JPH0676260A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0676260A
JPH0676260A JP25225392A JP25225392A JPH0676260A JP H0676260 A JPH0676260 A JP H0676260A JP 25225392 A JP25225392 A JP 25225392A JP 25225392 A JP25225392 A JP 25225392A JP H0676260 A JPH0676260 A JP H0676260A
Authority
JP
Japan
Prior art keywords
magnetic
intermediate layer
layer
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25225392A
Other languages
Japanese (ja)
Other versions
JP3230223B2 (en
Inventor
Tetsuya Yamamoto
哲也 山元
Akihiko Okabe
明彦 岡部
Kiyoshi Kagawa
潔 香川
Kazuhiko Hayashi
和彦 林
Koichi Aso
興一 阿蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP25225392A priority Critical patent/JP3230223B2/en
Publication of JPH0676260A publication Critical patent/JPH0676260A/en
Application granted granted Critical
Publication of JP3230223B2 publication Critical patent/JP3230223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce the magnetic recording medium at a high yield and to improve the output and overwriting characteristic of magnetic recording thereof without degrading the squareness o a perpendicular magnetization curve by relieving the conditions for an oxygen partial, pressure at the time of film formation in order to obtain magnetic thin films having a high perpendicularly anisotropic magnetic field. CONSTITUTION:The magnetic layer 3 expressed by compsn. formula (CoaPtbBc)100-xOx ((a), (b), (c) and (x) are atomic % and a=100-b-c, 0<=b<=50, 0.1<=c<=30, 0<x<=15) is formed via an intermediate layer 2 on a nonmagnetic base 1. The intermediate layer 2 is formed of a face-centered cubic structure and the degree of orientation DELTAtheta50 determined by the locking curve of the (111) peak of the X-ray diffraction image of the intermediate layer 2 having the face-centered cubic structure is specified to <=10 deg. or the integrated intensity ratio I311/I222 of the (311) peak and (222) peak of the X-ray diffraction image is confined to <=0.8. More preferably, the intermediate layer 2 contains >=1 kinds among Al, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Fe and Co and a substrate contg. Ti or Cr between the nonmagnetic base 1 and the intermediate layer 2 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体に関す
る。より詳しくは、CoPtBO系磁性層を有する垂直
磁気記録媒体に関する。
FIELD OF THE INVENTION The present invention relates to a magnetic recording medium. More specifically, it relates to a perpendicular magnetic recording medium having a CoPtBO-based magnetic layer.

【0002】[0002]

【従来の技術】近年、磁気記録の分野においては、記録
の高密度化を図るために、垂直磁気記録媒体が用いられ
つつある。この垂直磁気記録媒体の磁性薄膜としては、
CoCr、CoMo、CoV、CoRu等の合金磁性薄
膜が知られている。
2. Description of the Related Art In recent years, in the field of magnetic recording, a perpendicular magnetic recording medium is being used in order to increase the recording density. As the magnetic thin film of this perpendicular magnetic recording medium,
Alloy magnetic thin films of CoCr, CoMo, CoV, CoRu, etc. are known.

【0003】これらの合金のうち最も磁気特性に優れて
いるCoCr系合金ついて、その代表的な磁気特性をみ
ると、飽和磁束密度Bsは0.4〜0.6Tであり、垂
直保磁力Hcvは、この合金薄膜のスパッタリング等の
被着成膜時に基板を150℃程度に加熱した場合には1
20kA/mに及ぶ値を示すものの、その成膜時の基板
温度が室温程度である場合は、約24kA/mと比較的
低い値を示す。そして、垂直方向の角型比(Mr/M
s)は約0.2、異方性磁界Hkは約320〜480k
A/mである。この場合、飽和磁束密度Bsが比較的低
いという問題があり、また、成膜時の基板温度を高くし
なければ高い垂直保磁力Hcvを得ることができないた
めに、その基板として安価であるが耐熱性が不十分なポ
リエチレンテレフタレート(PET)基板等は使用する
ことができないという問題があった。
Looking at the typical magnetic characteristics of the CoCr type alloys having the best magnetic characteristics among these alloys, the saturation magnetic flux density Bs is 0.4 to 0.6 T and the perpendicular coercive force Hcv is. , 1 when the substrate is heated to about 150 ° C. during deposition such as sputtering of this alloy thin film
Although the value reaches 20 kA / m, it shows a relatively low value of about 24 kA / m when the substrate temperature during film formation is about room temperature. Then, the squareness ratio in the vertical direction (Mr / M
s) is about 0.2, and the anisotropic magnetic field Hk is about 320 to 480k.
A / m. In this case, there is a problem that the saturation magnetic flux density Bs is relatively low, and since a high perpendicular coercive force Hcv cannot be obtained unless the substrate temperature during film formation is high, the substrate is inexpensive but heat resistant. There is a problem that a polyethylene terephthalate (PET) substrate having insufficient properties cannot be used.

【0004】これに対して本出願人は、先に特開平2−
74012号公報において、膜厚を大きくしても十分な
保磁力Hcが得られ、成膜時の基板温度を高める必要が
なく、また、十分な飽和磁束密度Bsも実現しやすいC
oPtBO系合金を提案した。このCoPtBO系合金
は、その組成式が(CoPt100−x
で示され、そしてその組成範囲が、a=100−b−
c、0≦b≦50、0.1≦c≦30、及び0<x≦1
5(但し、a、b、c、xは原子%である)で示され
る。この磁性膜においては、その成膜時の基板温度を室
温程度の比較的低い温度とし、且つその膜厚を比較的厚
くしても240kA/m程度の高い垂直保磁力Hcv、
1〜1.2T程度の高い飽和磁束密度Bs(4πMs)
及び1200kA/m程度の高い垂直異方性磁界Hkが
実現されている。
On the other hand, the applicant of the present invention previously disclosed in Japanese Unexamined Patent Publication No.
In Japanese Patent No. 74012, a sufficient coercive force Hc is obtained even if the film thickness is increased, it is not necessary to raise the substrate temperature during film formation, and a sufficient saturation magnetic flux density Bs is easily realized.
An oPtBO-based alloy has been proposed. The composition formula of this CoPtBO-based alloy is (Co a Pt b B c ) 100-x O x.
, And its composition range is a = 100-b-
c, 0 ≦ b ≦ 50, 0.1 ≦ c ≦ 30, and 0 <x ≦ 1
5 (provided that a, b, c, and x are atomic%). In this magnetic film, the substrate temperature at the time of film formation is set to a relatively low temperature of about room temperature, and even if the film thickness is made relatively thick, a high perpendicular coercive force Hcv of about 240 kA / m,
High saturation magnetic flux density Bs (4πMs) of about 1 to 1.2T
And a high vertical anisotropic magnetic field Hk of about 1200 kA / m is realized.

【0005】また、本出願人は、先に特開平2−735
11号公報において、CoPt系又はCoPtO系合金
による磁性薄膜の下地にPt、Ti、Zr、V等の各種
材料よりなる薄膜を設けることにより、磁性薄膜の膜厚
を大きくしても、また、その成膜時の基板温度を高めな
くとも、垂直磁気記録媒体として或いは面内磁気記録媒
体として優れた磁気特性を有する磁気記録媒体が製造で
きることを提案した。ここで、垂直磁気記録媒体の記録
磁性層としてのCoPtO系合金からなる垂直磁化膜と
しては、その垂直異方性磁界Hk(kA/m)と飽和磁
束密度Bs(T)との関係が以下の式(1)で表される
ものを選択する。
Further, the applicant of the present invention previously disclosed in Japanese Unexamined Patent Publication No. 2-735.
In Japanese Patent Laid-Open No. 11-1999, even if the thickness of the magnetic thin film is increased by providing a thin film made of various materials such as Pt, Ti, Zr, and V on the underlayer of the magnetic thin film of CoPt-based or CoPtO-based alloy, It was proposed that a magnetic recording medium having excellent magnetic characteristics as a perpendicular magnetic recording medium or an in-plane magnetic recording medium can be manufactured without increasing the substrate temperature during film formation. Here, the perpendicular magnetic anisotropy field Hk (kA / m) and the saturation magnetic flux density Bs (T) of the perpendicular magnetic film made of a CoPtO alloy as the recording magnetic layer of the perpendicular magnetic recording medium have the following relationship. The one represented by the equation (1) is selected.

【0006】 (10/4π)×Hk≧Bs (1)(10 4 / 4π) × Hk ≧ Bs (1)

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うなCoPtO系合金を用いた垂直磁化膜を得る場合、
実際上その成膜時の諸条件、特に酸素分圧設定条件が厳
しく、またこれらの磁気特性は磁性薄膜の酸素含有量に
対して敏感であるため、その制御が難しく、従って製造
工程が繁雑になるという問題がある。
However, when obtaining a perpendicular magnetization film using such a CoPtO-based alloy,
In practice, the various conditions during film formation, especially the oxygen partial pressure setting conditions, are strict, and these magnetic properties are sensitive to the oxygen content of the magnetic thin film, so it is difficult to control them, and the manufacturing process becomes complicated. There is a problem of becoming.

【0008】また、CoPtBO系合金を用いた垂直磁
化膜を有する磁気記録媒体においては、垂直異方性磁界
が大きい組成領域では保磁力が過度に大きくなる傾向が
あり、このためオーバーライト特性が低下するという問
題があった。
Further, in a magnetic recording medium having a perpendicularly magnetized film using a CoPtBO alloy, the coercive force tends to become excessively large in a composition region where the perpendicular anisotropy magnetic field is large, which deteriorates the overwrite characteristic. There was a problem of doing.

【0009】更に、一般に磁気記録媒体においては磁性
膜の垂直磁化曲線の角型性を低下させずに磁気記録の出
力を向上させることが常に要望されている。
Further, generally in magnetic recording media, it is always desired to improve the output of magnetic recording without deteriorating the squareness of the perpendicular magnetization curve of the magnetic film.

【0010】本発明は以上のような従来技術の問題点を
解決しようとするものであり、望ましい磁気特性、特に
高い垂直異方性磁界を有するCoPtBO系合金の磁性
薄膜を得るための成膜時の酸素分圧の条件を緩和し、所
望の磁気記録媒体を高い再現性且つ歩留まりで製造でき
るようにすることを第1の目的とする。更に、この発明
は、このような磁気記録媒体のオーバーライト特性及び
磁気記録の出力を、垂直磁化曲線の角型性を低下させず
に向上させることを第2の目的とする。
The present invention is intended to solve the problems of the prior art as described above, and at the time of film formation for obtaining a magnetic thin film of CoPtBO type alloy having desirable magnetic characteristics, particularly a high perpendicular anisotropy magnetic field. It is a first object of the present invention to alleviate the oxygen partial pressure condition and to manufacture a desired magnetic recording medium with high reproducibility and yield. A second object of the present invention is to improve the overwrite characteristics of such a magnetic recording medium and the output of magnetic recording without deteriorating the squareness of the perpendicular magnetization curve.

【0011】[0011]

【課題を解決するための手段】本発明者は、非磁性基板
上に磁性層を形成する際に、それらの間に面心立方晶構
造の中間層を設けることにより上述の第1の目的が達成
でき、更に磁性層と中間層との間に軟磁性層を設けるこ
とにより上述の第2の目的が達成できることをことを見
出し、本発明を完成させるに至った。
Means for Solving the Problems The present inventor achieves the above first object by providing an intermediate layer having a face-centered cubic structure between magnetic layers when they are formed on a non-magnetic substrate. It has been found that the above-mentioned second object can be achieved by further providing the soft magnetic layer between the magnetic layer and the intermediate layer, and has completed the present invention.

【0012】即ち、本発明は、非磁性支持体上に、以下
の組成式 (CoPt100−x (式中、a、b、c及びxは原子%であり、これらは以
下の式: a=100−b−c; 0≦b≦50; 0.1≦c≦30;及び 0<x≦15 を満足する)で表される磁性層が中間層を介して形成さ
れている磁気記録媒体において、該中間層が面心立方晶
構造を有することを特徴とする磁気記録媒体を提供す
る。
That is, the present invention provides the following compositional formula (Co a Pt b B c ) 100-x O x (wherein a, b, c and x are atomic% on a non-magnetic support, These are the following formulas: a = 100-bc; 0 ≦ b ≦ 50; 0.1 ≦ c ≦ 30; and 0 <x ≦ 15 are satisfied). A formed magnetic recording medium, wherein the intermediate layer has a face-centered cubic structure.

