JPH06170209A - Method for circulating gas in autoclave - Google Patents

Method for circulating gas in autoclave

Info

Publication number
JPH06170209A
JPH06170209A JP34982292A JP34982292A JPH06170209A JP H06170209 A JPH06170209 A JP H06170209A JP 34982292 A JP34982292 A JP 34982292A JP 34982292 A JP34982292 A JP 34982292A JP H06170209 A JPH06170209 A JP H06170209A
Authority
JP
Japan
Prior art keywords
gas
suction ports
ventilation passage
fan
wind tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34982292A
Other languages
Japanese (ja)
Inventor
Kazuiwa Yamakami
和岩 山神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashida Manufacturing Co Ltd
Original Assignee
Ashida Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashida Manufacturing Co Ltd filed Critical Ashida Manufacturing Co Ltd
Priority to JP34982292A priority Critical patent/JPH06170209A/en
Publication of JPH06170209A publication Critical patent/JPH06170209A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves

Abstract

PURPOSE:To obtain products of uniform and high quality by passing gas sent by fans at gas suction ports through both outer ventilation paths which are divided and are in the opposite direction to each other, causing the gas to meet each other at a gas blowing port and to flow in an inner ventilation path and properly dividing the gas among gas suction ports to circulate it. CONSTITUTION:As for a method for circulating gas in an autoclave, outer ventilation paths 11a, 11b are formed between an inner wall 2a and an air duct wall 10 of an autoclave and an inner ventilation path 12 is formed inside the air duct wall 10; plural gas suction ports 13 are provided at constant intervals in series in the upper part of the air duct wall 10 and plural gas blowing ports 14 are provided in the lower part corresponding to the gas suction ports 13; fans 15 are arranged each in the plural gas suction ports 13; and the outer ventilation paths 11a, 11b are divided every adjacent fans 15 by partition members 16 in the longitudinal direction of a vessel A to form the outer ventilation paths 11a, 11b. And gas sent by each fan 15 is passed through the outer ventilation paths 11a, 11b which are divided and are in the opposite direction to each other and meets each other at the gas blowing ports 14 to flow in the inner ventilation path 12 and the gas is properly divided among plural gas suction ports 13 to be circulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機、宇宙機器、産
業機器、建材用などに用いられる繊維強化プラスチック
(FRP)などの複合材や合わせガラスなどの材料を、
オートクレーブにて加圧加熱、冷却して接着または接着
成形する際、そのガスを循環させる方法に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention relates to composite materials such as fiber reinforced plastics (FRP) used for aircraft, space equipment, industrial equipment, building materials, and laminated glass.
The present invention relates to a method of circulating the gas when pressure-heating and cooling in an autoclave to perform bonding or adhesive molding.

【0002】[0002]

【従来の技術】従来、接着または接着成形する材料1を
オートクレーブにて加圧加熱するガスの循環方法とし
て、例えば、特開平2ー14730号公報記載のように
ガスが水平方向に流れ循環する方法のものが知られてい
る。また、ガスが下方から上方へ、更に下方へと垂直方
向に流れ循環する方法も知られている。
2. Description of the Related Art Conventionally, as a method of circulating a gas for pressurizing and heating a material 1 to be bonded or adhesively molded in an autoclave, for example, a method in which a gas is circulated in a horizontal direction as described in Japanese Patent Laid-Open No. 14730/1990. Are known. It is also known to circulate the gas vertically from below to above and further downward.

【0003】前者のガスの循環方法は、特開平2ー14
730号公報の第7頁の第1図に示すように、ファン駆
動装置により送風されるガス流は、容器内壁と風洞壁と
の間に形成された外通風路より案内羽根により旋回流と
した後、これと対面する扉内壁で反転させ、その反転流
が風洞内を旋回しつつ流れ加熱冷却手段を介して外通風
路へとガスが水平方向に流れ循環するよう構成したもの
である。
The former gas circulation method is disclosed in JP-A-2-14.
As shown in FIG. 1 on page 7 of Japanese Patent Publication No. 730, the gas flow blown by the fan drive device is swirled by the guide vanes from the outer ventilation passage formed between the inner wall of the container and the wind tunnel wall. After that, the inner wall of the door facing this is reversed, and the reversed flow flows while swirling in the wind tunnel, and the gas is horizontally circulated to the outer ventilation passage through the heating / cooling means.

【0004】後者のガスの循環方法は、図5に示すよう
に、容器内壁2aと方形状の風洞壁10との間に外通風
路11を、風洞壁10の内部に内通風路12を形成し、
前記風洞壁10の上方部には複数のガス吸込口13を一
定の間隔をもって直列に、下方部には複数のガス吹出口
14をガス吸込口13に対応して設けると共に前記複数
のガス吸込口13にはそれぞれファン15を配設し、該
ファンによりガスが外通風路11〜ガス吹出口14〜内
通風路12〜ガス吸込口13へとガスが下方から上方
へ、更に下方へと垂直方向に流れ循環するよう構成した
もので、複数のガス循環ゾーンCaを備えたものであ
る。そして、前記外通風路11にはヒータ18aおよび
クーラ18bを一組み設け、更に、前記ガス循環ゾーン
Caの略中央部位置に温度センサ23を設けて、ヒータ
18aまたはクーラ18bを制御し、ガスの温度制御を
行なっている。
In the latter gas circulation method, as shown in FIG. 5, an outer ventilation passage 11 is formed between the container inner wall 2a and the rectangular wind tunnel wall 10, and an inner ventilation passage 12 is formed inside the wind tunnel wall 10. Then
A plurality of gas inlets 13 are provided in series at an upper portion of the wind tunnel wall 10 at regular intervals, and a plurality of gas outlets 14 are provided at a lower portion in correspondence with the gas inlets 13 and the plurality of gas inlets 13 are provided. A fan 15 is disposed in each of the fans 13, and the fan causes the gas to flow vertically from the lower side to the upper side and further to the lower side from the outer ventilation passage 11 to the gas outlet 14 to the inner ventilation passage 12 to the gas inlet 13. It is configured to flow and circulate in a plurality of gas circulation zones Ca. A set of a heater 18a and a cooler 18b are provided on the outside ventilation passage 11, and a temperature sensor 23 is further provided at a position substantially in the center of the gas circulation zone Ca to control the heater 18a or the cooler 18b to control the gas flow. The temperature is controlled.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者の
ガスの循環方法では、ファン駆動装置により送風される
ガス流は風洞内を旋回しつつ容器の長さ方向へと水平方
向に流れるようになっているから、接着または接着成形
すべき材料が容器の長さ方向へと並べて配置(一般には
このような置きか方をする)した場合、加熱されたガス
は最初に入口側の材料に触れ、材料を加熱して熱が奪わ
れ、次に2番目の材料に触れて熱が奪われ、順次熱が奪
われるため、入口側に位置する材料の加熱温度と容器の
奥側に位置する材料の加熱温度とに差が生じる。その結
果、各位置の材料を加熱する温度差によって、製品の接
着性または接着成形性に悪影響を及ぼし品質上問題があ
る。
However, in the former gas circulation method, the gas flow blown by the fan driving device is designed to flow horizontally in the longitudinal direction of the container while swirling in the wind tunnel. Therefore, if the materials to be glued or adhesively molded are placed side by side along the length of the container (generally this way), the heated gas first touches the material on the inlet side, To remove the heat, then the second material is touched to remove the heat, which in turn removes the heat. Therefore, the heating temperature of the material located on the inlet side and the heating of the material located on the back side of the container There is a difference in temperature. As a result, the difference in temperature at which the material at each position is heated adversely affects the adhesiveness or adhesive moldability of the product, resulting in a quality problem.

