JP2527822B2 - Heating and cooling equipment in the painting process - Google Patents
Heating and cooling equipment in the painting processInfo
- Publication number
- JP2527822B2 JP2527822B2 JP1253134A JP25313489A JP2527822B2 JP 2527822 B2 JP2527822 B2 JP 2527822B2 JP 1253134 A JP1253134 A JP 1253134A JP 25313489 A JP25313489 A JP 25313489A JP 2527822 B2 JP2527822 B2 JP 2527822B2
- Authority
- JP
- Japan
- Prior art keywords
- heating
- cold air
- hot
- air
- hot air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Drying Of Solid Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、塗装工程における加熱冷却装置に関する。
詳しくは、高圧空気の高速回転流動を利用して熱風流通
領域と冷風流通領域とを形成するようにした加熱冷却装
置に関するものである。TECHNICAL FIELD The present invention relates to a heating and cooling device in a coating process.
More specifically, the present invention relates to a heating and cooling device that forms a hot air circulation region and a cold air circulation region by utilizing high-speed rotating flow of high-pressure air.
[従来の技術] 近年、公害特に光化学スモッグを規制する必要上、有
機溶剤塗料を用いる塗装工程では、蒸発する有機溶剤を
工程外つまり塗装装置外に排出せず完全に分離回収する
ことが望まれている。しかし、自動車車体等大型ワーク
の塗装工程では設備大型化と設備経済の負担が大きいば
かりか抜本的対策といい難いことから、有機溶剤塗料に
代えて水を基調とした溶剤を用いる水性塗料が使用され
ている。[Prior Art] In recent years, due to the need to regulate pollution, particularly photochemical smog, it is desired to completely separate and recover the evaporating organic solvent without discharging it to the outside of the process, that is, outside the coating apparatus in the coating process using the organic solvent paint. ing. However, in the painting process of large-scale works such as automobile bodies, not only is the equipment large and the economic burden on the equipment large, but it is difficult to say that it is a drastic measure. Has been done.
ところで、かかる水性塗料は、有機溶剤塗料に比較し
て、溶剤の沸点を変えることにより溶剤の自然蒸発速度
を調節することが極めて困難である。By the way, it is extremely difficult to control the spontaneous evaporation rate of the solvent in the water-based paint by changing the boiling point of the solvent, as compared with the organic solvent paint.
したがって、自然蒸発型では、フラッシュオフ工程が
長大となり設備大型化と品質不均一化を招くことから、
従来は、例えば特公昭52−30170号、実開昭61−3395号
公報に示される如く、輻射加熱方式、あるいは特開昭63
−242378号公報に示される誘導加熱方式等によってワー
クを積極的に加熱する対応策が講じられている。Therefore, in the natural evaporation type, the flash-off process becomes long, resulting in larger equipment and uneven quality.
Conventionally, for example, as shown in Japanese Examined Patent Publication No. 52-30170 and Japanese Utility Model Laid-Open No. 61-3395, a radiant heating method, or Japanese Unexamined Patent Publication No.
A countermeasure for positively heating the work is taken by the induction heating method or the like disclosed in Japanese Patent Laid-Open No. 242378.
[発明が解決しようとする課題] しかし、上記いずれの構造でも設備の複雑化と大型化
が避けられない。また、熱風を対流接触させる方式は、
上記輻射加熱方式に比べて均一乾燥できるが、熱風発生
装置の防爆対策も加わりさらに大型化と設備コストを増
大する問題点が残る。[Problems to be Solved by the Invention] However, in any of the above structures, it is inevitable that the equipment becomes complicated and large. In addition, the method of convection contact with hot air is
Although it can be dried more uniformly than the above-mentioned radiant heating method, the problem of increasing the size and increasing the equipment cost remains due to the addition of explosion-proof measures for the hot air generator.
また、いずれも積極加熱するものであるから溶剤蒸発
の点に関しては所期の目的を達するが、だからといって
温度上昇したままのワークを次工程に導入したのでは次
工程での塗膜品質劣悪原因となる。特に、次工程がいま
だ有機溶剤塗料とされているクリアー塗装工程の場合に
は、温度管理上不都合であり品質保障があやぶまれる。
このために相当長のクールゾーンを設けなければならな
いので必ずしも十分なフラッシュオフ工程の短縮化に至
っていない。格別の冷却設備を設けることも実用上採用
し難い。In addition, since both of them are positively heated, they achieve the intended purpose in terms of solvent evaporation, but introducing a work piece whose temperature has risen to the next step may cause poor coating film quality in the next step. Become. In particular, in the case of a clear coating process in which the next process is still an organic solvent paint, it is inconvenient in temperature control, and quality assurance is compromised.