【0013】この発明においては、更に該磁性層と中間
層との間に軟磁性層が設けられた磁気記録媒体を提供す
る。
The present invention further provides a magnetic recording medium having a soft magnetic layer provided between the magnetic layer and the intermediate layer.

【0014】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0015】本発明の磁気記録媒体の基本的態様は、図
1に示すように、ガラス基板等の非磁性支持体1、中間
層2、CoPtBO系合金からなる磁性層3が順次積層
されたものであり、この中間層2を面心立方晶構造とし
たことを特徴とする。
As shown in FIG. 1, the basic embodiment of the magnetic recording medium of the present invention is such that a non-magnetic support 1 such as a glass substrate, an intermediate layer 2, and a magnetic layer 3 made of a CoPtBO type alloy are sequentially laminated. And is characterized in that the intermediate layer 2 has a face-centered cubic structure.

【0016】このように、前述の特開平2−74012
号公報で提案した特定のCoPtBO系合金から磁性層
を構成し、更に中間層2を面心立方晶構造とすることに
より、磁性層の成膜時の基板温度を高めずとも、また比
較的厚い膜厚にしても高い垂直保磁力Hcv、飽和磁束
密度Bs(4πMs)及び垂直異方性磁界Hkを実現で
きる。
Thus, the above-mentioned Japanese Patent Laid-Open No. 2-74012
By forming the magnetic layer from the specific CoPtBO-based alloy proposed in Japanese Patent Laid-Open Publication No. 2003-242242 and further by forming the intermediate layer 2 into a face-centered cubic crystal structure, it is relatively thick without increasing the substrate temperature at the time of forming the magnetic layer. Even with the film thickness, a high vertical coercive force Hcv, a saturation magnetic flux density Bs (4πMs) and a vertical anisotropic magnetic field Hk can be realized.

【0017】なお、本発明においては中間層2の面心立
方晶が最密充填のときに、結晶の(111)面が非磁性
支持体1の平面に平行、即ち(111)軸が非磁性支持
体1の平面に垂直となる。しかし、実際にはすべての結
晶の(111)軸が非磁性支持体の平面に垂直ではな
く、その一部が垂直方向から傾き揺らいでいる。この揺
らぎの程度は、X線回折におけるθ−2θスキャンによ
る表面解析法により中間層2を調べたときに、中間層2
の(111)面上で2θを固定して求めたロッキングカ
ーブにおける最大強度Iに対してI/2以上の強度とな
る角度の範囲、即ち配向度Δθ50で表すことができ
る。配向度Δθ50の値が0の場合には、中間層2の結
晶軸の方向が一律にそろっていることを示し、逆にその
値が大きくなるほど非磁性支持体1の平面に垂直方向の
揺らぎが多いこと、換言すれば結晶配向性が低下してい
ることを示している。
In the present invention, when the face-centered cubic crystal of the intermediate layer 2 is the closest packed, the (111) plane of the crystal is parallel to the plane of the nonmagnetic support 1, that is, the (111) axis is nonmagnetic. It is perpendicular to the plane of the support 1. However, in reality, the (111) axes of all the crystals are not perpendicular to the plane of the non-magnetic support, and some of them tilt and fluctuate from the perpendicular direction. The degree of this fluctuation is determined when the intermediate layer 2 is examined by the surface analysis method using the θ-2θ scan in X-ray diffraction.
It can be represented by a range of angles at which the intensity is I / 2 or more with respect to the maximum intensity I in the rocking curve obtained by fixing 2θ on the (111) plane, ie, the orientation degree Δθ 50 . When the value of the orientation degree Δθ 50 is 0, it indicates that the crystal axes of the intermediate layer 2 are uniformly aligned, and conversely, the larger the value, the fluctuation in the direction perpendicular to the plane of the non-magnetic support 1. Is large, in other words, the crystal orientation is lowered.

【0018】従って、本発明においては、面心立方晶構
造を有する中間層2のX線回折像の(111)ピークの
ロッキングカーブにより求めた配向度Δθ50が、以下
の式(2) Δθ50≦10(deg.) (2) を満足するような中間層2とすることが好ましい。この
ようにΔθ50を10°以下として、中間層2の面心立
方晶の結晶配向性を良好なものとすることにより磁性層
3の磁気特性、特に垂直異方性磁界Hkを、従来に比べ
高い数値、例えば約800kA/m以上とすることがで
きる。更に、垂直磁化膜として満足すべき条件である前
述の式(1) (10/4π)×Hk≧Bs (1) を実現するための成膜時の酸素分圧の範囲を、従来にく
らべ格段に広くすることができる。このことは、成膜時
の酸素分圧条件を緩和できることを意味し、従って再現
性の向上や歩留まりの向上を図ることができる。
Therefore, in the present invention, the orientation degree Δθ 50 obtained from the rocking curve of the (111) peak of the X-ray diffraction image of the intermediate layer 2 having the face-centered cubic structure is expressed by the following equation (2) Δθ 50 ≦ 10 (deg.) (2) It is preferable that the intermediate layer 2 be satisfied. In this way, Δθ 50 is set to 10 ° or less and the crystal orientation of the face-centered cubic crystal of the intermediate layer 2 is improved so that the magnetic characteristics of the magnetic layer 3, particularly the perpendicular anisotropy magnetic field Hk, can be improved as compared with the conventional one. It can be a high value, for example about 800 kA / m or more. Further, the range of oxygen partial pressure at the time of film formation for realizing the above-mentioned formula (1) (10 4 / 4π) × Hk ≧ Bs (1), which is a condition to be satisfied as a perpendicular magnetization film, is set to be smaller than that of the conventional one. It can be significantly wider. This means that the oxygen partial pressure conditions during film formation can be relaxed, and therefore reproducibility and yield can be improved.

【0019】本発明においては、上述したように中間層
2の面心立方晶の揺らぎの程度を配向度Δθ50により
制御する他に、X線回折像の(311)ピークの積分強
度I311と(222)ピークの積分強度I222との
比(I311/I222)により結晶構造の揺らぎを制
御することもできる。この場合、I311/I222
比が0の場合、即ち(311)ピークが存在しない場合
には、面心立方晶が理想的に最密充填され、(111)
軸が非磁性支持体1の平面の垂直方向に一律に揃ってい
る状態を示し、またI311/I222の比の値が大き
くなると、面心立方晶の配向性が低下していることを示
している。
In the present invention, the degree of fluctuation of the face-centered cubic crystal of the intermediate layer 2 is controlled by the orientation degree Δθ 50 as described above, and the integrated intensity I 311 of the (311) peak of the X-ray diffraction image is used. The fluctuation of the crystal structure can also be controlled by the ratio (I 311 / I 222 ) of the integrated intensity I 222 of the (222) peak. In this case, when the I 311 / I 222 ratio is 0, that is, when the (311) peak does not exist, the face-centered cubic crystals are ideally close-packed, and (111)
It shows that the axes are uniformly aligned in the direction perpendicular to the plane of the non-magnetic support 1, and that when the value of I 311 / I 222 increases, the orientation of the face-centered cubic crystal decreases. Shows.

【0020】本発明においては、中間層2についてこの
ような(311)ピークと(222)ピークとの積分強
度比I311/I222が以下の式(3) I311/I222≦0.8 (3) を満足するような中間層2とすることが好ましい。I
311/I222の比が0.8以下の場合には、中間層
2の面心立方晶の結晶配向性が十分に良好であり、これ
により磁性層3の磁気特性、特に垂直異方性磁界Hk
を、従来に比べ高い数値、例えば約800kA/m以上
の数値とすることができる。更に、垂直磁化膜として満
足すべき条件である前述の式(1) (10/4π)×Hk≧Bs (1) を実現するための成膜時の酸素分圧の範囲を、従来にく
らべ格段に広くすることができる。このことは、成膜時
の酸素分圧条件を緩和できることを意味し、従って再現
性の向上や歩留まりの向上を図ることができる。
In the present invention, the integrated intensity ratio I 311 / I 222 between the (311) peak and the (222) peak in the intermediate layer 2 is expressed by the following formula (3) I 311 / I 222 ≦ 0.8. It is preferable that the intermediate layer 2 satisfy the condition (3). I
When the ratio of 311 / I 222 is 0.8 or less, the crystal orientation of the face-centered cubic crystal of the intermediate layer 2 is sufficiently good, which allows the magnetic properties of the magnetic layer 3, particularly the perpendicular anisotropy field. Hk
Can be set to a higher value than in the past, for example, a value of about 800 kA / m or more. Further, the range of oxygen partial pressure at the time of film formation for realizing the above-mentioned formula (1) (10 4 / 4π) × Hk ≧ Bs (1), which is a condition to be satisfied as a perpendicular magnetization film, is set to be smaller than that of the conventional one. It can be significantly wider. This means that the oxygen partial pressure conditions during film formation can be relaxed, and therefore reproducibility and yield can be improved.

【0021】なお、本発明において中間層2を構成する
材料としては、面心立方晶を形成するAl、Ni、C
u、Rh、Pd、Ag、Ir、Pt、Au、Fe及びC
oの少なくとも1種を含有するものが好ましく、それに
加えて、Ti、Zr、V、Cr、Nb、Mo、Ta、
W、Hf、Mn、Re、Ru、Os、Zn、Cd、B、
Ga、Tl、C、Si、Ge、Sn、Pb、P、As、
Sb、Bi、S、Se、Te、Be、Mg、Ca、S
r、Ba、Sc、Y、希土類元素などの元素を中間層2
の面心立方構造が維持できる範囲内で用いることがで
き、これらは非磁性体膜でも磁性体膜のいずれでもよ
い。
In the present invention, as the material for forming the intermediate layer 2, Al, Ni, C forming a face-centered cubic crystal are used.
u, Rh, Pd, Ag, Ir, Pt, Au, Fe and C
Those containing at least one kind of o are preferable, and in addition to them, Ti, Zr, V, Cr, Nb, Mo, Ta,
W, Hf, Mn, Re, Ru, Os, Zn, Cd, B,
Ga, Tl, C, Si, Ge, Sn, Pb, P, As,
Sb, Bi, S, Se, Te, Be, Mg, Ca, S
The intermediate layer 2 contains elements such as r, Ba, Sc, Y and rare earth elements.
Can be used within a range in which the face-centered cubic structure can be maintained, and these may be either a nonmagnetic film or a magnetic film.

【0022】また、本発明においては図2に示すよう
に、非磁性支持体1と中間層2との間にTi又はCrを
少なくとも含有する下地層4を更に形成することによ
り、中間層2の面心立方晶構造の結晶配向性をより向上
させ、磁性層3の垂直保磁力Hcv、飽和磁束密度Bs
(4πMs)及び垂直異方性磁界Hk等の磁気特性を改
善することができる。特に、優れた結晶配向性を有する
Pt、Au、Pdなどの高価な非磁性金属膜に比べ、わ
ずかに結晶配向性に劣るとされているAlCuなどの非
磁性膜で中間層3を構成した場合でも、Ptなどの高価
な金属と同等程度の効果を得ることができ、この場合に
は高価な金属を用いずに低コストで中間層2を形成する
ことができるという利点がある。
Further, in the present invention, as shown in FIG. 2, an underlayer 4 containing at least Ti or Cr is further formed between the non-magnetic support 1 and the intermediate layer 2 to form the intermediate layer 2. The crystal orientation of the face-centered cubic structure is further improved, and the perpendicular coercive force Hcv and the saturation magnetic flux density Bs of the magnetic layer 3 are improved.
The magnetic characteristics such as (4πMs) and the perpendicular anisotropy magnetic field Hk can be improved. In particular, when the intermediate layer 3 is made of a non-magnetic film such as AlCu which is slightly inferior in crystal orientation to an expensive non-magnetic metal film such as Pt, Au or Pd which has excellent crystal orientation. However, an effect equivalent to that of an expensive metal such as Pt can be obtained, and in this case, there is an advantage that the intermediate layer 2 can be formed at low cost without using an expensive metal.