【0006】また、後者のガスの循環方法では、図5に
示すように、ガス循環ゾーンCaの略中央部位置に温度
センサ23を設け、この温度センサ23の値が各位置に
ある材料1の代表値となっており、しかも、ガスは各フ
ァン15によって単独に循環しているため、圧力容器A
内に収容する材料1に、大小、量の差違、置き方、品物
の厚さ、材質の違いなどがあると、各位置の材料1を加
熱する際、温度差が生じ、材料1の接着性または接着成
形性に悪影響を及ぼし品質上問題がある。また、圧力容
器A内に収容する材料1が同一であった場合、各位置の
材料1に温度差があったとしても、個々のガス循環ゾー
ンCaのガスの温度を制御できないため、同一の材料1
に温度差が生じたままで接着または接着成形され、その
結果、製品の接着性または接着成形性にバラツキが生じ
品質上問題がある。
Further, in the latter gas circulation method, as shown in FIG. 5, a temperature sensor 23 is provided at a substantially central position of the gas circulation zone Ca, and the value of the temperature sensor 23 of the material 1 exists at each position. It is a typical value, and since the gas is circulated independently by each fan 15, the pressure vessel A
If the material 1 accommodated in the container has a difference in size, quantity, placement, thickness of the article, material difference, etc., when the material 1 at each position is heated, a temperature difference occurs and the adhesiveness of the material 1 is increased. Alternatively, the adhesive moldability is adversely affected and there is a problem in quality. Further, when the material 1 contained in the pressure vessel A is the same, even if the material 1 at each position has a temperature difference, the temperature of the gas in each gas circulation zone Ca cannot be controlled, and therefore the same material is used. 1
Are adhered or adhesively molded with the temperature difference still occurring, resulting in variations in the adhesiveness or adhesive moldability of the product, which is a quality problem.

【0007】本発明は、前述の課題を解決することを目
的として開発したものである。
The present invention was developed for the purpose of solving the above-mentioned problems.

【0008】[0008]

【課題を解決するための手段】本発明は、図1、図3の
(a)に示すように、圧力容器A内で材料1を加圧加
熱、冷却して接着または接着成形させるオートクレーブ
において、圧力容器内壁2aと風洞壁10との間に外通
風路を、風洞壁10の内部に内通風路12を形成し、前
記風洞壁10の上方部には複数のガス吸込口13を一定
の間隔をもって直列に、下方部には複数のガス吹出口1
4をガス吸込口に対応して設け、前記複数のガス吸込口
13にはそれぞれファン15を配設すると共に前記外通
風路を隣接するファン毎に仕切部材16にて容器2の長
さ方向に区切りして外通風路11aと11bとを形成せ
しめ、それぞれのファン15により送風されるガスは区
切りされた互いに反対方向の外通風路11aと11bと
を通りガス吹出口14にて交流して内通風路12に流
れ、複数のガス吸込口13へと適宜分流されて循環する
ようにしたものである。
As shown in FIG. 1 and FIG. 3 (a), the present invention provides an autoclave in which a material 1 is heated and cooled under pressure in a pressure vessel A to be bonded or adhesively molded. An outer ventilation passage is formed between the pressure vessel inner wall 2a and the wind tunnel wall 10, and an inner ventilation passage 12 is formed inside the wind tunnel wall 10, and a plurality of gas suction ports 13 are provided at a constant interval above the wind tunnel wall 10. In series with a plurality of gas outlets 1 in the lower part
4 are provided corresponding to the gas inlets, and fans 15 are arranged at the plurality of gas inlets 13 and the external ventilation passages are arranged in the longitudinal direction of the container 2 by the partitioning member 16 for each adjacent fan. The outer ventilation passages 11a and 11b are separated from each other, and the gas blown by the respective fans 15 passes through the divided outer ventilation passages 11a and 11b in the opposite directions to be exchanged with each other at the gas outlet 14. The gas flows into the ventilation passage 12, is appropriately divided into a plurality of gas suction ports 13, and is circulated.

【0009】また、図2、図3の(b)に示すように、
圧力容器A内で材料1を加圧加熱、冷却して接着または
接着成形させるオートクレーブにおいて、圧力容器内壁
2aと風洞壁10との間に外通風路を、風洞壁10の内
部に内通風路12を形成し、前記風洞壁10の上方部に
は複数のガス吸込口13を一定の間隔をもって直列に、
下方部には複数のガス吹出口14をガス吸込口に対応し
て設け、前記複数のガス吸込口13にはそれぞれファン
15を配設すると共に前記外通風路を隣接するファン毎
に容器2の円周方向に且つ一方を狭い出口部17aに他
方を広い出口部17bになるよう仕切部材17にて適宜
な位置まで交互に区切りして外通風路11cと11dと
を形成せしめ、それぞれのファン15により送風される
ガスは、区切りされた互いに反対方向の外通風路11c
と11dに分岐して流れ、外通風路11cと外通風路1
1dの各々の終焉部で隣合うファン15により送風され
るガスの流れと交流し、ガス吹出口14にて外通風路1
1cの交流されたガスと外通風路11dの交流されたガ
スとが更に交流して内通風路12に流れ、複数のガス吸
込口13へと適宜分流されて循環するようにしたもので
ある。
Further, as shown in FIGS. 2 and 3B,
In the autoclave in which the material 1 is pressurized and heated in the pressure vessel A to be heated and cooled for adhesion or adhesive molding, an outer ventilation path is provided between the pressure vessel inner wall 2a and the wind tunnel wall 10, and an inner ventilation path 12 is provided inside the wind tunnel wall 10. And a plurality of gas suction ports 13 are arranged in series at an upper portion of the wind tunnel wall 10 at regular intervals,
A plurality of gas outlets 14 are provided in the lower portion so as to correspond to the gas inlets, and fans 15 are disposed in the plurality of gas inlets 13 and the external ventilation passage is provided for each adjacent fan of the container 2. The external ventilation passages 11c and 11d are formed by alternately partitioning one side into a narrow outlet side 17a in the circumferential direction and the other side into a wide outlet side 17b by a partition member 17 to an appropriate position to form the external ventilation passages 11c and 11d. The gas blown by the air is separated from each other in the opposite ventilation paths 11c.
And 11d branch and flow, and outside ventilation passage 11c and outside ventilation passage 1
At each end of 1d, the flow of gas blown by the adjoining fan 15 interacts with each other, and at the gas outlet 14 the outside ventilation passage 1
The alternating gas of 1c and the alternating gas of the external ventilation passage 11d further exchange and flow into the internal ventilation passage 12, and are appropriately divided into a plurality of gas suction ports 13 and circulated.

