown in FIG. As a result, it was possible to form a void-free four-layer copper-clad laminate with a uniform thickness within a predetermined time.

なお、本発明で用いる加熱加圧プログラムは第
7図に示す条件以外のもの、例えば第9図に示す
ようなものでもよく、本発明の実施例に限定され
るものではない。
Note that the heating and pressurizing program used in the present invention may be under conditions other than those shown in FIG. 7, such as the one shown in FIG. 9, and is not limited to the embodiments of the present invention.

発明の効果 以上、本発明によると下記のような効果を奏す
る。
Effects of the Invention As described above, the present invention provides the following effects.

積層板をオートクレーブにて真空加熱加圧成形
するにおいて、被成形材を空隙をもたせて収容で
き且つ該被成形材を上面より加圧でき側面からの
圧力は防止できるようにした開閉可能な気密室を
設け、該気密室内を減圧する減圧手段を着脱可能
に設け、前記気密室内に被成形材を収容し密封し
て圧力容器内に搬入し、前記気密室を減圧手段に
接続して気密室内を減圧し、次いで、前記容器内
に高圧ガスを供給して被成形材を加圧すると共
に、該高圧ガスを加熱し循環させて被成形材を加
熱し接着硬化せしめ成形するようにしたから、被
成形材への加圧は気密室の側圧防止部材により妨
げられ静水圧によつて被成形材上面より均等に加
圧される。
An openable and closable airtight chamber capable of accommodating a material to be formed with a gap in vacuum heating and pressure forming of a laminate in an autoclave, and capable of pressurizing the material from the top and preventing pressure from the sides. A depressurizing means for reducing the pressure inside the airtight chamber is detachably provided, a material to be formed is accommodated in the airtight chamber, sealed and carried into a pressure vessel, and the airtight chamber is connected to the pressure reducing means to remove the inside of the airtight chamber. The pressure is reduced, and then high-pressure gas is supplied into the container to pressurize the material to be formed, and the high-pressure gas is heated and circulated to heat the material to be formed, harden the adhesive, and form the material. The pressurization of the material is prevented by the side pressure prevention member in the airtight chamber, and the pressure is evenly applied from the upper surface of the material to be formed by hydrostatic pressure.

更に、被成形材への加熱は気密室内を真空にし
ているため、側面からの熱伝達は行なわれず、し
かも、被成形材端部の放熱もなく、上下面より均
等に熱伝達される。
Furthermore, since the airtight chamber is kept in a vacuum during heating of the material to be formed, heat is not transferred from the side surfaces, and there is no heat dissipation from the ends of the material to be formed, and heat is evenly transferred from the upper and lower surfaces.

従つて、被成形材の各プリプレグの中央部と端
部との温度差が無くなり樹脂は一様な溶融状態と
なつて流動しやすくなるため、真空引きによりプ
リプレグの溶融樹脂は中央部から端部へと均一に
移動して適量流出すると共に気泡を真空中に排出
することができ、バイドのない、しかも、板厚の
均一な積層板を所定時間内で成形することができ
る。
Therefore, the temperature difference between the center and the ends of each prepreg of the material to be molded disappears, and the resin becomes uniformly molten and becomes easier to flow. Therefore, by vacuuming, the molten resin of the prepreg flows from the center to the ends. It is possible to uniformly move to flow out an appropriate amount and exhaust air bubbles into a vacuum, and it is possible to form a bide-free laminate with a uniform thickness within a predetermined time.

また、被成形材に加圧する圧力が従来の熱盤プ
レス方式に比べて低圧であるため、ストレスによ
る収縮が少なく、多層回路板の回路線のずれが無
くなると共に反りやねじれも少なくなり、板厚の
均一と相まつて寸法安定性の良い高品質な積層板
が得られる。
In addition, because the pressure applied to the material to be formed is lower than that of the conventional hot platen press method, there is less shrinkage due to stress, eliminating misalignment of circuit wires on multilayer circuit boards, reducing warping and twisting, and increasing board thickness. This combination of uniformity and dimensional stability results in a high-quality laminate with good dimensional stability.