【0023】また、垂直磁気記録においては磁気ヘッド
として単磁極ヘッドを用いる場合とリングヘッドを用い
る場合があり、特に単磁極ヘッドの場合には非磁性支持
体と磁性層との間に、0.5〜1.0μm程度の比較的
厚い軟磁性層を用いることが提案されている(鈴木、釘
屋、吉田及び北上、信学技報、MR88−6(198
8))が、本発明において中間層2としてこのような面
心立方晶構造の比較的厚い軟磁性層を用いる場合には、
Ti又はCrを少なくとも含有する下地層4の存在は、
中間層2の結晶配向性をより向上させるばかりでなく、
中間層2の付着強度を向上させ、更に磁性層3の結晶性
や配向性を改善することができるという利点がある。
In the perpendicular magnetic recording, a single pole head may be used as the magnetic head and a ring head may be used. Particularly, in the case of the single pole head, the magnetic poles of 0. It has been proposed to use a relatively thick soft magnetic layer of about 5 to 1.0 μm (Suzuki, Negiya, Yoshida and Kitakami, IEICE Technical Report, MR88-6 (198).
8)), when a relatively thick soft magnetic layer having a face-centered cubic structure is used as the intermediate layer 2 in the present invention,
The presence of the underlayer 4 containing at least Ti or Cr is
Not only is the crystal orientation of the intermediate layer 2 improved, but
There is an advantage that the adhesion strength of the intermediate layer 2 can be improved and the crystallinity and orientation of the magnetic layer 3 can be improved.

【0024】このような下地層4の厚みは必要に応じて
適宜決定することができるが、厚すぎるとその上に形成
される中間層2の結晶配向性が低下する場合があるの
で、一般には約5nmから約50nm程度の厚みがあれ
ばよい。なお、下地層4にはTi或いはCrの他に中間
層2の結晶配向性に悪影響を与えない限り他の金属元素
等を含有させてもよい。
The thickness of such an underlayer 4 can be appropriately determined according to need, but if it is too thick, the crystal orientation of the intermediate layer 2 formed thereon may be deteriorated, so that it is generally used. The thickness may be about 5 nm to about 50 nm. The base layer 4 may contain other metal elements or the like other than Ti or Cr as long as the crystal orientation of the intermediate layer 2 is not adversely affected.

【0025】本発明においては、図3や図4に示すよう
に、中間層2と磁性層3との間に更に軟磁性層5を設け
てもよい。このように軟磁性層5を更に設けることによ
り、磁気記録媒体の磁気記録の出力とオーバーライト特
性とを、垂直磁化曲線の角型性を低下させずに向上させ
ることができる。
In the present invention, as shown in FIGS. 3 and 4, a soft magnetic layer 5 may be further provided between the intermediate layer 2 and the magnetic layer 3. By further providing the soft magnetic layer 5 in this manner, the output of magnetic recording and the overwrite characteristic of the magnetic recording medium can be improved without deteriorating the squareness of the perpendicular magnetization curve.

【0026】このような軟磁性層5は、体心立方晶構造
又は面心立方晶構造とすることが好ましい。これは軟磁
性層5の構造をアモルファス構造とした場合には、磁性
層3の結晶配向性の改善が十分でなく、そのため特に短
波長領域の記録・再生特性の改善が十分でない場合があ
るからである。このような体心立方晶構造又は面心立方
晶構造をとる軟磁性層5としては、FeSi層を好まし
く例示できる。
Such soft magnetic layer 5 preferably has a body-centered cubic structure or a face-centered cubic structure. This is because when the structure of the soft magnetic layer 5 is an amorphous structure, the crystal orientation of the magnetic layer 3 is not sufficiently improved, and therefore the recording / reproducing characteristics particularly in the short wavelength region may not be sufficiently improved. Is. A FeSi layer can be preferably exemplified as the soft magnetic layer 5 having such a body-centered cubic structure or a face-centered cubic structure.

【0027】なお、中間層2を軟磁性膜から構成するこ
とにより、中間層2で軟磁性層5を兼用することができ
る。
By forming the intermediate layer 2 from a soft magnetic film, the intermediate layer 2 can also serve as the soft magnetic layer 5.

【0028】本発明において、非磁性支持体1の素材や
その形状や厚み、さらに中間層2の厚さなどは、必要に
応じて適宜決定することができる。また、必要に応じ
て、図2及び4に示すように、磁性層3の上にカーボン
等からなる保護層6を形成してもよい。
In the present invention, the material of the non-magnetic support 1, its shape and thickness, and the thickness of the intermediate layer 2 can be appropriately determined as required. If necessary, as shown in FIGS. 2 and 4, a protective layer 6 made of carbon or the like may be formed on the magnetic layer 3.

【0029】本発明の磁気記録媒体は例えば、ガラス基
板等の非磁性支持体上に、PtやAlCuなどからなる
中間層をスパッタリングにより積層し、更にターゲット
及び流入ガスを換え、スパッタリングにより磁性層を積
層することにより製造できる。また必要に応じて、磁性
層を積層する前に、ターゲット及び流入ガスを換えてス
パッタリングにより軟磁性層を積層することができる。
更に、磁性層を積層した後に、カーボン保護膜を形成す
ることができる。また、中間層を積層する前にTiなど
からなる下地層を非磁性支持体上にスパッタリングによ
り予め形成しておくこともできる。
In the magnetic recording medium of the present invention, for example, an intermediate layer made of Pt, AlCu, or the like is laminated on a non-magnetic support such as a glass substrate by sputtering, and the target and inflowing gas are changed, and the magnetic layer is formed by sputtering. It can be manufactured by stacking. If necessary, before laminating the magnetic layer, the soft magnetic layer can be laminated by sputtering while changing the target and the inflowing gas.
Further, the carbon protective film can be formed after laminating the magnetic layers. It is also possible to previously form an underlayer made of Ti or the like on the nonmagnetic support by sputtering before stacking the intermediate layer.

【0030】[0030]

【作用】本発明の磁気記録媒体においては、非磁性支持
体と磁性層との間に設ける中間層を面心立方結晶構造と
するので、磁性層の成膜時の基板温度を高めずとも、ま
た磁性層の膜厚を比較的厚くしたとしても、高い垂直保
磁力Hcv、飽和磁束密度Bs(4πMs)及び垂直異
方性磁界Hkを実現することが可能となる。特に、中間
層の面心立方晶構造の結晶配向性の程度を制御する場合
に、中間層のX線回折像の(111)ピークのロッキン
グカーブにより求めた配向度Δθ50を10°以下とす
るか、又は(311)ピークの積分強度I311と(2
22)ピークの積分強度I222との比(I311/I
222)を0.8以下とすることにより結晶配向性を良
好に制御することが可能となる。
In the magnetic recording medium of the present invention, since the intermediate layer provided between the non-magnetic support and the magnetic layer has a face-centered cubic crystal structure, it is possible to increase the substrate temperature during film formation of the magnetic layer. Further, even if the film thickness of the magnetic layer is made relatively thick, it is possible to realize a high perpendicular coercive force Hcv, a saturation magnetic flux density Bs (4πMs) and a perpendicular anisotropic magnetic field Hk. In particular, when controlling the degree of crystal orientation of the face-centered cubic structure of the intermediate layer, the degree of orientation Δθ 50 obtained by the rocking curve of the (111) peak of the X-ray diffraction image of the intermediate layer is set to 10 ° or less. Or, the integrated intensity I 311 of the (311) peak and (2
22) Ratio of integrated intensity I 222 of peak (I 311 / I
By setting 222 ) to 0.8 or less, the crystal orientation can be well controlled.

【0031】また、Ti又はCrを少なくとも含有する
下地層を非磁性支持体と中間層との間に形成しておけ
ば、中間層の結晶配向性を更に改善することができ、磁
性層の磁気特性を改善することが可能となる。
If an underlayer containing at least Ti or Cr is formed between the non-magnetic support and the intermediate layer, the crystal orientation of the intermediate layer can be further improved, and the magnetic properties of the magnetic layer can be improved. It is possible to improve the characteristics.

【0032】磁性層と中間層との間に軟磁性層を設けた
場合には、垂直磁化曲線の角型性を劣化させずにオーバ
ーライト特性及び磁気記録の出力を向上させることが可
能となる。
When the soft magnetic layer is provided between the magnetic layer and the intermediate layer, the overwrite characteristic and the output of magnetic recording can be improved without deteriorating the squareness of the perpendicular magnetization curve. .

【0033】[0033]

【実施例】以下、本発明の磁気記録媒体について、実施
例により具体的に説明する。なお、以下の実施例及び比
較例において垂直異方性磁界Hkは試料振動型磁力計で
測定し、また、磁性層等の結晶性評価のために、Cu−
Kα線を使用してX線回折像を解析した。また、磁気特
性評価については、Kerrループトレーサー(印加磁
場960kA/m)を用いた。記録・再生特性を評価す
る場合には、磁性膜の表面にカーボン保護膜をスパッタ
法にて10nm積層した後に液体潤滑剤を塗布して磁気
ディスクを製造し、それに対してヘッドコア材として
1.4Tの飽和磁束密度をもつFeRuGaSi合金膜
を用いたメタル・イン・ギャップヘッド(トラック幅2
5μm、ギャップ長0.35μm)を接触させ、周速3
m/secという条件で記録・再生を行って評価した。
EXAMPLES The magnetic recording medium of the present invention will be specifically described below with reference to examples. In the following examples and comparative examples, the perpendicular anisotropy magnetic field Hk was measured with a sample vibrating magnetometer, and Cu- was used for evaluating the crystallinity of the magnetic layer and the like.
The X-ray diffraction image was analyzed using Kα ray. Further, for evaluation of magnetic properties, a Kerr loop tracer (applied magnetic field of 960 kA / m) was used. In the case of evaluating the recording / reproducing characteristics, a carbon protective film is laminated on the surface of the magnetic film by a sputtering method to a thickness of 10 nm, and then a liquid lubricant is applied to manufacture a magnetic disk. -In-gap head (track width 2) using FeRuGaSi alloy film with saturated magnetic flux density
5 μm, gap length 0.35 μm), and the peripheral speed is 3
Recording / reproduction was performed under the condition of m / sec for evaluation.

【0034】実施例1 スライドカラス基板よりなる非磁性支持体上に、マグネ
トロン型スパッタリング装置によってPt中間層、磁性
層を順次積層し、図1に示すような磁気記録媒体を製造
した。このときの中間層と磁性層との成膜条件は次の通
りである。
Example 1 A Pt intermediate layer and a magnetic layer were sequentially laminated on a non-magnetic support made of a slide glass substrate by a magnetron type sputtering apparatus to manufacture a magnetic recording medium as shown in FIG. The film forming conditions for the intermediate layer and the magnetic layer at this time are as follows.

【0035】 バックグランド真空度: 1.3×10−4Pa 非磁性支持体温度 : 室温 スパッタ投入電力 : 300W スパッタガス全圧 : 2.0Pa 磁性層 ガス組成 : Ar及び酸素 全ガス流量 : 50SCCM 酸素分圧 : 0.035Pa ターゲット : Co68Pt23(原子
%)組成の合金(直径10cm×厚さ4mm) 膜厚 : 100nm 中間層 導入ガス : Arガス ターゲット : Pt また、上記の条件下で、中間層を成膜する際のArガス
流量、ガス圧、中間層厚を変化させて種々のPt中間層
の(111)ピークの配向度Δθ50を有する磁気記録
媒体を製造し、これらについてX線回折像をとり、この
ときのPt中間層2の(111)ピークのロッキングカ
ーブにより求めた配向度Δθ50と垂直異方性磁界Hk
との関係を調べた。この結果を図5に示す。
Background vacuum degree: 1.3 × 10 −4 Pa Nonmagnetic support temperature: Room temperature Sputter input power: 300 W Sputter gas total pressure: 2.0 Pa Magnetic layer gas composition: Ar and oxygen total gas flow rate: 50 SCCM oxygen Partial pressure: 0.035 Pa Target: Alloy of Co 68 Pt 23 B 9 (atomic%) composition (diameter 10 cm × thickness 4 mm) Film thickness: 100 nm Intermediate layer Introduced gas: Ar gas Target: Pt Under the above conditions The magnetic recording medium having various (111) peak orientation degrees Δθ 50 of Pt intermediate layers was manufactured by changing the Ar gas flow rate, gas pressure, and intermediate layer thickness when forming the intermediate layer. take-ray diffraction image, Pt middle layer 2 (111) perpendicular anisotropy magnetic field and the orientation [Delta] [theta] 50 as determined by the rocking curve of the peak H of this time
I investigated the relationship with. The result is shown in FIG.