【0010】[0010]

【実施例】以下、添付図面に従い本発明の実施例を説明
する。 実施例1 本発明を実施するオートクレーブ成形装置は、図1、図
3の(a)に示すように、接着または接着成形する材料
1を台車4上に配置して容器2内に収容し扉3にて密閉
可能に設けた圧力容器Aと、前記圧力容器Aに高圧ガス
を供給する加圧手段Bと、複数のガス吸込口に配設した
それぞれのファンにより送風されるガスが区切りされ互
いに反対方向の外通風路11aと11bとを通りガス吹
出口14にて交流して内通風路12に流れ、複数のガス
吸込口13へと適宜分流されて循環するよう設けたガス
循環手段Cと、前記外通風路11に複数の熱交換器18
を設け循環するガス体を加熱、冷却する加熱冷却手段D
と、ガス循環手段Cを循環するガス体の温度を制御する
よう設けたガス温度制御手段Eと、より構成したもので
ある。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Example 1 As shown in (a) of FIG. 1 and FIG. 3, an autoclave molding apparatus for carrying out the present invention arranges a material 1 to be adhered or adhesively molded on a carriage 4 and accommodates it in a container 2 and a door 3 , A pressure vessel A that can be hermetically sealed, a pressurizing means B that supplies high-pressure gas to the pressure vessel A, and a gas blown by each fan provided at a plurality of gas suction ports are separated from each other. The gas circulation means C provided so as to flow through the outer ventilation passages 11a and 11b in the direction and exchange at the gas outlet 14 to flow into the inner ventilation passage 12, and be appropriately divided into a plurality of gas suction ports 13 for circulation. A plurality of heat exchangers 18 are provided in the outside ventilation passage 11.
And cooling means D for heating and cooling the circulating gas body
And a gas temperature control means E provided to control the temperature of the gas body circulating in the gas circulation means C.

【0011】実施例2 前記圧力容器Aと、加圧手段Bと、加熱冷却手段Dと、
ガス温度制御手段Eと、 図2、図3の(b)に示すよ
うに、複数のガス吸込口13に配設したそれぞれのファ
ン15により送風されるガスが区切りされ互いに反対方
向の外通風路11cと11dに分岐して流れ、外通風路
11cと外通風路11dの各々の終焉部で隣合うファン
15により送風されるガスの流れと交流し、ガス吹出口
14にて外通風路11cの交流されたガスと外通風路1
1dの交流されたガスとが更に交流して内通風路12に
流れ、複数のガス吸込口13へと適宜分流されて循環す
るように設けたガス循環手段Fと、より構成したもので
ある。
Embodiment 2 The pressure vessel A, pressurizing means B, heating / cooling means D,
As shown in FIG. 2 and FIG. 3B, the gas temperature control means E and the air blown by the respective fans 15 arranged at the plurality of gas suction ports 13 are separated from each other and the external ventilation passages in opposite directions. 11 c and 11 d are branched and flow, and at the end of each of the outer ventilation passage 11 c and the outer ventilation passage 11 d, the flow of gas blown by the adjacent fan 15 is exchanged, and at the gas outlet 14 of the outer ventilation passage 11 c. Exchanged gas and external ventilation passage 1
The gas circulation means F is provided so that the alternating gas of 1d further exchanges and flows into the internal ventilation passage 12 and is appropriately divided into a plurality of gas suction ports 13 to circulate.

【0012】次に、各手段の詳細について説明する。 実施例1 圧力容器Aは、図1、図3の(a)に示すように、接着
または接着成形する材料1を台車4上に配置して搬入す
るレール5を敷設した容器2と、前記容器2を開閉する
扉3とより構成したものである。
Next, details of each means will be described. Example 1 As shown in (a) of FIG. 1 and FIG. 3, the pressure vessel A is a vessel 2 in which a rail 5 for laying in and carrying in a material 1 to be bonded or adhesively molded is placed on a carriage 4; It is composed of a door 3 for opening and closing 2.

【0013】加圧手段Bは、図1に示すように、高圧チ
ッソガス、高圧炭酸ガス、高圧空気などのガスを高圧ガ
ス供給源6より自動弁7を介して供給し、自動弁8を介
して排気されるよう構成したものである。
As shown in FIG. 1, the pressurizing means B supplies gas such as high-pressure nitrogen gas, high-pressure carbon dioxide gas, and high-pressure air from a high-pressure gas supply source 6 through an automatic valve 7 and an automatic valve 8. It is configured to be exhausted.