For this reason, a considerable length of cool zone has to be provided, so that the flash-off process is not necessarily shortened sufficiently. It is also difficult to practically use special cooling equipment.
本発明は、上記事情に鑑みなされたもので、その目的
とするところは、積極対流加熱による溶剤の迅速蒸発を
図りつつ次工程で最適とする温度に冷却できる設備小型
・低コストで熱効率の高い塗装工程における加熱冷却装
置を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is a facility that can cool to an optimum temperature in the next step while rapidly evaporating a solvent by positive convection heating, and has a small size, low cost, and high thermal efficiency. It is to provide a heating and cooling device in a painting process.
[課題を解決するための手段] 本発明は、高圧空気の高速回転流動作用により熱風と
冷風とを生成して溶剤蒸発とワークの冷却とを行う構成
とし前記目的を達成するものである。[Means for Solving the Problems] The present invention achieves the above object by adopting a configuration in which hot air and cold air are generated by a high-speed rotating flow action of high-pressure air to perform solvent evaporation and work cooling.
すなわち、塗装工程の前段工程と後段工程との間に加
熱冷却室を設け、 高圧空気供給口と熱風排出口と冷風排出口とを有する
本体チューブからなり、供給された高圧空気の本体チュ
ーブ内での高速回転流動作用によって熱風と冷風とを発
生させる熱冷風発生器を該加熱冷却室に接近配設し、 該熱風排出口からの熱風を該加熱冷却室の上流側また
は下流側に導きかつ該冷風排出口からの冷風をその下流
側または上流側に導いて該加熱冷却室に熱風流通域と冷
風流通域とを形成するように構成したことを特徴とす
る。That is, a heating / cooling chamber is provided between the pre-stage process and the post-stage process of the coating process, and is composed of a main body tube having a high-pressure air supply port, a hot air discharge port, and a cold air discharge port. A hot / cold air generator for generating hot air and cold air by the high-speed rotary flow action of is disposed close to the heating / cooling chamber, and directs hot air from the hot air outlet to the upstream side or the downstream side of the heating / cooling chamber and It is characterized in that the cold air from the cold air outlet is guided to the downstream side or the upstream side to form a hot air circulation area and a cold air circulation area in the heating and cooling chamber.
[作用] 本発明では、加熱冷却室を例えば有色塗装の前段工程
と例えばクリアー塗装の後段工程との間に設ける。そし
て、加熱冷却室の上流側に熱風流通域、下流側に冷風流
通域を形成するように熱冷風発生器を配設して高圧空気
を供給すれば、熱風流通域において前段工程から排出さ
れたワーク上の塗膜から溶剤を迅速に蒸発でき、かつ加
熱されたワークを冷風流通域において後段工程に最適な
温度まで迅速冷却できる。よって、フラッシュオフの迅
速化と高品質塗装が行える。[Operation] In the present invention, the heating / cooling chamber is provided, for example, between the pre-stage process of colored coating and the post-stage process of clear coating, for example. Then, if hot air is generated by arranging a hot / cold air generator so as to form a hot air flow area on the upstream side of the heating / cooling chamber and a cold air flow area on the downstream side, the hot air flow area is discharged from the preceding step in the hot air flow area. The solvent can be quickly evaporated from the coating film on the work, and the heated work can be quickly cooled to the optimum temperature for the subsequent process in the cold air distribution area. Therefore, quick flash-off and high-quality painting can be performed.
[実施例] 本発明の実施例を図面を参照して説明する。Embodiments Embodiments of the present invention will be described with reference to the drawings.
(第1実施例) 第1図は全体構成図、第2図は熱冷風発生器の構成図
である。(First Embodiment) FIG. 1 is an overall configuration diagram, and FIG. 2 is a configuration diagram of a hot / cold air generator.
本実施例の加熱冷却装置は、第1図に示す如く有色塗
装工程(前段工程)Z1と無色(クリアー)塗装工程(後
段工程)Z2との間において、溶剤蒸発促進のために自動
車車体(ワーク)Wを加熱し、その後に後段工程で望ま
れる温度に冷却するために供される。As shown in FIG. 1, the heating / cooling device of the present embodiment is arranged such that a vehicle body (workpiece) is accelerated between a colored coating process (first stage process) Z1 and a colorless (clear) coating process (second stage process) Z2 to accelerate solvent evaporation. ) W is heated and then used to cool it to a desired temperature in a subsequent step.