【0036】また、中間層のX線回折像の(311)ピ
ークと(222)ピークとの積分強度比I311/I
222と、垂直異方性磁界Hkとの関係を調べた。その
結果を図6に示す。
The integrated intensity ratio I 311 / I of the (311) peak and the (222) peak of the X-ray diffraction image of the intermediate layer
The relationship between 222 and the perpendicular anisotropy magnetic field Hk was investigated. The result is shown in FIG.

【0037】実施例2 中間層をAuに代える以外は実施例1を繰り返すことに
より磁気記録媒体を製造し、実施例1と同様に中間層2
の(111)ピークのロッキングカーブにより求めた配
向度Δθ50と垂直異方性磁界Hkとの関係を調べた。
この結果を図5に示す。
Example 2 A magnetic recording medium was manufactured by repeating Example 1 except that Au was used as the intermediate layer.
The relationship between the orientation degree Δθ 50 obtained from the rocking curve of the (111) peak in (1) and the perpendicular anisotropy magnetic field Hk was investigated.
The result is shown in FIG.

【0038】また、中間層のX線回折像の(311)ピ
ークと(222)ピークとの積分強度比I311/I
222と、垂直異方性磁界Hkとの関係を調べた。その
結果を図6に示す。
Also, the integrated intensity ratio I 311 / I of the (311) peak and the (222) peak of the X-ray diffraction image of the intermediate layer.
The relationship between 222 and the perpendicular anisotropy magnetic field Hk was investigated. The result is shown in FIG.

【0039】実施例3 中間層をPdに代える以外は実施例1を繰り返すことに
より磁気記録媒体を製造し、実施例1と同様に中間層2
の(111)ピークのロッキングカーブにより求めた配
向度Δθ50と垂直異方性磁界Hkとの関係を調べた。
この結果を図5に示す。
Example 3 A magnetic recording medium was manufactured by repeating Example 1 except that Pd was used as the intermediate layer.
The relationship between the orientation degree Δθ 50 obtained from the rocking curve of the (111) peak in (1) and the perpendicular anisotropy magnetic field Hk was investigated.
The result is shown in FIG.

【0040】また、中間層のX線回折像の(311)ピ
ークと(222)ピークとの積分強度比I311/I
222と、垂直異方性磁界Hkとの関係を調べた。その
結果を図6に示す。
Further, the integrated intensity ratio I 311 / I of the (311) peak and the (222) peak of the X-ray diffraction image of the intermediate layer.
The relationship between 222 and the perpendicular anisotropy magnetic field Hk was investigated. The result is shown in FIG.

【0041】実施例4 中間層をAgに代える以外は実施例1を繰り返すことに
より磁気記録媒体を製造し、実施例1と同様に中間層2
の(111)ピークのロッキングカーブにより求めた配
向度Δθ50と垂直異方性磁界Hkとの関係を調べた。
この結果を図5に示す。
Example 4 A magnetic recording medium was manufactured by repeating Example 1 except that the intermediate layer was replaced with Ag.
The relationship between the orientation degree Δθ 50 obtained by the rocking curve of the (111) peak of γ and the perpendicular anisotropy magnetic field Hk was investigated.
The result is shown in FIG.

【0042】また、中間層のX線回折像の(311)ピ
ークと(222)ピークとの積分強度比I311/I
222と、垂直異方性磁界Hkとの関係を調べた。その
結果を図6に示す。
Also, the integrated intensity ratio I 311 / I of the (311) peak and the (222) peak of the X-ray diffraction image of the intermediate layer.
The relationship between 222 and the perpendicular anisotropy magnetic field Hk was investigated. The result is shown in FIG.

【0043】図5から明らかなように、磁性層の垂直異
方性磁界Hkは、中間層の配向度Δθ50に対して強い
相関関係を示し、Δθ50=10°近傍で急峻な傾きを
示し、且つΔθ50≦10°の範囲では800kA/m
以上の垂直異方性磁界Hkが得られた。
As is clear from FIG. 5, the perpendicular anisotropy magnetic field Hk of the magnetic layer has a strong correlation with the orientation degree Δθ 50 of the intermediate layer, and shows a steep slope in the vicinity of Δθ 50 = 10 °. , And 800 kA / m in the range of Δθ 50 ≦ 10 °
The above perpendicular anisotropy magnetic field Hk was obtained.

【0044】ところで実施例1〜4で得られる磁性層の
飽和磁束密度Bsは約1〜1.2T程度であり、良好な
垂直磁化膜を得るための前述した式(1) (10/4π)×Hk≧Bs (1) に、この飽和磁束密度Bsの数値(1〜1.2T)を代
入すると、実用上必要な垂直異方性磁界Hkは約800
kA/m以上となる。従って、実施例1〜4において
は、配向度をΔθ50≦10°とすることにより式
(1)が満たされ、良好な垂直磁気記録媒体が得られる
ことが分かる。
By the way, the saturation magnetic flux density Bs of the magnetic layers obtained in Examples 1 to 4 is about 1 to 1.2T, and the above-mentioned formula (1) (10 4 / 4π) for obtaining a good perpendicular magnetization film is obtained. ) × Hk ≧ Bs (1) Substituting the numerical value (1 to 1.2T) of the saturation magnetic flux density Bs, the perpendicularly anisotropic magnetic field Hk required for practical use is about 800.
It becomes kA / m or more. Therefore, in Examples 1 to 4, it was found that by setting the orientation degree to Δθ 50 ≦ 10 °, the formula (1) was satisfied, and good perpendicular magnetic recording media were obtained.

【0045】また、磁性層の垂直異方性磁界Hkは、図
6から明らかなように、中間層の(311)ピークと
(222)ピークとの積分強度比I311/I222
依存し、この比が約0.8以下の範囲では800kA/
m以上の垂直異方性磁界Hkが得られている。従って、
積分強度比I311/I222を0.8以下とすること
により良好な垂直磁気記録媒体が得られることが分か
る。
Further, as is apparent from FIG. 6, the perpendicular anisotropic magnetic field Hk of the magnetic layer depends on the integrated intensity ratio I 311 / I 222 of the (311) peak and the (222) peak of the intermediate layer, If this ratio is less than 0.8, 800 kA /
A perpendicular anisotropic magnetic field Hk of m or more is obtained. Therefore,
It can be seen that a good perpendicular magnetic recording medium can be obtained by setting the integrated intensity ratio I 311 / I 222 to 0.8 or less.

【0046】なお、参考として図7に、Au中間層の場
合のX線回折像の一例を示す。この図においては、一般
にX線回折データの標準として利用されているASTM
(Amerian Society for Test
ing Materials)カードをもとに、面心立
方晶(fcc)構造を有するAuの回折ピークの位置を
示した。また、PCoは磁性層(CoPtBO)のピー
クを示し、P111、P311及びP222は、それぞ
れAu中間層の(111)ピーク、(311)ピーク及
び(222)ピークを示している。他の面心立方晶構造
の中間層についても、図7と同様なX線回折像が得られ
る。
For reference, FIG. 7 shows an example of an X-ray diffraction image in the case of the Au intermediate layer. In this figure, ASTM generally used as a standard for X-ray diffraction data
(Amerian Society for Test
The position of the diffraction peak of Au having a face-centered cubic (fcc) structure is shown based on the Ining Materials card. Further, P Co indicates the peak of the magnetic layer (CoPtBO), and P 111 , P 311 and P 222 indicate the (111) peak, (311) peak and (222) peak of the Au intermediate layer, respectively. X-ray diffraction images similar to those in FIG. 7 can be obtained for other face-centered cubic crystal intermediate layers.

【0047】図8に、PCoピークのピーク強度と積分
強度比I311/I222との関係を示す。この図から
明らかなように、積分強度比I311/I222が小さ
くなるほどPCoのピーク強度が強くなる。このことは
磁性層の結晶性が向上していることを示している。この
理由は、積分強度比I311/I222が小さいほど
(111)軸の方向が非磁性支持体の平面に対して垂直
方向に配向しており、その配向が磁性層の結晶性を向上
させていると考えられる。
FIG. 8 shows the relationship between the peak intensity of the P Co peak and the integrated intensity ratio I 311 / I 222 . As is clear from this figure, the smaller the integrated intensity ratio I 311 / I 222, the stronger the peak intensity of P Co. This indicates that the crystallinity of the magnetic layer is improved. The reason is that the smaller the integrated intensity ratio I 311 / I 222 is, the direction of the (111) axis is oriented more perpendicularly to the plane of the non-magnetic support, and the orientation improves the crystallinity of the magnetic layer. It is thought that

【0048】実施例5 スライドカラス基板よりなる非磁性支持体上に、マグネ
トロン型スパッタリング装置によってPt中間層、磁性
層を順次積層し、図1に示すような磁気記録媒体を製造
した。成膜条件は、中間層を以下の条件で成膜する以外
は実施例1と同様である。
Example 5 A Pt intermediate layer and a magnetic layer were sequentially laminated on a non-magnetic support made of a slide glass substrate by a magnetron type sputtering apparatus to manufacture a magnetic recording medium as shown in FIG. The film forming conditions are the same as in Example 1 except that the intermediate layer is formed under the following conditions.

【0049】中間層 導入ガス : Arガス ガス流量 : 50SCCM スパッタ全圧 : 2.0Pa ターゲット : Pt 膜厚 : 100nm (中間層の配向度Δθ50=7.0〜8.0(de
g.)、積分強度比I31 /I222=0.02〜
0.04) この場合、上記の条件下で、磁性層を成膜する際の酸素
分圧を変化させて種々の磁性層を成膜して種々の磁気記
録媒体を製造した。これらについて垂直磁気異方性磁界
Hkと酸素分圧との関係を調べた。その結果を図9に示
す。
Intermediate layer Introduced gas: Ar gas Gas flow rate: 50 SCCM Total sputtering pressure: 2.0 Pa Target: Pt film thickness: 100 nm (Intermediate layer orientation degree Δθ 50 = 7.0 to 8.0 (de)
g. ), The integrated intensity ratio I 31 1 / I 222 = 0.02-
0.04) In this case, under the above conditions, various magnetic layers were formed by changing the oxygen partial pressure at the time of forming the magnetic layer to produce various magnetic recording media. The relationship between the perpendicular magnetic anisotropy magnetic field Hk and the oxygen partial pressure was investigated for these. The result is shown in FIG.

【0050】実施例6 中間層をAuに代える以外は実施例5を繰り返すことに
より磁気記録媒体を製造し、実施例5と同様に垂直磁気
異方性磁界Hkと酸素分圧との関係を調べた。その結果
を図9に示す。なお、Au中間層の配向度Δθ50
6.8〜8.0(deg.)であった。また、積分強度
比I311/I222は0.04〜0.07であった。
Example 6 A magnetic recording medium was manufactured by repeating Example 5 except that the intermediate layer was replaced with Au, and the relationship between the perpendicular magnetic anisotropy magnetic field Hk and the oxygen partial pressure was examined in the same manner as in Example 5. It was The result is shown in FIG. The degree of orientation Δθ 50 of the Au intermediate layer was 6.8 to 8.0 (deg.). Also, the integrated intensity ratio I 311 / I 222 was 0.04 to 0.07.

【0051】実施例7 中間層をPdに代える以外は実施例5を繰り返すことに
より磁気記録媒体を製造し、実施例5と同様に垂直磁気
異方性磁界Hkと酸素分圧との関係を調べた。その結果
を図9に示す。なお、Pd中間層の配向度Δθ50
8.0〜9.0(deg.)であった。また、積分強度
比I311/I222は0.3〜0.5であった。
Example 7 A magnetic recording medium was manufactured by repeating Example 5 except that Pd was used as the intermediate layer, and the relationship between the perpendicular magnetic anisotropy magnetic field Hk and the oxygen partial pressure was examined in the same manner as in Example 5. It was The result is shown in FIG. The degree of orientation Δθ 50 of the Pd intermediate layer was 8.0 to 9.0 (deg.). Further, the integrated intensity ratio I 311 / I 222 was 0.3 to 0.5.