【0014】ガス循環手段Cは、図1、図3の(a)に
示すように、圧力容器内壁2aと風洞壁10との間に外
通風路を、風洞壁10の内部に内通風路12を形成し、
前記風洞壁10の上方部には複数のガス吸込口13を一
定の間隔をもって直列に、下方部には複数のガス吹出口
14をガス吸込口13に対応して設け、前記複数のガス
吸込口13にはそれぞれファン15を配設すると共に前
記外通風路を隣接するファン毎に仕切部材16にて容器
2の長さ方向に区切りして外通風路11aと11bとを
形成せしめたものである。そして、それぞれのファン1
5により送風されるガスは、図1、図3の(a)に示す
ように、区切りされた互いに反対方向の外通風路11a
と11bとを通りガス吹出口14にて交流して内通風路
12に流れ、該内通風路を通過し複数のガス吸込口13
へと適宜分流されて循環するよう構成したものである。
ここで、それぞれのファン15により送風されるガス
は、区切りされた互いに反対方向の外通風路11aと1
1bとにて加熱または冷却され、ガス吹出口14にて交
流しているため、例え、隣合う区切りされたガスに温度
差が生じたとしても混合されて均一な温度になる。な
お、本実施例ではファン15は圧力容器A外部よりシー
ルを介してモータ15aにより回転可能に支持されてい
るが、例えば、モータ15aを小型圧力容器にて密封
し、該容器内を冷却するようにしてもよく、また、本実
施例ではガスの流れは外通風路11〜ガス吹出口14〜
内通風路12〜ガス吸込口13へと循環させているが、
例えば、圧力容器Aを90度回転させてガス吸込口13
を横方向にして、ガス吸込口13がガス吹出口となる逆
のガスの流れにしてもよく、本発明は本実施例には限定
されない。
As shown in FIG. 1 and FIG. 3A, the gas circulation means C has an outer ventilation passage between the pressure vessel inner wall 2a and the wind tunnel wall 10 and an inner ventilation passage 12 inside the wind tunnel wall 10. To form
A plurality of gas suction ports 13 are provided in series in the upper part of the wind tunnel wall 10 at regular intervals, and a plurality of gas blow ports 14 are provided in the lower part in correspondence with the gas suction ports 13. Each of the fans 13 is provided with a fan 15, and the external ventilation passages are separated by adjoining fans by a partition member 16 in the longitudinal direction of the container 2 to form external ventilation passages 11a and 11b. . And each fan 1
As shown in (a) of FIG. 1 and FIG. 3, the gas blown by the air blower 5 is divided into external ventilation passages 11a in opposite directions.
And 11b to be exchanged at the gas outlet 14 to flow into the inner ventilation passage 12, pass through the inner ventilation passage, and pass through the plurality of gas inlets 13
It is configured to be appropriately diverted to circulate.
Here, the gases blown by the respective fans 15 are separated from each other by the external ventilation passages 11a and 1a in opposite directions.
Since it is heated or cooled with 1b and has an alternating current at the gas outlet 14, even if there is a temperature difference between adjacent separated gases, they are mixed and become a uniform temperature. In this embodiment, the fan 15 is rotatably supported by the motor 15a from the outside of the pressure vessel A through a seal. For example, the motor 15a is sealed with a small pressure vessel to cool the inside of the vessel. Alternatively, in the present embodiment, the gas flow is from the outer ventilation passage 11 to the gas outlet 14 to
Although it is circulated from the inner ventilation passage 12 to the gas suction port 13,
For example, by rotating the pressure vessel A by 90 degrees, the gas suction port 13
May be set to the lateral direction so that the gas suction port 13 serves as a gas outlet and the gas flows in the opposite direction, and the present invention is not limited to the present embodiment.

【0015】加熱冷却手段Dは、図1に示すように、外
通風路11a、11bに、または、図2に示すように、
11c、11dに熱交換器18(ヒータ18aおよびク
ーラ18b)を設け循環するガス体を加熱、冷却するも
ので、熱交換器18のヒータ18aが蒸気の場合は自動
弁19を介して圧力容器を貫通させて制御できるよう設
け、電気ヒータの場合は図示していないが電力調整器を
介して制御できるよう設けている。また、クーラ18b
は自動弁20を介して圧力容器Aを貫通させ熱交換器1
8に連通させて冷却水を供給すると共に、熱交換器18
の下方より圧力容器Aの下部を連通させ自動弁21を介
して冷却済みの水が排出できるよう設けたものである。
なお、加熱冷却手段Dの他の例として、圧力容器Aの外
部で熱媒を加熱、冷却し、該熱媒を外通風路11a、1
1bに、または、11c、11dに設けた熱交換器18
を介してガスを加熱、冷却するようにしてもよく、本発
明実施例には限定されない。
The heating / cooling means D is provided in the outside ventilation passages 11a and 11b as shown in FIG. 1 or as shown in FIG.
The heat exchanger 18 (heater 18a and cooler 18b) is provided in 11c and 11d to heat and cool the circulating gas body. When the heater 18a of the heat exchanger 18 is steam, the pressure vessel is opened via the automatic valve 19. The electric heater is provided so that it can be controlled, and in the case of an electric heater, although not shown, it is provided so that it can be controlled through a power regulator. Also, cooler 18b
Passes through the pressure vessel A via the automatic valve 20 and the heat exchanger 1
8 to supply cooling water to the heat exchanger 18
The lower part of the pressure vessel A is made to communicate with the lower part of the above so that the cooled water can be discharged through the automatic valve 21.
As another example of the heating / cooling means D, the heat medium is heated and cooled outside the pressure vessel A, and the heat medium is passed through the external ventilation passages 11a, 1a.
Heat exchanger 18 provided on 1b or on 11c and 11d
The gas may be heated and cooled via the above-mentioned method, and the present invention is not limited to the embodiments.

【0016】ガス温度制御手段Eは、図1に示すよう
に、前記ガス循環手段Cの適所に温度センサ23を設け
ると共に、温度センサ23により循環するのガス体温度
を検出し、前記ガス体温度を設定器24により予めプロ
グラムされた設定温度と調節計25にて比較し、その差
の分を加熱冷却手段Dに伝達してヒータ(またはクー
ラ)を制御し、ガス循環手段Cを循環するガス体の温度
を制御して材料1に適した温度になるよう構成したもの
である。なお、前記プログラムは必要に応じて圧力の設
定もでき、更に、そのパターンも材料の種類、形状、大
きさなどによって異なり、本実施例には限定されない。
As shown in FIG. 1, the gas temperature control means E is provided with a temperature sensor 23 at an appropriate position of the gas circulation means C and detects the circulating gas body temperature by the temperature sensor 23 to detect the gas body temperature. Is compared with a preset temperature programmed by the setter 24 by the controller 25, and the difference is transmitted to the heating / cooling means D to control the heater (or cooler) and the gas circulating in the gas circulation means C is compared. The body temperature is controlled so that the temperature is suitable for the material 1. The program can set the pressure as required, and the pattern of the program also differs depending on the type, shape, size, etc. of the material, and is not limited to this embodiment.