有色塗装工程Z1は、給気室3,有色塗装室1,排気処理室
4からなる塗装ブースで水性塗料を用いて自動塗装する
工程とされ、無色塗装工程Z2は給気室3,無色塗装室2,排
気処理室4からなる塗装ブースで有機溶剤塗料または水
性塗料を用いて自動塗装する工程である。Z12は加熱冷
却工程で加熱冷却室10内で実行される。Colored painting process Z1 is a process of automatically painting with water-based paint in a painting booth consisting of air supply chamber 3, colored painting chamber 1 and exhaust treatment chamber 4, and colorless painting process Z2 is air painting chamber 3, colorless painting chamber. 2. This is a process of automatically applying an organic solvent paint or a water-based paint in a paint booth consisting of the exhaust treatment chamber 4. Z12 is executed in the heating / cooling chamber 10 in the heating / cooling process.
この実施例の加熱冷却室10は、上室11,中室13,排気処
理室16から形成されており、上室11には熱冷風発生器20
が配設され、中室の上流側には熱風流通域HZ,下流側に
は冷風流通域CZが形成される。排気処理室16は図示しな
い排風機によって負圧に保持されている。中室13が実質
的な加熱冷却室となる。なお、12は仕切、14は仕切、15
は床面である。The heating / cooling chamber 10 of this embodiment is composed of an upper chamber 11, a middle chamber 13, and an exhaust treatment chamber 16, and the upper chamber 11 has a hot / cool air generator 20.
Is provided, and a hot air flow zone HZ is formed on the upstream side of the middle chamber, and a cold air flow zone CZ is formed on the downstream side. The exhaust treatment chamber 16 is maintained at a negative pressure by an exhaust fan (not shown). The middle chamber 13 serves as a substantial heating / cooling chamber. 12 is a partition, 14 is a partition, 15
Is the floor.
ここに、熱冷風発生器20は、高圧空気の本体チューブ
21内での高速回転流動作用を利用して熱風HBと冷風CBと
を発生する格別のものである。Here, the hot and cold air generator 20 is the main tube of high pressure air.
It is a special one that generates hot air HB and cold air CB by utilizing the high-speed rotary flow action in 21.
第2図において、21は円筒形の本体チューブ21であ
り、その一端側には高圧空気供給口23と冷風排出口26と
が設けられ、他端側には熱風排出口24が設けられてい
る。22は渦流発生室であり、供給口23からノズル22Aを
介して噴出された高圧空気HPAのエネルギーを利用して
渦流を発する役目を持つ。In FIG. 2, reference numeral 21 denotes a cylindrical main body tube 21, which is provided with a high-pressure air supply port 23 and a cold air discharge port 26 at one end side thereof, and is provided with a hot air discharge port 24 at the other end side thereof. . Reference numeral 22 denotes a vortex flow generation chamber, which has a role of generating a vortex flow by using the energy of the high-pressure air HPA ejected from the supply port 23 through the nozzle 22A.
また、25はコントロール弁であり、熱風HB量と冷風CB
量との流量比を調整する手段である。Further, 25 is a control valve, and the hot air HB amount and the cold air CB
It is a means for adjusting the flow rate ratio to the quantity.
すなわち、供給口23からの高圧空気HPAは、ノズル22A
から渦流発生室22の周囲へ接線方向に音速で吐き出され
断熱膨脹するとともに高速回転流動となって本体チュー
ブ21内の外側を矢印X1方向に進む。したがって、外側渦
流には大きな遠心力が働いて圧力・密度が急上昇し抵抗
を増加し、つまり断熱圧縮されて温度上昇する。この熱
風HBは、熱風排出口24から外部に放出される。一方、コ
ントロール弁25で排出阻止された残流空気は、外側渦流
の遠心力によって出来た内側空洞内を外側渦流と同方向
に回転しつつ矢印X2方向に進む。この内側渦流は、外側
渦流に対して制動作用なる仕事をするので、温度が下が
り冷風CBとなる。エネルギー的には、供給された高圧空
気HPAを基準とした場合、熱風HBが持出す熱量と冷風CB
が奪われた熱量とは同じである。That is, the high-pressure air HPA from the supply port 23 becomes the nozzle 22A.