【0052】実施例8 中間層をAgに代える以外は実施例5を繰り返すことに
より磁気記録媒体を製造し、実施例5と同様に垂直磁気
異方性磁界Hkと酸素分圧との関係を調べた。その結果
を図9に示す。なお、Pd中間層の配向度Δθ50
8.0〜9.0(deg.)であった。また、積分強度
比I311/I222は0.1〜0.35であった。
Example 8 A magnetic recording medium was manufactured by repeating Example 5 except that the intermediate layer was replaced with Ag, and the relationship between the perpendicular magnetic anisotropy magnetic field Hk and the oxygen partial pressure was examined in the same manner as in Example 5. It was The result is shown in FIG. The degree of orientation Δθ 50 of the Pd intermediate layer was 8.0 to 9.0 (deg.). Further, the integrated intensity ratio I 311 / I 222 was 0.1 to 0.35.

【0053】比較例1 中間層を設けない以外は実施例5を繰り返すことによ
り、非磁性支持体上に直接、磁性層が積層された磁気記
録媒体を製造し、実施例5と同様に垂直磁気異方性磁界
Hkと酸素分圧との関係を調べた。結果を図9に示す。
なお、図9において、実線aは実施例5〜8の結果であ
り、点線bは比較例1の結果である。
Comparative Example 1 A magnetic recording medium having a magnetic layer laminated directly on a non-magnetic support was manufactured by repeating Example 5 except that no intermediate layer was provided. The relationship between the anisotropic magnetic field Hk and the oxygen partial pressure was investigated. The results are shown in Fig. 9.
In FIG. 9, the solid line a is the result of Examples 5 to 8 and the dotted line b is the result of Comparative Example 1.

【0054】図9から明らかなように、測定した全酸素
分圧範囲(0〜0.07Pa)において、実施例5〜8
の磁性層の垂直異方性磁界Hkは、比較例1の磁性層の
垂直異方性磁界Hkに比べて大きいことが分かる。
As is apparent from FIG. 9, in the measured total oxygen partial pressure range (0 to 0.07 Pa), Examples 5 to 8 were performed.
It is understood that the perpendicular anisotropy magnetic field Hk of the magnetic layer of No. 2 is larger than the perpendicular anisotropy magnetic field Hk of the magnetic layer of Comparative Example 1.

【0055】ところで実施例5〜8で得られる磁性層の
飽和磁束密度Bsは約1〜1.2T程度であり、良好な
垂直磁化膜を得るための前述した式(1) (10/4π)×Hk≧Bs (1) に、この飽和磁束密度Bsの数値(1〜1.2T)を代
入すると、実用上必要な垂直異方性磁界Hkは約800
kA/m以上となる。また、このような垂直磁化膜を得
るための酸素分圧の範囲は、比較例1では0.035P
a近傍に限られるのに対し、実施例5及び6、即ちPt
及びAu中間層を有する磁気記録媒体の場合には、酸素
分圧が約0.02Pa〜0.06Paの範囲、そして実
施例7及び8、即ちPd及びAg中間層を有する磁気記
録媒体の場合には、酸素分圧が約0.03Pa〜0.0
5Paの範囲となる。従って、実施例によれば成膜時の
酸素分圧条件を緩和可能であることが分かる。
By the way, the saturation magnetic flux density Bs of the magnetic layers obtained in Examples 5 to 8 is about 1 to 1.2T, and the above-mentioned formula (1) (10 4 / 4π) for obtaining a good perpendicular magnetization film is obtained. ) × Hk ≧ Bs (1) Substituting the numerical value (1 to 1.2T) of the saturation magnetic flux density Bs, the perpendicularly anisotropic magnetic field Hk required for practical use is about 800.
It becomes kA / m or more. The range of the oxygen partial pressure for obtaining such a perpendicular magnetization film is 0.035 P in Comparative Example 1.
In the vicinity of a, only in the fifth and sixth embodiments, namely Pt.
In the case of the magnetic recording medium having the Au and Au intermediate layers, the oxygen partial pressure is in the range of about 0.02 Pa to 0.06 Pa, and in the case of the magnetic recording medium having the Pd and Ag intermediate layers of Examples 7 and 8. Has an oxygen partial pressure of approximately 0.03 Pa to 0.0
The range is 5 Pa. Therefore, according to the example, it is understood that the oxygen partial pressure condition during film formation can be relaxed.

【0056】実施例9 スライドカラス基板よりなる非磁性支持体上に、マグネ
トロン型スパッタリング装置によってAu中間層、磁性
層を順次積層し、図1に示すような磁気記録媒体を製造
した。更に、磁性層の表面にスパッタ法によりカーボン
保護膜を10nm成膜した。このときの中間層と磁性層
との成膜条件は、バックグラウンド真空度を5×10
−5Paとし、磁性層の膜厚を200nmとする以外
は、中間層については実施例6の成膜条件と同様であ
り、磁性層については実施例1の成膜条件と同様であ
る。
Example 9 An Au intermediate layer and a magnetic layer were sequentially laminated on a non-magnetic support made of a slide glass substrate by a magnetron type sputtering apparatus to manufacture a magnetic recording medium as shown in FIG. Further, a carbon protective film having a thickness of 10 nm was formed on the surface of the magnetic layer by a sputtering method. At this time, the film formation conditions for the intermediate layer and the magnetic layer were set so that the background vacuum degree was 5 × 10 5.
And -5 Pa, except that the film thickness of the magnetic layer and 200 nm, the intermediate layer is the same as the film formation conditions of Example 6, the magnetic layer is the same as the film formation conditions of Example 1.

【0057】実施例10 スライドカラス基板よりなる非磁性支持体上に、マグネ
トロン型スパッタリング装置によってAu中間層、軟磁
性層、磁性層、カーボン保護膜を順次積層し、図2に示
すような磁気記録媒体を製造した。このときの中間層と
磁性層との成膜条件は実施例9と同様であり、軟磁性層
の成膜条件は実施例9の中間層の成膜条件の中でターゲ
ットとしてAuに代えてFe96Si(原子%)組成
の合金を用い、その膜厚を15nmとする以外は中間層
の成膜条件と同様である。
Example 10 An Au intermediate layer, a soft magnetic layer, a magnetic layer, and a carbon protective film were sequentially laminated on a non-magnetic support made of a slide glass substrate by a magnetron type sputtering device, and magnetic recording as shown in FIG. The media was manufactured. The film forming conditions for the intermediate layer and the magnetic layer at this time are the same as in Example 9, and the film forming conditions for the soft magnetic layer are Fe in place of Au as a target in the film forming conditions for the intermediate layer in Example 9. The conditions for forming the intermediate layer are the same, except that an alloy having a composition of 96 Si 4 (atomic%) is used and the thickness thereof is set to 15 nm.

【0058】実施例9及び10で得られた磁気記録媒体
について、それらの記録密度特性の測定結果を図10に
示し、垂直磁化曲線の測定結果をそれぞれ図11
(a)、(b)に示す。
Regarding the magnetic recording media obtained in Examples 9 and 10, the measurement results of the recording density characteristics are shown in FIG. 10, and the measurement results of the perpendicular magnetization curve are shown in FIG.
Shown in (a) and (b).

【0059】図10から明らかなように、実施例9の磁
気記録媒体は実用上十分な磁気記録の出力特性を有して
いるが、軟磁性層を更に設けた実施例10の記録媒体は
長波長領域(例えば12μm)から短波長領域(例えば
0.25μm)において実施例9の磁気記録媒体にくら
べ数dBの磁気記録の出力の向上が実現できた。
As is apparent from FIG. 10, the magnetic recording medium of Example 9 has practically sufficient output characteristics for magnetic recording, but the recording medium of Example 10 further provided with a soft magnetic layer has a long length. In the wavelength region (for example, 12 μm) to the short wavelength region (for example, 0.25 μm), the output of the magnetic recording of several dB can be improved as compared with the magnetic recording medium of Example 9.

【0060】また、図11から明らかなように、この発
明の磁気記録媒体は高い角型性が保持されていることが
分かる。
As is clear from FIG. 11, the magnetic recording medium of the present invention retains high squareness.

【0061】また、実施例9及び10の磁気記録媒体の
オーバーライト特性について、記録波長6μmで記録
し、その後に記録波長1μmで上書きした場合に、記録
波長6μmでの記録情報の減少量で評価した。この結果
を表1に示す。この場合、数値が小さくなる程オーバー
ライト特性が向上する。
Further, the overwrite characteristics of the magnetic recording media of Examples 9 and 10 were evaluated by the reduction amount of the recorded information at the recording wavelength of 6 μm when the recording was performed at the recording wavelength of 6 μm and then overwritten at the recording wavelength of 1 μm. did. The results are shown in Table 1. In this case, the smaller the value, the better the overwrite characteristic.

【0062】[0062]

【表1】 オーバーライト特性 [記録波長1μm/6μm](dB) 実施例 9 −28.6 実施例10 −44.0 表1から明らかなように、実施例9の磁気記録媒体のオ
ーバーライト特性は実用上十分なものであるが、軟磁性
層を更に設けた実施例10の記録媒体は、実施例9の磁
気磁気記録媒体に比べ15.4dBものオーバーライト
特性の向上が観察された。
[Table 1] Overwrite characteristics [recording wavelength 1 μm / 6 μm] (dB) Example 9-28.6 Example 10-44.0 As is clear from Table 1, the overwrite characteristics of the magnetic recording medium of Example 9 are practically sufficient, but the recording medium of Example 10 further provided with a soft magnetic layer was the magnetic recording medium of Example 9. It was observed that the overwrite characteristic was improved by 15.4 dB as compared with the recording medium.

【0063】更に、実施例9及び、実施例10の軟磁性
層、磁性層のX線回折強度[cps]と配向度Δθ50
とを表2に示す。この場合、X線回折強度の数値が大き
い程、結晶性は良好となる。
Further, the X-ray diffraction intensity [cps] and the degree of orientation Δθ 50 of the soft magnetic layers and magnetic layers of Examples 9 and 10 were obtained.
Are shown in Table 2. In this case, the larger the value of the X-ray diffraction intensity, the better the crystallinity.

【0064】[0064]

【表2】 磁性膜(002)ピーク 軟磁性層(110)ピーク 回折強度 Δθ50 回折強度 Δθ50 [cps] [deg.] [cps] [deg.] 実施例 9 123k 4.8 −−− −−− 実施例10 96k 6.3 8.1k 3.7 表2から明らかなように、実施例9及び10の磁気記録
媒体の磁性膜の結晶性と配向性は実用上十分なものであ
った。参考のため、軟磁性層としてNb11ZrTa
アモルファス合金層を用いる以外は実施例10を繰り
返すことにより磁気記録媒体を製造し、得られた磁気記
録媒体に対して実施例9及び実施例10と同様に軟磁性
層、磁性層のX線回折強度と配向度Δθ50を測定し
た。その結果、実施例9及び実施例10に比べると磁性
層の結晶性、配向性とも低下していた。
[Table 2] Magnetic film (002) peak Soft magnetic layer (110) peak Diffraction intensity Δθ 50 Diffraction intensity Δθ 50 [cps] [deg. ] [Cps] [deg. Example 9 123k 4.8 --- --- As apparent from Example 10 96k 6.3 8.1k 3.7 Table 2, the crystallinity of the magnetic film of the magnetic recording media of Examples 9 and 10 And the orientation was practically sufficient. For reference, as the soft magnetic layer, Nb 11 Zr 4 Ta is used.
A magnetic recording medium was manufactured by repeating Example 10 except that 2 amorphous alloy layers were used, and X-rays of the soft magnetic layer and the magnetic layer of the obtained magnetic recording medium were obtained in the same manner as in Examples 9 and 10. The diffraction intensity and the degree of orientation Δθ 50 were measured. As a result, the crystallinity and orientation of the magnetic layer were lower than those of Examples 9 and 10.