【0017】実施例2 ガス循環手段Fは、図2、図3の(b)に示すように、
圧力容器内壁2aと風洞壁10との間に外通風路を、風
洞壁10の内部に内通風路12を形成し、前記風洞壁1
0の上方部には複数のガス吸込口13を一定の間隔をも
って直列に、下方部には複数のガス吹出口14をガス吸
込口に対応して設け、前記複数のガス吸込口13にはそ
れぞれファン15を配設すると共に前記外通風路を隣接
するファン毎に容器2の円周方向に且つ一方を狭い出口
部17aを狭く他方を広い出口部17bになるよう仕切
部材17にて適宜な位置まで交互に区切りして外通風路
11cと11dとを形成せしめたものである。そして、
それぞれのファン15により送風されるガスは、図2に
示すように、区切りされた互いに反対方向の外通風路1
1cと11dに分岐して流れ、外通風路11cと外通風
路11dの各々の終焉部で隣合うファン15により送風
されるガスの流れと交流し、ガス吹出口14にて外通風
路11cの交流されたガスと外通風路11dの交流され
たガスとが更に交流して内通風路12に流れ、該内通風
路を通過して複数のガス吸込口13へと適宜分流されて
循環するように構成したものである。ここで、外通風路
11cと外通風路11dにて加熱または冷却されたガス
を、外通風路11cと外通風路11dの各々の終焉部で
隣合うファン15により送風されるガスの流れと交流し
た場合、図2に示すように、狭い出口部17aを流出す
るガスとその隣合う広い出口部17bを流出するガスと
が交流されるため、それぞれのファンにより送風される
ガスの温度に、例え、温度差があったとしても交流され
て均一化される。更に、この均一化された外通風路11
cのガスと外通風路11dのガスがガス吹出口14にて
更に交流されるため、ガスの温度はより均一化され温度
差が全くなくなる。そして、このガスの循環は圧力容器
Aの入り口側から奥側に自由に行き来することができ、
圧力容器Aの内部各位置ともほとんど同一温度で循環す
ることができる。
Embodiment 2 The gas circulation means F is, as shown in FIGS. 2 and 3 (b),
An outer ventilation passage is formed between the pressure vessel inner wall 2a and the wind tunnel wall 10, and an inner ventilation passage 12 is formed inside the wind tunnel wall 10.
In the upper part of 0, a plurality of gas suction ports 13 are provided in series at regular intervals, and in the lower part, a plurality of gas blow ports 14 are provided corresponding to the gas suction ports, and the plurality of gas suction ports 13 are respectively provided. An appropriate position is provided by the partition member 17 so that the fan 15 is arranged and the outside ventilation passage is arranged in the circumferential direction of the container 2 for each adjacent fan and one is a narrow outlet portion 17a and one is a narrow outlet portion 17b. The outer ventilation passages 11c and 11d are formed by alternately partitioning up to. And
As shown in FIG. 2, the gas blown by each fan 15 is divided into outer ventilation passages 1 in opposite directions.
1 c and 11 d branch off and flow, and at the end of each of the outer ventilation passage 11 c and the outer ventilation passage 11 d, alternating with the flow of gas blown by the adjacent fan 15, and at the gas outlet 14 of the outer ventilation passage 11 c. The exchanged gas and the exchanged gas in the outer ventilation passage 11d further exchange to flow into the inner ventilation passage 12, pass through the inner ventilation passage, and are appropriately divided into a plurality of gas suction ports 13 to circulate. It is configured in. Here, the gas heated or cooled in the outer ventilation passage 11c and the outer ventilation passage 11d is exchanged with the flow of gas blown by the fan 15 adjacent to each other at the end of each of the outer ventilation passage 11c and the outer ventilation passage 11d. In such a case, as shown in FIG. 2, the gas flowing out of the narrow outlet portion 17a and the gas flowing out of the adjacent wide outlet portion 17b are exchanged with each other, so that the temperature of the gas blown by each fan is compared. , Even if there is a temperature difference, it is uniformed by alternating current. Furthermore, this uniformed external ventilation passage 11
Since the gas of c and the gas of the outer ventilation passage 11d are further exchanged at the gas outlet 14, the temperature of the gas is made more uniform and there is no temperature difference. And this gas circulation can freely come and go from the inlet side of the pressure vessel A to the inner side,
It is possible to circulate at almost the same temperature in each position inside the pressure vessel A.

【0018】次に、その作用を説明する。 実施例1 先ず、接着または接着成形する材料1、本実施例では、
複数個の合わせガラスを、図1、図3の(a)に示すよ
うに、圧力容器A内に収容し竪置に配置して扉3にて密
閉する。次いで、図4に示すプログラムに従って加圧手
段Bと加熱冷却手段Dのヒータ17aを作動させて加圧
加熱すると共に、ガス循環手段Cを作動させる。そし
て、それぞれのファン15により送風されるガスは、区
切りされた互いに反対方向の外通風路11aと11bと
を通りガス吹出口14にて交流して内通風路12に流
れ、材料1の隙間を通り、材料1を加熱し上昇して複数
のガス吸込口13へと適宜分流され、再びファンにより
送風されガスは循環する。そして、図1に示すように、
ガス循環手段Cに設置された温度センサ23により検出
されたガスの温度を、設定器24により予めプログラム
された設定温度と調節計25にて比較し、その差の分を
加熱冷却手段Dに伝達してヒータ18aを制御し、ガス
循環手段Cを循環するガスの温度を制御する。
Next, the operation will be described. Example 1 First, a material 1 to be bonded or adhesively molded, in this example,
As shown in FIG. 1 and FIG. 3A, a plurality of laminated glasses are housed in a pressure vessel A, arranged in a vertical position, and sealed by a door 3. Next, according to the program shown in FIG. 4, the heater 17a of the pressurizing means B and the heating / cooling means D is operated to pressurize and heat, and the gas circulating means C is operated. Then, the gas blown by the respective fans 15 passes through the divided outer ventilation passages 11 a and 11 b in opposite directions and is exchanged with each other at the gas outlet 14 to flow into the inner ventilation passage 12 to pass through the gap of the material 1. As described above, the material 1 is heated and lifted, appropriately divided into the plurality of gas suction ports 13, and then blown again by the fan to circulate the gas. Then, as shown in FIG.
The temperature of the gas detected by the temperature sensor 23 installed in the gas circulating means C is compared with the preset temperature programmed by the setter 24 by the controller 25, and the difference is transmitted to the heating / cooling means D. Then, the heater 18a is controlled to control the temperature of the gas circulating in the gas circulating means C.

【0019】次いで、冷却段階に入ると、図4に示すよ
うなプログラムに従い加圧手段Bの排気弁8を作動させ
て減圧させると共に、加熱冷却手段Dのクーラ18bを
作動させガス体の温度を制御して材料1を冷却する。そ
して、適当な温度に冷却され、圧力を大気圧に戻し、扉
3を開放して材料1を搬出し一工程が完了する。
Next, in the cooling stage, the exhaust valve 8 of the pressurizing means B is operated to reduce the pressure according to the program shown in FIG. 4, and the cooler 18b of the heating / cooling means D is operated to control the temperature of the gas body. Controllably cool material 1. Then, the material is cooled to an appropriate temperature, the pressure is returned to the atmospheric pressure, the door 3 is opened, and the material 1 is unloaded to complete one step.