Is tangentially discharged to the periphery of the vortex flow generating chamber 22 at the speed of sound and adiabatically expands, and at the same time, a high-speed rotation flow is made to proceed outside the main body tube 21 in the arrow X1 direction. Therefore, a large centrifugal force acts on the outer vortex and the pressure and density rise sharply to increase the resistance, that is, adiabatic compression raises the temperature. The hot air HB is discharged from the hot air outlet 24 to the outside. On the other hand, the residual air that is prevented from being discharged by the control valve 25 advances in the direction of arrow X2 while rotating in the same direction as the outer vortex inside the inner cavity created by the centrifugal force of the outer vortex. This inner vortex works as a braking action on the outer vortex, so that the temperature drops and becomes cold air CB. In terms of energy, when the supplied high-pressure air HPA is used as a reference, the amount of heat carried by the hot air HB and the cold air CB
Is the same as the amount of heat taken away.
熱風HBの流量、温度は、コントロール弁25によって調
整され、これとともに冷風CBの流量、温度も対応して定
まる。The flow rate and temperature of the hot air HB are adjusted by the control valve 25, and the flow rate and temperature of the cold air CB are also determined correspondingly.
例えば、全長を約300mm、本体チューブ21の内径を18m
mとし、供給口23から7Kg/cmg,21℃の高圧空気HPAを1,40
0N/min.だけ供給し、コントロール弁25を熱風HBと冷
風CBとの比が1:1となるように調整すると、熱風HBは71
℃となり冷風CBは−34℃となる。For example, the total length is about 300 mm and the inner diameter of the main body tube 21 is 18 m.
m, and supply high pressure HPA of 7Kg / cmg, 21 ℃ from supply port 23 to 1,40
Supplying only 0 N / min. And adjusting the control valve 25 so that the ratio of hot air HB to cold air CB is 1: 1, the hot air HB becomes 71
℃ and cold air CB becomes -34 ℃.
ここに、高圧空気HPAとは、本体チューブ21の構造,
供給流量等々により異なるが、要はノズル22Aから音速
以上で噴出できる圧力であればよい。例えば1Kg/cmgで
もよい。Here, the high pressure air HPA is the structure of the main body tube 21,
Although it depends on the supply flow rate and the like, the point is that the pressure can be ejected from the nozzle 22A at a speed equal to or higher than the sonic velocity. For example, 1 kg / cmg may be used.
したがって、この実施例では、加熱冷却室10(中室1
3)の上流側に熱風流通域HZを、下流側に冷風流通域CZ
を形成するために、第1図に示す如く、熱冷風発生器20
の熱風排出口24を上流側に向け、冷風排出口26を下流側
に向けた姿勢で上室11に配設している。そして、高圧空
気供給口23には、配管43(流量調整弁43A)を介してバ
ッファタンク付のコンプレッサー33が接続され、熱風排
出口24にはダクト34を介して吹付口44(加熱マシーン4
0)が接続されている。一方、冷風排出口26には、ダク
ト36を介して吹付口46(冷却マシーン41)が接続されて
いる。Therefore, in this embodiment, the heating / cooling chamber 10 (middle chamber 1
3) The hot air flow zone HZ is on the upstream side and the cold air flow zone CZ is on the downstream side.
To form the hot and cold air generator 20 as shown in FIG.
Are arranged in the upper chamber 11 in such a manner that the hot air exhaust port 24 is directed upstream and the cold air exhaust port 26 is directed downstream. A compressor 33 with a buffer tank is connected to the high-pressure air supply port 23 via a pipe 43 (flow rate adjusting valve 43A), and a hot air discharge port 24 is connected to a blowing port 44 (heating machine 4 by a duct 34).
0) is connected. On the other hand, a blow port 46 (cooling machine 41) is connected to the cool air discharge port 26 via a duct 36.
また、冷風CBの吹付時温度を例えば10℃位に調整する
ために、配管43とダクト36との間には、弁37付のバイパ
ス管47が付設されている。ミキシング作用によって冷風
流通域CZでの冷風温度を調整することができる。Further, a bypass pipe 47 with a valve 37 is provided between the pipe 43 and the duct 36 in order to adjust the blowing temperature of the cold air CB to about 10 ° C., for example. By the mixing action, the cold air temperature in the cold air distribution area CZ can be adjusted.