また、再使用可能で且つ被成形材を簡単に挿
入、取り出しできる気密室を設けているから、従
来の再使用不可能な真空バツグフイルムが不要と
なり、経済的であると共に作業性もよくなり自動
化への対応も期待できる。
In addition, since it is reusable and has an airtight chamber that allows the material to be molded to be easily inserted and removed, the conventional vacuum bag film that cannot be reused is no longer necessary, making it economical and easier to work with, allowing for automation. We can also expect to respond to this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一実施例を示す一
部破断した概略側面図。第2図は前記第1図に示
した装置の概略縦断面図。第3図は被成形材を収
容する気密室の概略縦断面図。第4図は第3図の
上面図。第5図は気密室の他の実施例の概略縦断
面図。第6図は本発明において被成形材を積層載
置する状態を示す概略縦断面図。第7図は本発明
の被成形材を成形する加熱加圧プログラムの一実
施例を示す図。第8図は本発明の被成形材を第7
図で設定した加熱加圧プログラムに従つて成形し
た実測値を示したものである。第9図は本発明の
被成形材を成形する加熱加圧プログラムの他の実
施例を示す図。第10図は被成形材を積載し真空
バツグフイルムにて被覆し密封せしめる従来の方
法を示す概略縦断面図。第11図は被成形材を成
形する加熱加圧プログラムの従来技術の一実施例
を示す図である。 これらの図において、A:高圧ガス供給手段、
B:加熱冷却手段、C:循環手段、D:気密室、
E:減圧手段、F:側圧防止部材、G:押圧部
材、H:シール部材、J:シール部材、1:被成
形材、2:圧力容器、3:扉、4:熱交換器、
6,7,8,9:自動弁、10:安全弁、12:
フアン、13:モータ、14:風胴板、17:真
空ポンプ、18,19:自動弁、20:定盤、2
1:真空路、24:鏡面板、25:温度検出器、
26:通気板、27:カプラー、28:ブリー
ザ、29:シーラント、30:真空バツグフイル
ム、31:離型フイルム、32:銅箔、33:プ
リプレグ、34:内層回路板、35:被成形材の
端部、36:被成形材の中央部、37:隙間部、
38:台車。
FIG. 1 is a partially cutaway schematic side view showing one embodiment of the device according to the present invention. FIG. 2 is a schematic vertical sectional view of the apparatus shown in FIG. 1. FIG. 3 is a schematic longitudinal cross-sectional view of an airtight chamber that accommodates the material to be formed. FIG. 4 is a top view of FIG. 3. FIG. 5 is a schematic vertical sectional view of another embodiment of the airtight chamber. FIG. 6 is a schematic longitudinal cross-sectional view showing a state in which materials to be formed are stacked and placed in the present invention. FIG. 7 is a diagram showing an embodiment of a heating and pressing program for molding a material to be molded according to the present invention. FIG. 8 shows the molded material of the present invention in the seventh
This figure shows actual measurement values obtained by molding according to the heating and pressing program set in the figure. FIG. 9 is a diagram showing another embodiment of the heating and pressing program for molding the material to be molded according to the present invention. FIG. 10 is a schematic vertical cross-sectional view showing a conventional method of loading materials to be formed, covering them with a vacuum bag film, and sealing them. FIG. 11 is a diagram showing an example of a prior art heating and pressing program for molding a material to be molded. In these figures, A: high pressure gas supply means;
B: heating and cooling means, C: circulation means, D: airtight chamber,
E: pressure reduction means, F: lateral pressure prevention member, G: pressing member, H: sealing member, J: sealing member, 1: molded material, 2: pressure vessel, 3: door, 4: heat exchanger,
6, 7, 8, 9: automatic valve, 10: safety valve, 12:
Fan, 13: Motor, 14: Wind body plate, 17: Vacuum pump, 18, 19: Automatic valve, 20: Surface plate, 2
1: Vacuum path, 24: Mirror plate, 25: Temperature detector,
26: ventilation plate, 27: coupler, 28: breather, 29: sealant, 30: vacuum bag film, 31: release film, 32: copper foil, 33: prepreg, 34: inner layer circuit board, 35: molded material End part, 36: Center part of the material to be formed, 37: Gap part,
38: Trolley.