【0020】実施例2 先ず、接着または接着成形する材料1、本実施例では、
複数個の合わせガラスを、図2、図3の(b)に示すよ
うに、圧力容器A内に収容して扉3にて密閉する。次い
で、図4に示すプログラムに従って加圧手段Bと加熱冷
却手段Dのヒータ18aを作動させて加圧加熱すると共
に、ガス循環手段Fを作動させる。そして、それぞれの
ファン15により送風されるガスは、図2、図3の
(b)に示すように、区切りされた互いに反対方向の外
通風路11cと11dに分岐して流れ、外通風路11c
と外通風路11dの各々の終焉部で隣合うファン15に
より送風されるガスの流れと交流し、ガス吹出口14に
て外通風路11cの交流されたガスと外通風路11dの
交流されたガスとが更に交流して内通風路12に流れ、
材料1に触れて、材料1を加熱し上昇して複数のガス吸
込口13へと適宜分流され再びファン15により送風さ
れガスは循環する。そして、実施例1で示したように、
温度センサ23により検出されたガスの温度を、設定器
24により予めプログラムされた設定温度と調節計25
にて比較し、その差の分を加熱冷却手段Dに伝達してヒ
ータ18aを制御し、ガス循環手段Fを循環するガス体
の温度を制御する。
Example 2 First, the material 1 to be bonded or adhesively molded, in this example,
As shown in FIGS. 2 and 3B, a plurality of laminated glasses are housed in the pressure vessel A and sealed by the door 3. Next, according to the program shown in FIG. 4, the heaters 18a of the pressurizing means B and the heating / cooling means D are operated to pressurize and heat, and the gas circulating means F is operated. Then, the gas blown by each fan 15 is branched and flows into the separated outer ventilation passages 11c and 11d in opposite directions, as shown in (b) of FIG. 2 and FIG.
And the flow of gas blown by the adjoining fan 15 at each end of the outer ventilation passage 11d, and the gas blown out from the outer ventilation passage 11c was exchanged with the gas blown by the adjacent fan 15. The gas exchanges more and flows into the inner ventilation passage 12,
When the material 1 is touched, the material 1 is heated and lifted, appropriately branched to the plurality of gas suction ports 13, and then blown again by the fan 15 to circulate the gas. Then, as shown in Example 1,
The temperature of the gas detected by the temperature sensor 23 is set in advance by the setter 24 and the controller 25.
Then, the difference is transmitted to the heating / cooling means D to control the heater 18a and control the temperature of the gas body circulating in the gas circulating means F.

【0021】次いで、冷却段階に入ると、図4に示すよ
うなプログラムに従い加圧手段Bの排気弁8を作動させ
て減圧させると共に、加熱冷却手段Dのクーラ18bを
作動させガス体の温度を制御して材料1を冷却する。そ
して、適当な温度に冷却され、圧力を大気圧に戻し、扉
3を開放して材料1を搬出し一工程が完了する。
Next, in the cooling step, the exhaust valve 8 of the pressurizing means B is operated to reduce the pressure according to the program shown in FIG. 4, and the cooler 18b of the heating / cooling means D is operated to control the temperature of the gas body. Controllably cool material 1. Then, the material is cooled to an appropriate temperature, the pressure is returned to the atmospheric pressure, the door 3 is opened, and the material 1 is unloaded to complete one step.

【0022】[0022]

【発明の効果】本発明は、ガス吸込口13に配設したそ
れぞれのファン15により送風されるガスは、区切りさ
れた互いに反対方向の外通風路11aと11bとを通り
ガス吹出口14にて交流して内通風路12に流れ、複数
のガス吸込口13へと適宜分流されて循環するようにし
ているから、区切りされた互いに反対方向の外通風路1
1aと11bとを通過するガスが交流するため、例え、
隣合う区切りされたガスに温度差が生じたとしても混合
されて均一な温度になり、しかも、時間の経過に従っ
て、ガスは順次隣接するファン方向へと移動して圧力容
器A全体のガス温度が完全に均一化されるため、ガス体
温度が圧力容器A各位置に配置した各材料1に同じ条件
で触れることができ、従来、圧力容器Aの入口側や奥側
に配置した材料1の加熱、冷却の温度差による接着性、
接着成形性の悪影響が全く解消され、均一で高品質な製
品が得られる。また、ガス吸込口13に配設したそれぞ
れのファン15により送風されるガスは、区切りされた
互いに反対方向の外通風路11cと11dに分岐して流
れ、外通風路11cと外通風路11dの各々の終焉部で
隣合うファンにより送風されるガスの流れと交流し、ガ
ス吹出口14にて外通風路11cの交流されたガスと外
通風路11dの交流されたガスとが更に交流して内通風
路12に流れ、材料1に触れて加熱し複数のガス吸込口
13へと適宜分流されて循環するようにしているから、
ガス吹出口14にて外通風路11cの交流されたガスと
外通風路11dの交流されたガスとが更に交流して内通
風路12に流れることができるため、例え、隣合う区切
りされたガスや圧力容器Aの入口側や奥側の区切りされ
たガスに温度差が生じたとしても、更に混合されてより
早く温度が均一になる。しかも、しかも、時間の経過に
従って、ガスは順次隣接するファン方向へと移動して圧
力容器A全体のガス温度が完全に均一化されるため、完
全に均一化されたガスの温度が圧力容器A各位置に配置
した各材料1に同じ条件で触れることができ、従来、圧
力容器Aの入口側や奥側に配置した材料1の加熱、冷却
の温度差による接着性、接着成形性の悪影響や、個々の
ガス循環ゾーンCaのガスの温度を制御できないことに
起因する同一材料1の温度差により生じる製品の接着性
または接着成形性のバラツキが解消され、均一で高品質
な製品が得られる。
According to the present invention, the gas blown by the respective fans 15 arranged in the gas suction port 13 passes through the divided external ventilation passages 11a and 11b in the opposite directions at the gas outlet 14. Since they flow to the inner ventilation passage 12 by alternating current and are diverted appropriately to the plurality of gas suction ports 13 to circulate, the separated outer ventilation passages 1 in opposite directions are provided.
Since the gas passing through 1a and 11b exchanges each other,
Even if there is a temperature difference between adjacent separated gases, they are mixed and become a uniform temperature, and as time passes, the gases sequentially move in the direction of the adjacent fan, and the gas temperature of the entire pressure vessel A changes. Since it is completely homogenized, the gas body temperature can touch each material 1 arranged at each position of the pressure vessel A under the same condition, and conventionally, heating of the material 1 arranged at the inlet side or the back side of the pressure vessel A is possible. , Adhesiveness due to cooling temperature difference,
The adverse effects of adhesive moldability are completely eliminated, and uniform and high-quality products can be obtained. Further, the gas blown by the respective fans 15 arranged in the gas suction port 13 branches into the external ventilation passages 11c and 11d, which are separated from each other and flow in the opposite directions, and the gas flows in the external ventilation passages 11c and 11d. At each end, the flow of gas blown by the adjacent fan is exchanged with each other, and at the gas outlet 14, the exchanged gas in the external ventilation passage 11c and the exchanged gas in the external ventilation passage 11d are further exchanged. Since the material flows to the inner ventilation passage 12 and touches the material 1 to be heated, the material 1 is appropriately divided into a plurality of gas suction ports 13 and circulated.
Since the gas exchanged in the outer ventilation passage 11c and the gas exchanged in the outer ventilation passage 11d at the gas outlet 14 can further exchange with each other and flow into the inner ventilation passage 12, for example, the adjacent separated gas. Even if there is a temperature difference between the separated gas on the inlet side or the inner side of the pressure vessel A, the temperature is made uniform more quickly by further mixing. Moreover, as time passes, the gas sequentially moves toward the adjacent fan to completely equalize the gas temperature of the entire pressure vessel A. Therefore, the temperature of the completely homogenized gas is equal to that of the pressure vessel A. Each material 1 arranged at each position can be touched under the same conditions, and conventionally, the material 1 arranged on the inlet side or the back side of the pressure vessel A is adversely affected by the temperature difference between heating and cooling. The variation in the adhesiveness or the adhesive moldability of the product caused by the temperature difference of the same material 1 due to the inability to control the temperature of the gas in each gas circulation zone Ca is eliminated, and a uniform and high-quality product can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するオートクレーブ装置の一部破
断した概略上面図とガス温度制御手段のブロック図を示
す。
FIG. 1 shows a partially cutaway schematic top view of an autoclave apparatus for carrying out the present invention and a block diagram of a gas temperature control means.