なお、この実施例では、熱冷風発生器20を加熱冷却室
10の横方向(第1図で紙面に垂直方向)に3台並列配設
しているが、その台数は適宜に選択できる。この台数に
よっては、上記ダクト34,36は配管としてもよい。In this embodiment, the hot / cold air generator 20 is installed in the heating / cooling chamber.
Three units are arranged in parallel in 10 lateral directions (directions perpendicular to the paper surface in FIG. 1), but the number can be selected as appropriate. Depending on this number, the ducts 34, 36 may be pipes.
次に、作用を説明する。 Next, the operation will be described.
有色塗料の溶剤性状、ワークWの熱容量,搬送手段5
の送り速度等に照し、熱風流通域HZの熱風温度を例えば
75℃とするようにコントロール弁25を調整する。また、
流速を適宜とするために流量調整弁43A、さらにはコン
トロール弁25を再調整する。同様にして、弁37を調整し
て冷風流通域CZにおける適宜な流速と例えば5〜15℃の
温度となるように調整する。Solvent property of colored paint, heat capacity of work W, conveying means 5
The hot air temperature in the hot air distribution area HZ is
Adjust control valve 25 to 75 ° C. Also,
The flow rate adjusting valve 43A and the control valve 25 are readjusted in order to adjust the flow rate appropriately. Similarly, the valve 37 is adjusted so that an appropriate flow velocity in the cold air flow zone CZ and a temperature of, for example, 5 to 15 ° C. are obtained.
すると、有色塗装済のワークWが、搬送手段5で前段
工程たる有色塗装ゾーンZ1から加熱冷却ゾーンZ12の熱
風流通域HZに移送されると、熱風により積極加熱される
から、溶剤は迅速蒸発される。Then, when the color-coated work W is transferred by the transporting means 5 from the color-coating zone Z1 which is the previous step to the hot-air flow zone HZ of the heating / cooling zone Z12, it is positively heated by the hot air, so that the solvent is rapidly evaporated. It
その後は、冷風流通域CZにおいて、今度は積極的に冷
却されるので、後段工程ある無色塗装ゾーンZ2で求めら
れる最適温度に急速に冷される。よって、短時間のうち
に溶剤蒸発とワークW(塗膜)冷却とを行うことができ
る。After that, in the cold air distribution area CZ, the cooling is actively performed this time, so that it is rapidly cooled to the optimum temperature required in the colorless coating zone Z2 which is the latter step. Therefore, the solvent evaporation and the work W (coating) cooling can be performed in a short time.
しかして、この実施例によれば、前段工程(Z1)と後
段工程(Z2)との間に加熱冷却工程Z12を形成する加熱
冷却室10(13)を設ける、とともに高圧空気HPAの高速
回転流動作用によって熱風HBと冷風CBとを発生させる熱
冷風発生器20を接近配設して、その上流側に熱風流通域
HZ、下流側に冷風流通域CZを形成する構成としたので、
前段工程(Z1)後の溶剤蒸発とその後のワーク冷却とを
短時間で行えるから、水性塗料により商品位塗装工程が
確立できかつ塗装ゾーンを飛躍的に短縮小型化できる。
また、熱効率が高い。Therefore, according to this embodiment, the heating / cooling chamber 10 (13) forming the heating / cooling step Z12 is provided between the preceding step (Z1) and the subsequent step (Z2), and the high-speed rotation flow of the high-pressure air HPA is increased. A hot / cold air generator 20, which generates hot air HB and cold air CB by action, is disposed close to each other, and a hot air distribution area is provided on the upstream side thereof.
Since HZ and the cold air distribution area CZ are formed on the downstream side,
Since solvent evaporation after the first step (Z1) and subsequent work cooling can be performed in a short time, a commercial grade coating process can be established with a water-based paint, and the coating zone can be dramatically shortened and miniaturized.
Also, the thermal efficiency is high.
また、熱冷風発生器20が、高圧空気HPAの高速回転流
動作用による新規で構造簡単なものゆえ、従来の各加熱
方式に比較して防爆対策を必要とせず小型、低コストで
かつ格別の冷却手段を設けることなく冷却も行える。In addition, the hot and cold air generator 20 is new and has a simple structure due to the high-speed rotation and flow action of the high-pressure air HPA, so it does not require explosion-proof measures compared to each conventional heating method, and is compact, low-cost and exceptionally cool. Cooling can be performed without providing any means.