Claims (1)

【特許請求の範囲】[Claims] 1 積層板をオートクレーブにて真空加熱加圧成
形するにおいて、被成形材を空隙をもたせて収容
でき且つ該被成形材を上面より加圧でき側面から
の圧力は防止できるようにした開閉可能な気密室
を設け、該気密室内を減圧する減圧手段と着脱可
能に設け、前記気密室内に被成形材を収容し密封
して圧力容器内に搬入し、前記気密室を減圧手段
に接続して気密室内を減圧し、次いで、前記容器
内に高圧ガスを供給して被成形材を加圧すると共
に、該高圧ガスを加熱し循環させて被成形材を加
熱し接着硬化せしめ成形することを特徴とする積
層板の成形方法。
1. In vacuum heating and pressure forming of a laminate in an autoclave, an openable and closable gas chamber is used that can accommodate the material to be formed with a gap and can pressurize the material from the top surface while preventing pressure from the sides. A closed chamber is provided, and a pressure reducing means for reducing the pressure in the airtight chamber is detachably provided, the material to be formed is accommodated in the airtight chamber, sealed, and carried into a pressure vessel, and the airtight chamber is connected to the pressure reduction means to be removed from the airtight chamber. is depressurized, and then high-pressure gas is supplied into the container to pressurize the material to be formed, and the high-pressure gas is heated and circulated to heat the material to be formed, harden the adhesive, and form the material. How to form a board.
JP60120795A 1985-06-03 1985-06-03 Molding method of laminated plate Granted JPS61277428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120795A JPS61277428A (en) 1985-06-03 1985-06-03 Molding method of laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120795A JPS61277428A (en) 1985-06-03 1985-06-03 Molding method of laminated plate

Publications (2)

Publication Number Publication Date
JPS61277428A JPS61277428A (en) 1986-12-08
JPH0333095B2 true JPH0333095B2 (en) 1991-05-15

Family

ID=14795184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120795A Granted JPS61277428A (en) 1985-06-03 1985-06-03 Molding method of laminated plate

Country Status (1)

Country Link
JP (1) JPS61277428A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691714B2 (en) * 1987-08-26 1997-12-17 東芝ケミカル株式会社 Method for manufacturing multilayer wiring board
JP2556897B2 (en) * 1989-02-23 1996-11-27 ファナック株式会社 Outer layer material for multilayer printed wiring board and manufacturing method
JPH03225900A (en) * 1990-01-31 1991-10-04 Nippon Avionics Co Ltd Reduced pressure laminating device for multilayered printed wiring board
US5447668A (en) * 1993-10-04 1995-09-05 Rockwell International Corporation Method and apparatus for eliminating fiber distortions and separations in metal matrix materials
JP4829601B2 (en) * 2005-11-29 2011-12-07 Necディスプレイソリューションズ株式会社 Multilayer printed circuit board, electronic device, and cooling device
JP2010000689A (en) * 2008-06-20 2010-01-07 Fj Composite:Kk Manufacturing method of laminated sheet, and laminated sheet
JP5641260B2 (en) * 2012-08-24 2014-12-17 学校法人電波学園 Method for producing thermal protection composite material and thermal protection composite material
JP6633333B2 (en) * 2015-09-30 2020-01-22 スーパーレジン工業株式会社 Method and apparatus for producing resin-impregnated fiber molded article

Also Published As

Publication number Publication date
JPS61277428A (en) 1986-12-08

Similar Documents

Publication Publication Date Title
US5039371A (en) Apparatus for roll-consolidation of thermoplastic composite laminates
US4909886A (en) Process for producing copper-clad laminate
US5037498A (en) Continuous honeycomb panel molding method
JPH10315257A (en) Apparatus and method for vacuum laminating
US4666551A (en) Vacuum press
JP3627090B2 (en) Lamination molding method and lamination molding apparatus
JPH0333095B2 (en)
JPS63251207A (en) Molding method and apparatus for printed-circuit board
EP0392226A1 (en) Vacuum, continuous batch process for producing laminates and apparatus for such process
JPS61290036A (en) Molding method for laminated plate
JPS6319897A (en) Method of molding multilayer printed interconnection board
JPS61230916A (en) Forming of laminated plate
JPS61287744A (en) Method of molding laminated board
JP3243607B2 (en) Vacuum laminating apparatus and vacuum laminating method
JPH0435129Y2 (en)
JPH0328287B2 (en)
JP2990825B2 (en) Method for manufacturing multilayer printed circuit board
JPS61228957A (en) Jig for molding laminated board
JPS62117729A (en) Joining and curing of flexible printed wiring board
JPH0453168B2 (en)
JPH04345813A (en) Continuous production of laminated plate and equipment thereof
JPS61293836A (en) Forming jig for laminated sheet
JP3243598B2 (en) Vacuum laminating apparatus and vacuum laminating method
TW469213B (en) A vacuum lamination apparatus
JPS6287328A (en) Attaching and detaching of vacuum joint in autoclave molding of printed wiring board