【図2】本発明を実施するオートクレーブ装置の別の実
施例で、一部破断した概略上面図。
FIG. 2 is a partially cutaway schematic top view of another embodiment of the autoclave apparatus for carrying out the present invention.

【図3】本発明を実施するオートクレーブ装置の一部破
断した概略正面図で、(a)は実施例1で、(b)は実
施例2を示す。
FIG. 3 is a partially cutaway schematic front view of an autoclave apparatus for carrying out the present invention, in which (a) shows a first embodiment and (b) shows a second embodiment.

【図4】本発明を実施するオートクレーブの接着、接着
成形プログラムの一実施例を示す。
FIG. 4 shows an example of an autoclave bonding and adhesive molding program embodying the present invention.

【図5】従来のオートクレーブ装置の一実施例で一部破
断した概略側面図。
FIG. 5 is a schematic side view in which an example of a conventional autoclave device is partially broken.

【符号の説明】[Explanation of symbols]

A 圧力容器 B 加圧手段 C ガス循環手段 Ca ガス循環ゾーン D 加熱冷却手段 E ガス温度制御手段 F ガス循環手段 1 材料 2 容器 2a 容器内壁 3 扉 4 台車 5 レール 6 高圧ガス供給源 7 自動弁 8 自動弁 10 風洞壁 11 外通風路 11a 外通風路 11b 外通風路 11c 外通風路 11d 外通風路 12 内通風路 13 ガス吸込口 14 ガス吹出口 15 ファン 15a モータ 16 仕切部材 17 仕切部材 18 熱交換器 18a ヒータ 18b クーラ 19 自動弁 20 自動弁 21 自動弁 23 温度センサ 24 設定器 25 調節計 A pressure vessel B pressurizing means C gas circulation means Ca gas circulation zone D heating / cooling means E gas temperature control means F gas circulation means 1 material 2 container 2a container inner wall 3 door 4 truck 5 rail 6 high pressure gas supply source 7 automatic valve 8 Automatic valve 10 Wind tunnel wall 11 Outer air passage 11a Outer air passage 11b Outer air passage 11c Outer air passage 11d Outer air passage 12 Inner air passage 13 Gas suction port 14 Gas outlet 15 Fan 15a Motor 16 Partition member 17 Partition member 18 Heat exchange 18a Heater 18b Cooler 19 Automatic valve 20 Automatic valve 21 Automatic valve 23 Temperature sensor 24 Setting device 25 Controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location B29K 105: 06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器A内で材料1を加圧加熱、冷却
して接着または接着成形させるオートクレーブにおい
て、 圧力容器内壁2aと風洞壁10との間に外通風路を、風
洞壁10の内部に内通風路12を形成し、前記風洞壁1
0の上方部には複数のガス吸込口13を一定の間隔をも
って直列に、下方部には複数のガス吹出口14をガス吸
込口に対応して設け、前記複数のガス吸込口13にはそ
れぞれファン15を配設すると共に前記外通風路を隣接
するファン毎に仕切部材16にて容器2の長さ方向に区
切りして外通風路11aと11bとを形成せしめ、 それぞれのファン15により送風されるガスは、区切り
された互いに反対方向の外通風路11aと11bとを通
りガス吹出口14にて交流して内通風路12に流れ、複
数のガス吸込口13へと適宜分流されて循環するように
したことを特徴とするオートクレーブのガス循環方法。
1. In an autoclave in which a material 1 is pressurized and heated and cooled in a pressure vessel A to be bonded or adhesively molded, an outer ventilation passage is provided between an inner wall 2a of the pressure vessel and a wind tunnel wall 10, and an inside of the wind tunnel wall 10 is provided. An inner ventilation passage 12 is formed in the wind tunnel wall 1
In the upper part of 0, a plurality of gas suction ports 13 are provided in series at regular intervals, and in the lower part, a plurality of gas blow ports 14 are provided corresponding to the gas suction ports, and the plurality of gas suction ports 13 are respectively provided. A fan 15 is provided, and the external ventilation passages are separated from each other by adjacent partition members 16 in the lengthwise direction of the container 2 to form external ventilation passages 11a and 11b, which are blown by the respective fans 15. The gas flowing through the air passages 11a and 11b, which are separated from each other and in opposite directions, exchanges with each other at the gas outlet 14 to flow into the inner air passage 12, and is appropriately divided into a plurality of gas inlets 13 for circulation. A method of circulating gas in an autoclave, characterized in that
【請求項2】 圧力容器A内で材料1を加圧加熱、冷却
して接着または接着成形させるオートクレーブにおい
て、 圧力容器内壁2aと風洞壁10との間に外通風路を、風
洞壁10の内部に内通風路12を形成し、前記風洞壁1
0の上方部には複数のガス吸込口13を一定の間隔をも
って直列に、下方部には複数のガス吹出口14をガス吸
込口に対応して設け、前記複数のガス吸込口13にはそ
れぞれファン15を配設すると共に前記外通風路を隣接
するファン毎に容器2の円周方向に且つ一方を狭い出口
部17aに他方を広い出口部17bになるよう仕切部材
17にて適宜な位置まで交互に区切りして外通風路11
cと11dとを形成せしめ、 それぞれのファン15により送風されるガスは、区切り
された互いに反対方向の外通風路11cと11dに分岐
して流れ、外通風路11cと外通風路11dの各々の終
焉部で隣合うファン15により送風されるガスの流れと
交流し、ガス吹出口14にて外通風路11cの交流され
たガスと外通風路11dの交流されたガスとが更に交流
して内通風路12に流れ、複数のガス吸込口13へと適
宜分流されて循環するようにしたことを特徴とするオー
トクレーブのガス循環方法。
2. In an autoclave in which a material 1 is heated and cooled under pressure to be bonded or adhesively molded in a pressure vessel A, an outer ventilation passage is provided between an inner wall 2a of the pressure vessel and a wind tunnel wall 10, and an inside of the wind tunnel wall 10 is provided. An inner ventilation passage 12 is formed in the wind tunnel wall 1
In the upper part of 0, a plurality of gas suction ports 13 are provided in series at regular intervals, and in the lower part, a plurality of gas blow ports 14 are provided corresponding to the gas suction ports, and the plurality of gas suction ports 13 are respectively provided. A fan 15 is provided and the partition member 17 is provided so that the outside air passage is arranged in a circumferential direction of the container 2 for each adjacent fan and one is a narrow outlet portion 17a and the other is a wide outlet portion 17b. Alternating airway 11
c and 11d are formed, and the gas blown by each fan 15 is branched and flows into the external ventilation passages 11c and 11d which are separated from each other in opposite directions, and the gas is blown in each of the external ventilation passages 11c and 11d. In the final section, the flow of gas blown by the adjacent fan 15 is exchanged, and at the gas outlet 14, the exchanged gas in the external ventilation passage 11c and the exchanged gas in the external ventilation passage 11d are further exchanged to the inside. A gas circulation method for an autoclave, characterized in that the gas flows into the ventilation passage 12 and is appropriately divided into a plurality of gas suction ports 13 for circulation.
JP34982292A 1992-12-01 1992-12-01 Method for circulating gas in autoclave Pending JPH06170209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34982292A JPH06170209A (en) 1992-12-01 1992-12-01 Method for circulating gas in autoclave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34982292A JPH06170209A (en) 1992-12-01 1992-12-01 Method for circulating gas in autoclave