【0065】実施例11 スライドガラス基板よりなる非磁性支持体上に、マグネ
トロン型スパッタリング装置によってTi下地層、Ni
CuTa中間層を順次積層した。このときの下地層及び
中間層の成膜条件は次の通りである。
Example 11 On a non-magnetic support made of a slide glass substrate, a Ti underlayer and Ni were formed by a magnetron type sputtering device.
CuTa intermediate layers were sequentially laminated. The film forming conditions of the underlayer and the intermediate layer at this time are as follows.

【0066】 バックグラウンド真空度: 1.3×10−4Pa 非磁性支持体温度 : 室温 スパッタ投入電力 : DC300W 中間層 導入ガス : Arガス 全ガス流量 : 100SCCM 膜厚 : 200nm ターゲット : Ni45Cu50Ta
(原子%)組成の合金(直径10cm×厚さ4mm) 下地層 導入ガス : Arガス 全ガス流量 : 100SCCM ターゲット : Ti 上記の条件下で下地層の厚さを変化させてX線回折像を
とり、このときの面心立方晶構造のNiCuTa中間層
の(111)ピーク強度と(111)ピークのロッキン
グカーブにより求めた配向度Δθ50のTi下地層厚依
存性を調べた。この結果を図12及び図13に示す。
Background vacuum degree: 1.3 × 10 −4 Pa Nonmagnetic support temperature: Room temperature Sputtering power: DC300W Intermediate layer Introduced gas: Ar gas Total gas flow rate: 100 SCCM Film thickness: 200 nm Target: Ni 45 Cu 50 Ta
Alloy of 5 (atomic%) composition (diameter 10 cm × thickness 4 mm) Underlayer Introduced gas: Ar gas Total gas flow rate: 100 SCCM target: Ti X-ray diffraction image was obtained by changing the underlayer thickness under the above conditions. Then, the dependency of the orientation degree Δθ 50 on the Ti underlayer thickness on the (111) peak intensity and the rocking curve of the (111) peak of the NiCuTa intermediate layer having the face-centered cubic structure at this time was examined. The results are shown in FIGS. 12 and 13.

【0067】実施例12 実施例11において中間層にCuを使用する以外は、実
施例11を繰り返し同様に下地層の厚さを変化させてX
線回折像をとり、このときのCu中間層の(111)ピ
ーク強度と(111)ピークの配向度Δθ50のTi下
地層厚依存性を調べた。この結果を図12及び図13に
示す。
Example 12 Example 11 was repeated except that Cu was used for the intermediate layer, and the thickness of the underlayer was changed in the same manner as in Example 11 to obtain X.
A line diffraction image was taken, and the dependency of the (111) peak intensity and the orientation degree Δθ 50 of the (111) peak of the Cu intermediate layer on the Ti underlayer thickness was examined. The results are shown in FIGS. 12 and 13.

【0068】実施例13 実施例11において中間層にNiを使用する以外は、実
施例11を繰り返し同様に下地層の厚さを変化させてX
線回折像をとり、このときのNi中間層の(111)ピ
ーク強度と(111)ピークの配向度Δθ50のTi下
地層厚依存性を調べた。この結果を図12及び図13に
示す。
Example 13 Example 11 was repeated except that Ni was used for the intermediate layer, and the thickness of the underlayer was changed in the same manner as in Example 11 to obtain X.
A line diffraction image was taken to examine the dependency of the (111) peak intensity and the (111) peak orientation degree Δθ 50 of the Ni intermediate layer on the thickness of the Ti underlayer. The results are shown in FIGS. 12 and 13.

【0069】実施例14 実施例11において中間層にAlを使用する以外は、実
施例11を繰り返し同様に下地層の厚さを変化させてX
線回折像をとり、このときのAl中間層の(111)ピ
ーク強度と(111)ピークの配向度Δθ50のTi下
地層厚依存性を調べた。この結果を図12及び図13に
示す。
Example 14 Example 11 was repeated except that Al was used for the intermediate layer, and the thickness of the underlayer was changed in the same manner as in Example 11 to obtain X.
A line diffraction image was taken, and the dependency of the (111) peak intensity and the orientation degree Δθ 50 of the (111) peak of the Al intermediate layer on the thickness of the Ti underlayer was examined. The results are shown in FIGS. 12 and 13.

【0070】実施例15 実施例11において中間層にCu80Al20(原子
%)を使用する以外は、実施例11を繰り返し同様に下
地層の厚さを変化させてX線回折像をとり、このときの
CuAl中間層の(111)ピーク強度と(111)ピ
ークの配向度Δθ50のTi下地層厚依存性を調べた。
この結果を図12及び図13に示す。
Example 15 Example 11 was repeated except that Cu 80 Al 20 (atomic%) was used for the intermediate layer in Example 11, and the thickness of the underlayer was changed in the same manner to obtain an X-ray diffraction image. At this time, the dependence of the (111) peak intensity and the (111) peak orientation degree Δθ 50 of the CuAl intermediate layer on the thickness of the Ti underlayer was examined.
The results are shown in FIGS. 12 and 13.

【0071】図12から、実施例11〜15における面
心立方晶構造を有する中間層と非磁性支持体との間に5
nm厚以上のTi下地層を積層することにより、下地層
が存在しない場合に比べ、各中間層の回折ピーク強度は
10倍以上になり、中間層の結晶性が大きく改善された
ことが分かる。また、図13からは、5nm厚以上のT
i下地層を積層することにより配向度Δθ50が大きく
減少し、その配向性が大きく改善されたことが分かる。
From FIG. 12, it can be seen that between the intermediate layer having the face-centered cubic structure and the non-magnetic support in Examples 11 to 15, 5 was formed.
It can be seen that by laminating the Ti underlayer having a thickness of nm or more, the diffraction peak intensity of each intermediate layer is 10 times or more as compared with the case where the underlayer is not present, and the crystallinity of the intermediate layer is significantly improved. In addition, from FIG.
It can be seen that by laminating the i underlayer, the degree of orientation Δθ 50 was greatly reduced and the orientation was significantly improved.

【0072】表3にX線回折像において観察できる各ピ
ークのピーク強度を、下地層が積層されていない場合と
5nm厚のTi下地層が積層されている場合とについて
それぞれ示す。
Table 3 shows the peak intensities of the respective peaks that can be observed in the X-ray diffraction image, respectively when the underlayer is not laminated and when a Ti underlayer having a thickness of 5 nm is laminated.

【0073】[0073]

【表3】 Ti下地層の有無による各中間層の X線回折ピーク強度の変化(単位は任意強度) Ti下地層 中間層 ピーク 無 有(5nm厚) Cu (111) 18025 164582 (200) 2525 〜0 (311) 372 〜0 (222) 647 7353 Ni (111) 7832 97890 (200) 722 304 (220) 221 213 (311) 196 170 (222) 274 3038 NiCuTa (111) 7656 130682 (200) 531 〜0 (311) 201 〜0 (222) 291 4455 Al (111) 4505 82082 (200) 387 〜0 (311) 280 〜0 (222) 264 4000 CuAl (111) 6241 22312 (222) 372 903 この表3に示した結果から、Ti下地層を積層しておく
ことにより中間層の(111)及び(222)ピーク強
度は大きく増加し、一方、その他のピークのピーク強度
は減少することが分かる。この結果は、Ti下地層の存
在により中間層が強く(111)配向し、結晶性も大き
く改善されたことを示している。
[Table 3] Change in X-ray diffraction peak intensity of each intermediate layer with or without Ti underlayer (unit is arbitrary intensity) Ti underlayer intermediate layer No peak (5 nm thickness) Cu (111) 18025 164582 (200) 2525-0 (311) 372-0 (222) 647 7353 Ni (111) 7832 97890 (200) 722 304 (220) 221 213 (311) 196 170 (222) 274 3038 NiCuTa (111) 7656 130682 (200) 531-0 (311) 201 ~ 0 (222) 291 4455 Al (111) 4505 82082 (200) 387-0 (311) 280-0 (222) 264 4000 CuAl (111) 6241 22312 (222) 372 903. From the results shown in Table 3, it can be seen that by stacking the Ti underlayer, the (111) and (222) peak intensities of the intermediate layer greatly increase, while the peak intensities of other peaks decrease. . This result indicates that the presence of the Ti underlayer causes the intermediate layer to have a strong (111) orientation and the crystallinity to be greatly improved.

【0074】以上、図12、図13及び表3から、Ti
下地層を中間層と非磁性支持体との間に積層することに
より、その中間層が前述の好ましい垂直磁化膜を実現す
るための条件である式(2)及び(3)を満たし、従っ
て、好ましい垂直磁化膜を実現できることが分かる。
As described above, from FIG. 12, FIG. 13 and Table 3, Ti
By laminating the underlayer between the intermediate layer and the non-magnetic support, the intermediate layer satisfies the conditions (2) and (3), which are the conditions for realizing the preferable perpendicular magnetization film, and therefore, It can be seen that a preferable perpendicular magnetization film can be realized.

【0075】実施例16 スライドガラス基板よりなる非磁性支持体上に、マグネ
トロン型スパッタリング装置によってTi下地層、Ni
CuTa中間層、磁性層を順次積層し図2に示すような
磁気記録媒体を製造した。このときの下地層、中間層及
び磁性層の成膜条件は次の通りである。
Example 16 On a non-magnetic support made of a slide glass substrate, a Ti underlayer and Ni were formed by a magnetron type sputtering device.
A CuTa intermediate layer and a magnetic layer were sequentially laminated to manufacture a magnetic recording medium as shown in FIG. The film forming conditions of the underlayer, the intermediate layer and the magnetic layer at this time are as follows.

【0076】 バックグラウンド真空度: 1.3×10−4Pa 非磁性支持体温度 : 室温 スパッタ投入電力 : DC300W 磁性層 スパッタガス全圧 : 2.0Pa ガス組成 : Ar及び酸素 全ガス流量 : 50SCCM ターゲット : Co68Pt23(原
子%)組成の合金(直径10cm×厚さ4mm) 膜厚 : 100nm 中間層 導入ガス : Arガス 全ガス流量 : 100SCCM 膜厚 : 200nm ターゲット : Ni45Cu50Ta
(原子%)組成の合金(直径10cm×厚さ4mm) 下地層導入ガス : Arガス 全ガス流量 : 100SCCM 膜厚 : 5nm ターゲット : Ti 上記の条件下で、磁性層を成膜する際の酸素分圧を変化
させ種々の磁気記録媒体を製造し、これらについて垂直
異方性磁界Hkと垂直保磁力Hcvを求め、それらと酸
素分圧POとの関係を求めた。この結果を図14及び
図15に示す。
Degree of background vacuum: 1.3 × 10 −4 Pa Temperature of non-magnetic support: Room temperature Sputtering power: DC300W Magnetic layer Total sputtering gas pressure: 2.0 Pa Gas composition: Ar and oxygen total gas flow rate: 50 SCCM target : Co 68 Pt 23 B 9 (atomic%) composition alloy (diameter 10 cm x thickness 4 mm) Film thickness: 100 nm Intermediate layer Introduced gas: Ar gas total gas flow rate: 100 SCCM film thickness: 200 nm Target: Ni 45 Cu 50 Ta
Alloy of 5 (atomic%) composition (diameter 10 cm × thickness 4 mm) Underlayer introduction gas: Ar gas total gas flow rate: 100 SCCM film thickness: 5 nm target: Ti Oxygen for forming the magnetic layer under the above conditions Various magnetic recording media were manufactured by changing the partial pressure, the perpendicular anisotropy magnetic field Hk and the perpendicular coercive force Hcv were obtained for these, and the relationship between them and the oxygen partial pressure PO 2 was obtained. The results are shown in FIGS. 14 and 15.

【0077】実施例17 実施例16において中間層及び下地層のかわりに100
nm厚のPt層を使用する以外は、実施例16を繰り返
すことにより磁気記録媒体を製造し、実施例16と同様
に垂直異方性磁界Hkと垂直保磁力Hcvと酸素分圧P
との関係を調べた。この結果を図14及び図15に
示す。なお、このPt層の積層条件は、単層の中間層を
用いた場合に最も優れた垂直磁気特性が得られる条件で
ある。
Example 17 In Example 16, 100% was used instead of the intermediate layer and the underlayer.
A magnetic recording medium was manufactured by repeating Example 16 except that a Pt layer having a thickness of nm was used. As in Example 16, the perpendicular anisotropy magnetic field Hk, the perpendicular coercive force Hcv, and the oxygen partial pressure P were obtained.
The relationship with O 2 was investigated. The results are shown in FIGS. 14 and 15. The Pt layer stacking conditions are such that the best perpendicular magnetic characteristics can be obtained when a single intermediate layer is used.