また、具体的加熱、冷却はいわゆる対流方式であるか
ら、従来輻射方式等に比べ加熱・冷却が均一的に行え、
この点からも迅速で高品位の塗装ができる。Further, since concrete heating and cooling are so-called convection methods, heating and cooling can be performed more uniformly than conventional radiation methods.
From this point as well, quick and high-quality painting is possible.
さらに、熱源が高圧空気HPAであるから、工場常備の
圧搾空気を用いることができ、一段と設備の簡素化がで
きる。Furthermore, since the heat source is high-pressure air HPA, compressed air that is always available in the factory can be used, and the equipment can be further simplified.
(第2実施例) 第3図は第2実施例を示す全体構成図、第4図は有色
塗装室側から見た加熱・冷却マシーンの配置を説明する
ための図である。(Second Embodiment) FIG. 3 is an overall configuration diagram showing a second embodiment, and FIG. 4 is a diagram for explaining the arrangement of heating / cooling machines as seen from the side of the color coating chamber.
この実施例では、第1実施例が加熱マシーン40と冷却
マシーン41とを中室13の上方に配設してダウンフローを
構成したのに対して、加熱マシーン40を上方加熱マシー
ン40U(吹付口44U)と両側に配設された一対の側方加熱
マシーン40S(吹付口44S)とを区別しワークWに接近し
て熱風HBを吹付けるように形成している。冷却マシーン
41〔上方冷却マシーン41U(吹付口46U)、側方冷却マシ
ーン41S(吹付口46S)〕についても同様である。In this embodiment, the heating machine 40 and the cooling machine 41 are arranged above the inner chamber 13 to form the downflow in the first embodiment, while the heating machine 40 is arranged above the upper heating machine 40U (the blowing port). 44U) and a pair of side heating machines 40S (blow-off ports 44S) arranged on both sides are distinguished from each other, and hot air HB is blown toward the work W. Cooling machine
The same applies to 41 [upper cooling machine 41U (blowing port 46U), side cooling machine 41S (blowing port 46S)].
したがって、この第2実施例では第1実施例の場合と
同様な作用効果を奏する他、さらに熱風HB、冷風CHとも
にワークWに直接的に吹付けられるので、第1実施例の
場合に比較して、溶剤蒸発とその後の冷却とを一段と迅
速に行えかつ熱冷風発生器20等の小型化が図れる。Therefore, in this second embodiment, in addition to the same operational effects as in the case of the first embodiment, the hot air HB and the cold air CH are also blown directly onto the work W, so compared with the case of the first embodiment. Thus, the solvent evaporation and the subsequent cooling can be performed more rapidly, and the hot and cold air generator 20 and the like can be downsized.
[発明の効果] 本発明は、前段工程と後段工程との間に加熱冷却室を
設けるとともに高圧空気の高速回転流動型の熱冷風発生
器を接近配設し、これからの熱風と冷風とを導いて加熱
冷却室の上流側(下流側)に熱風流通域を、下流側(上
流側)に冷風流通域を形成する構成であるから、設備大
型、コスト高、不均一加熱、防爆対策等々の従来欠点を
一掃し、塗装工程の小型化・低コスト化、塗膜品質向上
を達成しかつ熱効率の高い加熱冷却装置を提供できる。[Advantages of the Invention] The present invention provides a heating / cooling chamber between a first step and a second step, and a high-speed rotating fluidized hot / cold air generator for high-pressure air is disposed closely to guide hot air and cold air from now on. Since a hot air flow area is formed on the upstream side (downstream side) of the heating / cooling chamber and a cold air flow area is formed on the downstream side (upstream side), conventional equipment such as large equipment, high cost, non-uniform heating, explosion-proof measures, etc. It is possible to provide a heating / cooling device which eliminates defects, achieves downsizing and cost reduction of the coating process, improves coating film quality, and has high thermal efficiency.