Publications (1)

Publication Number Publication Date
JPH06170209A true JPH06170209A (en) 1994-06-21

Family

ID=18406354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34982292A Pending JPH06170209A (en) 1992-12-01 1992-12-01 Method for circulating gas in autoclave

Country Status (1)

Country Link
JP (1) JPH06170209A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800861A2 (en) * 1996-02-17 1997-10-15 SICOWA Verfahrenstechnik für Baustoffe GmbH & Co. KG Autoclave
JP2003025339A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
JP2003025340A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
US6872918B2 (en) * 2001-11-08 2005-03-29 Aeroform Group Plc Multiple zone autoclaves
CN102183714A (en) * 2011-03-18 2011-09-14 国网电力科学研究院 Wind device for icing simulating test of extra-high voltage insulator
CN105110658A (en) * 2015-07-21 2015-12-02 辽宁乐威科技发展有限公司 Top convection radiation laminated glass autoclave

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800861A2 (en) * 1996-02-17 1997-10-15 SICOWA Verfahrenstechnik für Baustoffe GmbH & Co. KG Autoclave
EP0800861A3 (en) * 1996-02-17 1998-09-09 SICOWA Verfahrenstechnik für Baustoffe GmbH & Co. KG Autoclave
JP2003025339A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
JP2003025340A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
JP4615773B2 (en) * 2001-07-13 2011-01-19 株式会社テイエルブイ Steam vulcanizer
US6872918B2 (en) * 2001-11-08 2005-03-29 Aeroform Group Plc Multiple zone autoclaves
CN102183714A (en) * 2011-03-18 2011-09-14 国网电力科学研究院 Wind device for icing simulating test of extra-high voltage insulator
CN105110658A (en) * 2015-07-21 2015-12-02 辽宁乐威科技发展有限公司 Top convection radiation laminated glass autoclave

Similar Documents

Publication Publication Date Title
EP2116353B1 (en) Blow molding machine with air conditioning
JP4831353B2 (en) Blow molding machine with air conditioning
EP0370313B1 (en) Heat transfer method in a glass sheet bending furnace and bending furnace
US5647882A (en) Apparatus for the heating or cooling of plate-like or sheet-like flat glass
KR100697426B1 (en) Convection furnace thermal profile enhancement
US10018421B2 (en) Continuous furnace system having heat recycling device
EP0163711B1 (en) Drying kiln for drying timber loads
JPH06170209A (en) Method for circulating gas in autoclave
KR100985199B1 (en) Dry oven using fan filter unit
US20140193762A1 (en) Heat treatment furnace
US7260901B2 (en) Device for controlling the temperature of objects
WO2007014493A1 (en) Aging room used for the last assembling process of lcd panel modules
JPH0252197B2 (en)
JPH06154577A (en) Method for controlling gas temperature of autoclave
JPH08261647A (en) Drying apparatus
DE69800091T2 (en) Cooling unit for plates e.g. Melamine resin boards after a hot pressing cycle
KR100875907B1 (en) Aging apparatus with heat air supply means for center of display panel
US7363728B1 (en) Shrink wrap tunnel with variable set points
US4851022A (en) Method and oven for ceramising glass plates
JPH05203352A (en) Ventilator for heat-treatment of flat sheet belt
JP2000346550A (en) Heating apparatus for panel shaped sample
JPH05329355A (en) Gas circulating device of autoclave
JP2000146275A (en) Air conditioner
JP2004036908A (en) Baking finish drying furnace
CA1329489C (en) Cooling chamber for the convection cooling of two-dimensionally arranged material