【0078】これら実施例16及び実施例17のNiC
uTa層及びPt層の結晶性と配向性をX線回折法によ
り調べたところ、Pt層の(111)ピークの配向度Δ
θ は7.0〜8.0(deg.)、ピーク強度の積
分強度比I311/I222は0.02〜0.04であ
った。一方、NiCuTa層の(111)ピークの配向
度Δθ50は4.5〜6.1(deg.)、ピーク強度
の積分強度比I311/I222は0.01以下であっ
た。これらの結果は、いずれも前述の好ましい垂直磁化
膜を実現するための中間層の条件である式(2)及び
(3)を満たしており、従って、これらの結果は、Ti
下地層を積層することによりNiCuTa層が強く(1
11)配向し、そのためその結晶性や配向性が改善され
たことを示している。
NiC of Examples 16 and 17
When the crystallinity and orientation of the uTa layer and the Pt layer were examined by an X-ray diffraction method, the degree of orientation Δ of the (111) peak of the Pt layer was found.
theta 5 0 is 7.0 to 8.0 (deg.), the integrated intensity ratio I 311 / I 222 of the peak intensity was 0.02 to 0.04. On the other hand, the degree of orientation Δθ 50 of the (111) peak of the NiCuTa layer was 4.5 to 6.1 (deg.), And the integrated intensity ratio I 311 / I 222 of the peak intensity was 0.01 or less. All of these results satisfy the conditions (2) and (3) of the intermediate layer for realizing the above-mentioned preferable perpendicular magnetization film, and therefore these results show that Ti
By stacking the underlayer, the NiCuTa layer becomes stronger (1
11) Oriented, which indicates that its crystallinity and orientation were improved.

【0079】ところで、実施例16で得られる磁性層の
飽和磁束密度Bsは約1〜1.2T程度であり、良好な
垂直磁化膜を得るための前述した式(1) (104/4π)×Hk≧Bs (1) に、この飽和磁束密度Bsの数値(1〜1.2T)を代
入すると、実用上必要な垂直異方性磁界Hkは約800
kA/m以上となるが、図14から明らかなように、実
施例16及び実施例17の磁気記録媒体の垂直異方性磁
界Hkがこの数値以上となる酸素分圧力の範囲は同程度
であり、、酸素依存性や垂直異方性磁界Hkの大きさに
ついても実施例16と実施例17とは同程度である。ま
た、図15から明らかなように、実施例16の磁気記録
媒体の垂直保磁力Hcvについては、Pt中間層を用い
た実施例17の磁気記録媒体より大きな値が得られてい
る。従って、実施例17のようにPt中間層を形成する
と良好な磁性特性を実現できるが、実施例16のように
Pt中間層よりも安価に形成できるNiCuTa中間層
を形成した場合でも、非磁性支持体を中間層との間に下
地層を形成することにより、Pt中間層を形成した場合
と同等叉はそれ以上の垂直磁気特性が実現できることが
分かった。
By the way, the saturation magnetic flux density Bs of the magnetic layer obtained in Example 16 is about 1 to 1.2 T, and the above-mentioned formula (1) (104 / 4π) × for obtaining a good perpendicular magnetization film is obtained. By substituting the numerical value (1 to 1.2T) of the saturation magnetic flux density Bs into Hk ≧ Bs (1), the perpendicular anisotropic magnetic field Hk required for practical use is about 800.
14, the oxygen partial pressure range in which the perpendicular anisotropy magnetic field Hk of the magnetic recording media of Examples 16 and 17 is more than this value is about the same. The oxygen dependency and the magnitude of the perpendicular anisotropy magnetic field Hk are about the same as those of the sixteenth embodiment and the seventeenth embodiment. As is clear from FIG. 15, the perpendicular coercive force Hcv of the magnetic recording medium of Example 16 is larger than that of the magnetic recording medium of Example 17 using the Pt intermediate layer. Therefore, good magnetic properties can be realized by forming the Pt intermediate layer as in Example 17, but even when the NiCuTa intermediate layer that can be formed at a lower cost than the Pt intermediate layer is formed as in Example 16, the non-magnetic support is formed. It was found that by forming an underlayer between the body and the intermediate layer, perpendicular magnetic characteristics equivalent to or higher than the case of forming the Pt intermediate layer can be realized.

【0080】実施例18 実施例16において磁性層成膜時の酸素分圧PO
0.047Paとし、磁性層と中間層との間に20nm
厚のFe96Si(原子%)軟磁性層を使用した磁気
記録媒体を製造し、垂直異方性磁界Hkと垂直保磁力H
cvを求めた。その結果、本実施例の垂直異方性磁界H
kは960kA/mであり、垂直保磁力Hcvは182
kA/mであった。この値は、前述した実用上必要な垂
直異方性磁界Hkの値(約800kA/m以上)より十
分に大きく、従って本実施例で得られた磁気記録媒体は
良好な垂直磁気特性を有するものであった。
Example 18 In Example 16, the oxygen partial pressure PO 2 at the time of forming the magnetic layer was 0.047 Pa, and the distance between the magnetic layer and the intermediate layer was 20 nm.
A magnetic recording medium using a thick Fe 96 Si 4 (atomic%) soft magnetic layer was manufactured, and a perpendicular anisotropic magnetic field Hk and a perpendicular coercive force H were obtained.
cv was calculated. As a result, the perpendicular anisotropy magnetic field H of this embodiment is obtained.
k is 960 kA / m, and the perpendicular coercive force Hcv is 182.
It was kA / m. This value is sufficiently larger than the value of the perpendicular anisotropy magnetic field Hk (about 800 kA / m or more) necessary for practical use, and therefore the magnetic recording medium obtained in this example has good perpendicular magnetic characteristics. Met.

【0081】実施例19 実施例16において中間層に500nm厚のFe15
80Ta(原子%)層を使用する以外は、実施例1
6を繰り返すことにより磁気記録媒体を製造し、垂直保
磁力Hcvと酸素分圧POとの関係を調べた。
Example 19 In Example 16, the intermediate layer was formed of Fe 15 N having a thickness of 500 nm.
Example 1 except using an i 80 Ta 5 (atomic%) layer
A magnetic recording medium was manufactured by repeating 6 and the relationship between the perpendicular coercive force Hcv and the oxygen partial pressure PO 2 was investigated.

【0082】図17に実施例18と実施例17との垂直
保磁力Hcvの酸素分圧PO依存性を示す。FeNi
Ta中間層とTi下地層との組み合わせた実施例18の
場合には、Pt中間層を用いた場合の実施例17の場合
に比べ、保磁力の最大値が得られる酸素分圧POがよ
り酸素濃度の高い方へずれているが、最大値そのものの
値や酸素分圧PO依存性の傾向はほぼ同様である。
FIG. 17 shows the oxygen partial pressure PO 2 dependency of the perpendicular coercive force Hcv of Examples 18 and 17. FeNi
In the case of Example 18 in which the Ta intermediate layer and the Ti underlayer were combined, the oxygen partial pressure PO 2 at which the maximum value of the coercive force was obtained was higher than that in Example 17 in which the Pt intermediate layer was used. Although the oxygen concentration is shifted to the higher side, the tendency of the maximum value itself and the oxygen partial pressure PO 2 dependency is almost the same.

【0083】図19にFeNiTa中間層とTi下地層
を用いた場合の垂直磁化曲線を示す。図19から明らか
なように、この磁気記録媒体は高い角型性が保持されて
いることが分かる。
FIG. 19 shows a perpendicular magnetization curve when the FeNiTa intermediate layer and the Ti underlayer are used. As is clear from FIG. 19, it is found that this magnetic recording medium maintains high squareness.

【0084】また、実施例19におけるFeNiTa中
間層のI311/I222は0.3〜0.5、(11
1)ピークの配向度Δθ50は3.8〜5.5(de
g.)であった。これらの値は、いずれも前述の好まし
い垂直磁化膜の得られる中間層の条件である式(2)及
び(3)を満たしており、従って、Ti下地層を積層す
ることによりFeNiTa中間層を強く(111)配向
させることができ、その結晶性や配向性を改善させるこ
とができた。そのため下地層がない場合のPt中間層と
同等程度の垂直磁気特性を実現することができた。
Further, I 311 / I 222 of the FeNiTa intermediate layer in Example 19 is 0.3 to 0.5, (11
1) The peak orientation degree Δθ 50 is 3.8 to 5.5 (de).
g. )Met. These values all satisfy the conditions (2) and (3), which are the conditions for the intermediate layer from which the preferable perpendicular magnetization film is obtained, and therefore, by stacking the Ti underlayer, the FeNiTa intermediate layer is strongly strengthened. (111) orientation was possible, and its crystallinity and orientation could be improved. Therefore, it was possible to realize the perpendicular magnetic characteristics comparable to those of the Pt intermediate layer without the underlayer.

【0085】実施例20 実施例16において中間層に5nm厚のFe60Co
40(原子%)層を使用し、磁性層成膜時の酸素分圧P
を0.047Paとして磁気記録媒体を製造し、垂
直異方性磁界Hkと垂直保磁力Hcvを求めた。その結
果は、垂直異方性磁界Hkが1150kA/mであり、
垂直保磁力Hcvが175kA/mであった。この値は
前述した実用上必要な垂直異方性磁界Hkの値(約80
0kA/m以上)より十分に大きく、良好な垂直磁気特
性を示していた。
Example 20 In Example 16, the intermediate layer was formed of Fe 60 Co having a thickness of 5 nm.
40 (atomic%) layer is used, and oxygen partial pressure P at the time of forming the magnetic layer
A magnetic recording medium was manufactured with O 2 set to 0.047 Pa, and a perpendicular anisotropic magnetic field Hk and a perpendicular coercive force Hcv were obtained. As a result, the perpendicular anisotropy magnetic field Hk is 1150 kA / m,
The perpendicular coercive force Hcv was 175 kA / m. This value is the value of the perpendicular anisotropy magnetic field Hk (about 80
0 kA / m or more), showing good perpendicular magnetic characteristics.

【0086】[0086]

【発明の効果】本発明の磁気記録媒体によれば、望まし
い磁気特性、特に高い垂直異方性磁界を有する磁性薄膜
を得るための成膜時の酸素分圧の条件を緩和することが
できる。また、高い再現性で且つ高い歩留まりで磁気記
録媒体を製造することができる。更に、軟磁性層を磁性
層と中間層との間に設けることにより、磁気記録媒体の
磁気記録の出力とオーバーライト特性とを向上させるこ
とができる。
According to the magnetic recording medium of the present invention, it is possible to relax the conditions of oxygen partial pressure at the time of film formation for obtaining a magnetic thin film having desirable magnetic characteristics, particularly a high perpendicular anisotropy magnetic field. Further, the magnetic recording medium can be manufactured with high reproducibility and high yield. Furthermore, by providing the soft magnetic layer between the magnetic layer and the intermediate layer, it is possible to improve the magnetic recording output and the overwrite characteristic of the magnetic recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的態様の磁気記録媒体の断面図で
ある。
FIG. 1 is a cross-sectional view of a magnetic recording medium according to a basic aspect of the present invention.

【図2】本発明の別の態様の磁気記録媒体の断面図であ
る。
FIG. 2 is a cross-sectional view of a magnetic recording medium according to another aspect of the present invention.

【図3】本発明の別の態様の磁気記録媒体の断面図であ
る。
FIG. 3 is a cross-sectional view of a magnetic recording medium according to another aspect of the present invention.

【図4】本発明の別の態様の磁気記録媒体の断面図であ
る。
FIG. 4 is a cross-sectional view of a magnetic recording medium according to another aspect of the present invention.

【図5】本発明の磁気記録媒体の中間層の配向度Δθ
50と垂直異方性磁界Hkとの関係を示す図である。
FIG. 5 is a degree of orientation Δθ of the intermediate layer of the magnetic recording medium of the present invention.
It is a figure which shows the relationship between 50 and the perpendicular anisotropy magnetic field Hk.