第1図は本発明の第1実施例を示す全体構成図、第2図
は同じく熱冷風発生器の構成図、第3図は第2実施例を
示す全体構成図および第4図は同じく有色塗装室側から
見た加熱・冷却マシーンの配置を説明するための図であ
る。 10……加熱冷却室、 20……熱冷風発生器、 21……本体チューブ、 23……高圧空気供給口、 24……熱風排出口、 26……冷風排出口、 33……コンプレッサ。FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention, FIG. 2 is a configuration diagram of the same hot / cold air generator, FIG. 3 is an overall configuration diagram showing a second embodiment, and FIG. It is a figure for demonstrating arrangement | positioning of the heating / cooling machine seen from the coating room side. 10 …… Heating / cooling room, 20 …… Hot and cold air generator, 21 …… Main body tube, 23 …… High pressure air supply port, 24 …… Hot air exhaust port, 26 …… Cold air exhaust port, 33 …… Compressor.
Claims (1)
熱冷却室を設け、 高圧空気供給口と熱風排出口と冷風排出口とを有する本
体チューブからなり、供給された高圧空気の本体チュー
ブ内での高速回転流動作用によって熱風と冷風とを発生
させる熱冷風発生器を該加熱冷却室に接近配設し、 該熱風排出口からの熱風を該加熱冷却室の上流側または
下流側に導きかつ該冷風排出口からの冷風をその下流側
または上流側に導いて該加熱冷却室に熱風流通域と冷風
流通域とを形成するように構成した塗装工程における加
熱冷却装置。1. A main body of high pressure air supplied, comprising a main body tube having a high pressure air supply port, a hot air discharge port and a cold air discharge port, provided with a heating / cooling chamber between a first stage process and a second stage process of a coating process. A hot / cold air generator that generates hot air and cold air by a high-speed rotating and flowing action in the tube is disposed close to the heating / cooling chamber, and hot air from the hot air outlet is provided upstream or downstream of the heating / cooling chamber. A heating and cooling device in a coating process configured to guide and direct the cold air from the cold air outlet to the downstream side or the upstream side to form a hot air circulation region and a cold air circulation region in the heating and cooling chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1253134A JP2527822B2 (en) | 1989-09-28 | 1989-09-28 | Heating and cooling equipment in the painting process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1253134A JP2527822B2 (en) | 1989-09-28 | 1989-09-28 | Heating and cooling equipment in the painting process |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03114568A JPH03114568A (en) | 1991-05-15 |
JP2527822B2 true JP2527822B2 (en) | 1996-08-28 |
Family
ID=17246981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1253134A Expired - Lifetime JP2527822B2 (en) | 1989-09-28 | 1989-09-28 | Heating and cooling equipment in the painting process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2527822B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4964556B2 (en) * | 2006-10-12 | 2012-07-04 | トリニティ工業株式会社 | Painting equipment |
DE102018115234A1 (en) * | 2018-06-25 | 2020-01-02 | Eisenmann Se | Temperature control device for tempering objects |
-
1989
- 1989-09-28 JP JP1253134A patent/JP2527822B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03114568A (en) | 1991-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102623916B1 (en) | Processing facility and method for processing workpieces | |
US3291630A (en) | Method of coating cylindrical articles with thermoplastic material | |
US5937538A (en) | Through air dryer apparatus for drying webs | |
JPH0124979B2 (en) | ||
JP5674129B2 (en) | Method and apparatus related to swirl tube processing | |
JP2795802B2 (en) | Temperature controller for rotating body of printing mechanism | |
JPH04331245A (en) | Device for surface treatment of workpiece over plasma torch | |
RU2393027C2 (en) | Method and device for applying solvent-containing coat on metal tape as well as for coat drying and/or cross-linking | |
JP2527822B2 (en) | Heating and cooling equipment in the painting process | |
CN114353430A (en) | Atomizing air cooling device | |
US20210094058A1 (en) | Painting system | |
JP2510296B2 (en) | Rotary atomizing electrostatic coating machine | |
US4144021A (en) | Fluid rail conveying apparatus | |
JPS6219912B2 (en) | ||
US4365915A (en) | Fluid rail conveying apparatus | |
JP4038075B2 (en) | Stripping paint drying oven | |
US3537187A (en) | Apparatus for and method of rapidly drying coating means on a workpiece | |
JPS56102567A (en) | Hardening method for aluminum strip | |
JPH0568916A (en) | Painting equipment | |
JP2022189024A (en) | Spray drying facility | |
KR100361186B1 (en) | Method cooling and apparatus for cooling automobile of body | |
CN207463488U (en) | A kind of nozzle, pneumatic nebulizer and heat-generating pipe Membrane jetter | |
JPS6240308Y2 (en) | ||
JPS6227228A (en) | Vertical rotary valve | |
SU1307190A1 (en) | Installation for drying paste materials |