【図6】本発明の磁気記録媒体の中間層の積分強度比I
311/I222と垂直異方性磁界Hkとの関係を示す
図である。
FIG. 6 is an integrated intensity ratio I of the intermediate layer of the magnetic recording medium of the present invention.
It is a figure which shows the relationship between 311 / I222 and the perpendicular anisotropy magnetic field Hk.

【図7】Au中間層のX線回折像の一例を示す図であ
る。
FIG. 7 is a diagram showing an example of an X-ray diffraction image of an Au intermediate layer.

【図8】 本発明の磁気記録媒体の磁性層のPCoピー
クのピーク強度と、中間層の積分強度比I311/I
222との関係を示す図である。
FIG. 8 is a peak intensity of a P Co peak of the magnetic layer of the magnetic recording medium of the present invention and an integrated intensity ratio I 311 / I of the intermediate layer.
It is a figure which shows the relationship with 222 .

【図9】磁気記録媒体における、全酸素分圧範囲(0〜
0.07Pa)と垂直異方性磁界Hkとの関係を示す図
である。
FIG. 9 shows the total oxygen partial pressure range (0 to 0) in the magnetic recording medium.
It is a figure which shows the relationship between 0.07 Pa) and the perpendicular anisotropy magnetic field Hk.

【図10】磁気記録媒体の磁気記録の出力を示す磁気記
録の出力特性図である。
FIG. 10 is an output characteristic diagram of magnetic recording showing an output of magnetic recording of a magnetic recording medium.

【図11】磁気記録媒体における磁性膜の垂直磁化曲線
図である。
FIG. 11 is a perpendicular magnetization curve diagram of a magnetic film in a magnetic recording medium.

【図12】中間層の(111)ピーク強度とTi下地層
厚との関係を示す図である。
FIG. 12 is a diagram showing the relationship between the (111) peak intensity of the intermediate layer and the thickness of the Ti underlayer.

【図13】中間層の配向度Δθ50とTi下地層厚との
関係を示す図である。
FIG. 13 is a diagram showing the relationship between the orientation degree Δθ50 of the intermediate layer and the thickness of the Ti underlayer.

【図14】磁性層成膜時の酸素分圧と磁性層の垂直異方
性磁界との関係を示す図である。
FIG. 14 is a diagram showing the relationship between the oxygen partial pressure during film formation of the magnetic layer and the perpendicular anisotropic magnetic field of the magnetic layer.

【図15】磁性層成膜時の酸素分圧と磁性層の垂直保磁
力との関係を示す図である。
FIG. 15 is a diagram showing the relationship between the oxygen partial pressure during film formation of the magnetic layer and the perpendicular coercive force of the magnetic layer.

【図16】磁性層成膜時の酸素分圧と磁性層の垂直保磁
力との関係を示す図である。
FIG. 16 is a diagram showing the relationship between the oxygen partial pressure when forming a magnetic layer and the perpendicular coercive force of the magnetic layer.

【図17】本発明の磁気記録媒体の垂直磁化曲線図の一
例である。
FIG. 17 is an example of a perpendicular magnetization curve diagram of the magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1 非磁性支持体 2 中間層 3 磁性層 4 下地層 5 軟磁性層 6 保護層 1 non-magnetic support 2 intermediate layer 3 magnetic layer 4 underlayer 5 soft magnetic layer 6 protective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 和彦 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 阿蘇 興一 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Hayashi 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Sony Corporation (72) Inventor Koichi Aso 6-735 Kitashinagawa, Shinagawa-ku, Tokyo No. Sony Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 非磁性支持体上に、以下の組成式 (CoPt100−x (式中、a、b、c及びxは原子%であり、これらは以
下の式: a=100−b−c; 0≦b≦50; 0.1≦c≦30;及び 0<x≦15 を満足する)で表される磁性層が中間層を介して形成さ
れている磁気記録媒体において、該中間層が面心立方晶
構造を有することを特徴とする磁気記録媒体。
1. A non-magnetic support having the following composition formula: (Co a Pt b B c ) 100-x O x (where a, b, c and x are atomic%, A magnetic layer represented by the formula: a = 100-bc; 0 ≦ b ≦ 50; 0.1 ≦ c ≦ 30; and 0 <x ≦ 15) is formed via an intermediate layer. A magnetic recording medium, wherein the intermediate layer has a face-centered cubic structure.
【請求項2】 面心立方晶構造を有する該中間層のX線
回折像の(111)ピークのロッキングカーブにより求
めた配向度Δθ50が、以下の式 Δθ50≦10(deg.) で表される請求項1記載の磁気記録媒体。
2. An orientation degree Δθ 50 obtained from a rocking curve of a (111) peak of an X-ray diffraction image of the intermediate layer having a face-centered cubic structure is represented by the following formula Δθ 50 ≦ 10 (deg.). The magnetic recording medium according to claim 1.
【請求項3】 面心立方晶構造を有する該中間層のX線
回折像の(311)ピークと(222)ピークとの積分
強度比I311/I222が以下式 I311/I222≦0.8 で表される請求項1記載の磁気記録媒体。
3. The integrated intensity ratio I 311 / I 222 between the (311) peak and the (222) peak of the X-ray diffraction image of the intermediate layer having a face-centered cubic crystal structure is expressed by the following formula I 311 / I 222 ≦ 0. The magnetic recording medium according to claim 1, represented by
【請求項4】 該中間層がAl、Ni、Cu、Rh、P
d、Ag、Ir、Pt、Au、Fe及びCoの少なくと
も1種を含有する請求項1記載の磁気記録媒体。
4. The intermediate layer comprises Al, Ni, Cu, Rh, P
The magnetic recording medium according to claim 1, containing at least one of d, Ag, Ir, Pt, Au, Fe, and Co.
【請求項5】 該磁性層と該中間層との間に、更に軟磁
性層が形成されている請求項1記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, further comprising a soft magnetic layer formed between the magnetic layer and the intermediate layer.
【請求項6】 該軟磁性層が体心立方晶構造又は面心立
方晶構造を有する請求項5記載の磁気記録媒体。
6. The magnetic recording medium according to claim 5, wherein the soft magnetic layer has a body-centered cubic structure or a face-centered cubic structure.
【請求項7】 該軟磁性層がFeSi膜である請求項6
記載の磁気記録媒体。
7. The soft magnetic layer is a FeSi film.
The magnetic recording medium described.
【請求項8】 該非磁性支持体と該中間層との間に、更
にTi又はCrを少なくとも含有する下地層が形成され
ている請求項1記載の磁気記録媒体。
8. The magnetic recording medium according to claim 1, further comprising an underlayer containing at least Ti or Cr formed between the non-magnetic support and the intermediate layer.
【請求項9】 該磁性層と該中間層との間に、更に軟磁
性層が形成されている請求項8記載の磁気記録媒体。
9. The magnetic recording medium according to claim 8, further comprising a soft magnetic layer formed between the magnetic layer and the intermediate layer.
JP25225392A 1991-08-30 1992-08-26 Magnetic recording media Expired - Fee Related JP3230223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25225392A JP3230223B2 (en) 1991-08-30 1992-08-26 Magnetic recording media

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP22070891 1991-08-30
JP14220592 1992-05-06
JP19928592 1992-07-01
JP4-142205 1992-07-01
JP4-199285 1992-07-01
JP3-220708 1992-07-01
JP25225392A JP3230223B2 (en) 1991-08-30 1992-08-26 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH0676260A true JPH0676260A (en) 1994-03-18
JP3230223B2 JP3230223B2 (en) 2001-11-19

Family

ID=27472433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25225392A Expired - Fee Related JP3230223B2 (en) 1991-08-30 1992-08-26 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP3230223B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900323A (en) * 1995-02-20 1999-05-04 Fujitsu Limited Magnetic recording medium and magnetic recording drive
US6638648B2 (en) 2000-09-28 2003-10-28 Hitachi, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
JP2004063065A (en) * 2002-07-27 2004-02-26 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
US7108926B2 (en) 2001-01-04 2006-09-19 Samsung Electronics Co., Ltd. Perpendicular magnetic recording medium
KR100803201B1 (en) * 2002-07-27 2008-02-14 삼성전자주식회사 Perpendicular magnetic recording media
US7368185B2 (en) 2003-12-24 2008-05-06 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording media and magnetic storage apparatus using the same
JP2008276863A (en) * 2007-04-27 2008-11-13 Fujitsu Ltd Vertical magnetic recording medium, its manufacturing method and magnetic recording device
JP2016129080A (en) * 2015-01-09 2016-07-14 山陽特殊製鋼株式会社 ALLOY FOR SHIELD LAYER OF Ni-Cu-BASED MAGNETIC RECORDING MEDIUM, SPUTTERING TARGET MATERIAL, AND MAGNETIC RECORDING MEDIUM

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900323A (en) * 1995-02-20 1999-05-04 Fujitsu Limited Magnetic recording medium and magnetic recording drive
US6638648B2 (en) 2000-09-28 2003-10-28 Hitachi, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US6881504B2 (en) 2000-09-28 2005-04-19 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US7108926B2 (en) 2001-01-04 2006-09-19 Samsung Electronics Co., Ltd. Perpendicular magnetic recording medium
JP2004063065A (en) * 2002-07-27 2004-02-26 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
KR100803201B1 (en) * 2002-07-27 2008-02-14 삼성전자주식회사 Perpendicular magnetic recording media
US7368185B2 (en) 2003-12-24 2008-05-06 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording media and magnetic storage apparatus using the same
JP2008276863A (en) * 2007-04-27 2008-11-13 Fujitsu Ltd Vertical magnetic recording medium, its manufacturing method and magnetic recording device
JP2016129080A (en) * 2015-01-09 2016-07-14 山陽特殊製鋼株式会社 ALLOY FOR SHIELD LAYER OF Ni-Cu-BASED MAGNETIC RECORDING MEDIUM, SPUTTERING TARGET MATERIAL, AND MAGNETIC RECORDING MEDIUM
WO2016111329A1 (en) * 2015-01-09 2016-07-14 山陽特殊製鋼株式会社 ALLOY FOR SEED LAYER OF Ni-Cu-BASED MAGNETIC RECORDING MEDIUM, SPUTTERING TARGET MATERIAL, AND MAGNETIC RECORDING MEDIUM
CN107251139A (en) * 2015-01-09 2017-10-13 山阳特殊制钢株式会社 The inculating crystal layer alloy and sputtering target material and magnetic recording media of Ni-Cu systems magnetic recording media
CN107251139B (en) * 2015-01-09 2020-04-14 山阳特殊制钢株式会社 Alloy for seed layer of Ni-Cu magnetic recording medium, sputtering target material, and magnetic recording medium

Also Published As

Publication number Publication date
JP3230223B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3919047B2 (en) Perpendicular magnetic recording medium
US6863998B2 (en) Magnetic recording medium, method for producing the same, and magnetic recording apparatus
US6686071B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
JPH0676260A (en) Magnetic recording medium
US5962153A (en) Soft magnetic thin film, and magnetic head and magnetic recording apparatus using the film
US5789088A (en) Magnetic recording medium having a metal underlayer and a CoCr alloy magnetic thin film
JP2508489B2 (en) Soft magnetic thin film
US6638647B2 (en) Vertical recording medium with thin soft magnetic film
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JPH03106003A (en) Soft magnetic amorphous alloy thin film
EP0415364B1 (en) Magnetic recording medium
JP3386270B2 (en) Magnetic head and magnetic recording device
CA1333939C (en) Perpendicular magnetic recording medium, method for manufacturing thereof and method for recording and reproducing thereof
JPH06215348A (en) Magnetic recording medium
JPH09283333A (en) Soft-magnetic thin film and magnetic head made from soft-magnetic thin film
JPH0773427A (en) Magnetic recording medium
JPH10233333A (en) Manufacturing method of magnetic recording medium
JPH08316032A (en) Soft magnetic thin film, magnetic head using the film and magnetic recorder
US20040241500A1 (en) Magnetic recording medium, method for producing magnetic recording medium, and magnetic storage device
JPH10229012A (en) Manufacture of magnetic recording medium
JPH05266456A (en) Magnetic recording medium and magnetic recorder
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JPH08306529A (en) Soft magnetic film, and magnetic head using it, and magnetic recording device
JPH0562834A (en) Vertical magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees