JPH05266456A - Magnetic recording medium and magnetic recorder - Google Patents

Magnetic recording medium and magnetic recorder

Info

Publication number
JPH05266456A
JPH05266456A JP6305792A JP6305792A JPH05266456A JP H05266456 A JPH05266456 A JP H05266456A JP 6305792 A JP6305792 A JP 6305792A JP 6305792 A JP6305792 A JP 6305792A JP H05266456 A JPH05266456 A JP H05266456A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
magnetic recording
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6305792A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
石川  晃
Sadao Hishiyama
定夫 菱山
Tomoo Yamamoto
朋生 山本
Yoshihiro Shiroishi
芳博 城石
Tsuguyuki Oono
徒之 大野
Shinan Yaku
四男 屋久
Yukio Kato
幸男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6305792A priority Critical patent/JPH05266456A/en
Priority to US08/007,969 priority patent/US5605733A/en
Publication of JPH05266456A publication Critical patent/JPH05266456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide a magnetic recording medium capable of high density recording by forming a magnetic film on a substrate with primary grains having axes of easy magnetization in a direction parallel to the surface of the substrate and secondary grains having axis of easy magnetization in a direction perpendicular to the surface of the substrate and regulating the ratio of the primary grains to the secondary grains in the magnetic film to 1-20. CONSTITUTION:Plating films 12, 12' of Ni-P are formed on both sides of a discoid substrate 11 of Al-Mg. The surfaces of the plating films 12, 12' are made flat by polishing in practically circumferential directions and fine ruggedness having prescribed center line average roughness (nm) is formed so as to inhibit sticking to a magnetic head. The substrate 11 is then put in a magnetron sputtering device, where Cr underlayers 13, 13' are formed in various thicknesses after firing at a prescribed temp., magnetic metal films 14, 14' of Co-12Cr-3Ta are formed on the underlayers 13, 13' and protective films 15, 15' of carbon are further formed on the films 14, 14'. The ratio of primary grains having axes of easy magnetization in a direction parallel to the surface of the substrate 11 to secondary grains having the axis of easy magnetization in a direction perpendicular to the surface of the substrate 11 in the magnetic metal film 14 is regulated to 1-20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体および磁気
記録装置に係り,特に高密度磁気記録に好適な薄膜型記
録媒体およびこれを用いた磁気記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium and a magnetic recording device, and more particularly to a thin film type recording medium suitable for high density magnetic recording and a magnetic recording device using the same.

【0002】[0002]

【従来の技術】近年,電子計算機の小型化・高速化に伴
い,磁気ディスク装置その他の外部記憶装置の大容量化
・高速アクセス化が強く求められている。特に,磁気デ
ィスク記録装置は高密度・高速記録に適した情報記憶装
置であり,その需要が一段と強まりつつある。磁気ディ
スク装置において用いられる磁気記録媒体としては,酸
化物の磁性体の粉末をディスク基板上に塗布して形成さ
れた塗布型の記録媒体と,金属磁性体の薄膜を基板上に
スパッタリング等の方法により蒸着して形成した薄膜型
の記録媒体とが知られている。薄膜型記録媒体は塗布型
記録媒体に比較して記録膜中の磁性体の密度が高いため
高密度の記録に適している。
2. Description of the Related Art In recent years, with the downsizing and speeding up of electronic computers, there has been a strong demand for magnetic disks and other external storage devices to have a large capacity and high speed access. In particular, the magnetic disk recording device is an information storage device suitable for high-density and high-speed recording, and its demand is further increasing. The magnetic recording medium used in the magnetic disk device includes a coating type recording medium formed by coating powder of an oxide magnetic material on a disk substrate, and a method of sputtering a thin film of a metal magnetic material on the substrate. A thin film type recording medium formed by vapor deposition is known. The thin film type recording medium is suitable for high density recording because the magnetic substance density in the recording film is higher than that of the coating type recording medium.

【0003】薄膜型記録媒体の磁性体材料としては大き
な結晶磁気異方性を有するCo基合金が主に用いられ
る。Co基合金は六方最密充填型(hexagonal
close−packed:以後hcpと略記する)
の結晶構造を有し,磁化容易方向はhcp構造のc軸と
平行であり,この方向に高い保磁力Hcおよび残留磁化
Br,角形比S,S*を有する。現在の磁気ディスク装
置においては,媒体中に情報として記録される磁化の方
向は基板面と実質的に平行であるため,媒体を形成する
にあたってはCo基合金のc軸が基板面と実質的に平行
となるように結晶を成長させる必要がある。
A Co-based alloy having a large crystal magnetic anisotropy is mainly used as a magnetic material of the thin film type recording medium. Co-based alloys are hexagonal close-packed (hexagonal)
close-packed: hereinafter abbreviated as hcp)
And has an easy magnetization direction parallel to the c-axis of the hcp structure, and has a high coercive force Hc, remanent magnetization Br, and squareness ratios S and S * in this direction. In the current magnetic disk device, the direction of magnetization recorded as information in the medium is substantially parallel to the substrate surface. Therefore, when forming the medium, the c-axis of the Co-based alloy is substantially parallel to the substrate surface. It is necessary to grow the crystals so that they are parallel to each other.

【0004】この目的のため多くの場合,磁性膜の下地
膜として体心立方構造(body−centered
cubic:以後bccと略記する)を有するCrある
いはCr基合金膜を成膜し,これによりCo基合金の結
晶配向性を制御する方法が知られている。例えば,特開
平1−220217号において,Crの(100)結晶
格子面が基板面に平行である,膜厚5nmないし20n
mのCr下地膜上にCo基合金の(110)結晶格子面
およびc軸を基板面に平行に形成した磁気記録媒体が開
示されている。また,特開昭62−257618号にお
いてはCr下地膜にVあるいはFeを添加することによ
りbcc構造の結晶格子の大きさを増加し,Crの(1
00)結晶格子面とCo基合金の(110)結晶格子面
との整合性を向上し,保磁力や角形比を向上した磁気記
録媒体が開示されている。さらに,特開昭63−197
018号においてはCr下地膜にTiあるいはSiを添
加し,Cr下地膜の結晶配向性をディスク面内で等方的
とし,モジュレーションを減少した磁気記録媒体が示さ
れている。
For this purpose, in many cases, a body-centered cubic structure (body-centered structure) is used as an underlying film of a magnetic film.
There is known a method of controlling the crystal orientation of a Co-based alloy by forming a Cr or Cr-based alloy film having a cubic (hereinafter abbreviated as bcc). For example, in JP-A-1-220217, the (100) crystal lattice plane of Cr is parallel to the substrate surface, and the film thickness is 5 nm to 20 n.
A magnetic recording medium is disclosed in which a (110) crystal lattice plane of a Co-based alloy and a c-axis are formed parallel to a substrate surface on a Cr underlayer of m. Further, in Japanese Patent Laid-Open No. 62-257618, by adding V or Fe to the Cr underlayer, the size of the crystal lattice of the bcc structure is increased, and the Cr (1
There is disclosed a magnetic recording medium having improved coercive force and squareness by improving the matching between the (00) crystal lattice plane and the (110) crystal lattice plane of a Co-based alloy. Furthermore, JP-A-63-197
No. 018 shows a magnetic recording medium in which Ti or Si is added to a Cr underlayer so that the crystal orientation of the Cr underlayer is isotropic in the disk plane and the modulation is reduced.

【0005】[0005]

【発明が解決しようとする課題】このように,従来より
様々な下地膜を用いた薄膜型記録媒体が提案されている
が,これらは主に保磁力,角形比などの静磁気特性を向
上させたものであり,記録時のノイズ,再生出力,分解
能などの動的な磁気記録特性に関する検討は詳細には行
われていない。このため,従来の薄膜型記録媒体では記
録再生時のS/N,分解能は不十分であり,磁気ディス
ク装置の性能を向上するため,より優れた特性を有する
磁気記録媒体を開発することが強く求められていた。ま
た,再生感度に優れた磁気抵抗型(以後MRと略記す
る)ヘッドを用いた録再分離型のヘッドを用いて記録再
生を行なう場合には,媒体のノイズを従来より大幅に低
減することが求められていた。
As described above, thin film type recording media using various underlayer films have been proposed in the past, but these mainly improve the magnetostatic characteristics such as coercive force and squareness ratio. However, the dynamic magnetic recording characteristics such as noise during recording, reproduction output, and resolution have not been studied in detail. For this reason, the conventional thin film type recording medium has insufficient S / N and resolution at the time of recording / reproducing, and in order to improve the performance of the magnetic disk device, it is strongly required to develop a magnetic recording medium having more excellent characteristics. It was wanted. Further, when recording / reproducing is performed using a recording / reproducing type head that uses a magnetoresistive type (hereinafter abbreviated as MR) head having excellent reproducing sensitivity, it is possible to significantly reduce the noise of the medium as compared with the conventional case. It was wanted.

【0006】以上の課題および状況を鑑み,本発明の第
一の目的は高密度記録が可能な出力半減記録密度D50
値が30kFCI以上,媒体S/Nの値が3以上の磁気記録
媒体を提供することであり,第二の目的はこのような媒
体を再現性良く製造する方法を提供することであり,第
三の目的は,このような媒体を用いた大容量で信頼性の
高い磁気記録装置を提供することである。
In view of the above problems and circumstances, the first object of the present invention is to provide a magnetic recording medium having an output half recording density D 50 of 30 kFCI or more and a medium S / N value of 3 or more, which enables high density recording. The second purpose is to provide a method for producing such a medium with good reproducibility, and the third purpose is to provide a large capacity and high reliability using such medium. A magnetic recording device is provided.

【0007】[0007]

【課題を解決するための手段】本発明者らは下地膜,磁
性体層の結晶構造と,記録再生時のノイズ,再生出力,
分解能などの動的な磁気特性との関係に関し鋭意研究を
重ねた結果,上記目的は磁性体層としてCo基合金膜を
用い,下地膜としてCr,Mo,W,V,NbおよびT
aから成る第一の群から選ばれた少なくとも一種の金属
元素を主たる成分として含む薄膜型磁気記録媒体におい
て,基板面と実質的に平行方向にhcp構造のc軸すな
わち磁化容易軸を有する結晶粒(以後,実質面内結晶粒
と略記する)と,基板面と実質的に垂直方向に磁化容易
軸を有する結晶粒(以後,実質垂直結晶粒と略記する)
の双方が,再現性良く一定の比率で混在する磁性膜を有
する磁気記録媒体を形成せしめることにより達せられる
との知見を得た。このことは、上記実質面内結晶粒と実
質垂直結晶粒の磁性膜中の含有率をそれぞれL,Pと定
義したとき、L/Pの値で表わすことができ、上記目的
を達成できるのはL/Pの値が1以上20以下のときで
ある。ここで,hcp構造を有するCo基合金において
は,実質面内結晶粒は基板面に実質的に平行な結晶格子
面が(100),(101),(110)面である結晶
粒に相当し,実質垂直結晶粒は基板面に実質的に平行な
結晶格子面が(001)面である結晶粒に相当する。
[Means for Solving the Problems] The inventors of the present invention have investigated the crystal structures of the base film and the magnetic layer, noise during recording and reproduction, reproduction output,
As a result of intensive studies on the relationship with the dynamic magnetic characteristics such as resolution, the above-mentioned object was to use a Co-based alloy film as the magnetic layer and Cr, Mo, W, V, Nb and T as the underlayer film.
In a thin film magnetic recording medium containing as a main component at least one metal element selected from the first group consisting of a, crystal grains having a c-axis of an hcp structure, that is, an easy axis of magnetization in a direction substantially parallel to the substrate surface. (Hereinafter, abbreviated as substantially in-plane crystal grains) and crystal grains having an easy axis of magnetization in a direction substantially perpendicular to the substrate surface (hereinafter abbreviated as substantially vertical crystal grains)
It was found that both of the above can be achieved by forming a magnetic recording medium having a magnetic film mixed with a certain ratio with good reproducibility. This can be expressed by the value of L / P when the contents of the substantially in-plane crystal grains and the substantially vertical crystal grains in the magnetic film are defined as L and P, respectively. This is when the value of L / P is 1 or more and 20 or less. Here, in the Co-based alloy having the hcp structure, the substantially in-plane crystal grains correspond to the crystal grains whose crystal lattice planes substantially parallel to the substrate surface are (100), (101), and (110) planes. The substantially vertical crystal grain corresponds to the crystal grain whose crystal lattice plane substantially parallel to the substrate surface is the (001) plane.

【0008】また、本発明に到るまでの広範な研究によ
り、磁性膜において好ましい結晶配向性を実現し上記L
/Sの値を再現性良く望ましい値に設定するには、基板
や下地膜の構造や結晶配向性,組成を最適化し,この上
に磁性膜をエピタキシャル成長させることが有効である
ことが明らかとなり、次の3つの方法が有効であること
を見つけた。
Further, through extensive research up to the present invention, a preferable crystal orientation was realized in the magnetic film and the above L
In order to set the value of / S to a desired value with good reproducibility, it has been clarified that it is effective to optimize the structure, crystal orientation and composition of the substrate and the underlying film, and epitaxially grow the magnetic film on this. We have found that the following three methods work.

【0009】第一の方法は、上記第一の群から選ばれた
少なくとも一種の元素を主たる成分として含む非磁性金
属下地膜を、基板の非磁性金属下地膜形成予定部全体を
覆うように形成するのではなく、形成予定部面積の1%
以上30%以下の面積だけ基板表面を露出した状態で形
成する方法である。また、上記非磁性金属下地膜の結晶
粒径が1nm以上50nm未満の大きさで互いに離れて
いることが高密度な記録再生を可能とするために好まし
い。さらに,上記非磁性金属下地膜の結晶粒が体心立方
格子型の結晶構造を有することが高密度な記録再生を可
能とするために好ましい。上記構造の非磁性金属下地膜
を形成するためには非磁性金属下地膜の形成条件,例え
ばアルゴン圧力,基板温度,膜厚,成膜速度を最適化す
る必要があり,特に膜厚は0.5nm以上,50nm未
満であることが好ましい。
In the first method, a non-magnetic metal underlayer film containing at least one element selected from the above-mentioned first group as a main component is formed so as to cover the entire portion of the substrate where the nonmagnetic metal underlayer film is to be formed. 1% of planned area
This is a method in which the substrate surface is exposed by an area of 30% or less. Further, it is preferable that the crystal grain sizes of the non-magnetic metal underlayer film are separated from each other by a size of 1 nm or more and less than 50 nm in order to enable high-density recording / reproduction. Furthermore, it is preferable that the crystal grains of the nonmagnetic metal underlayer have a body-centered cubic lattice type crystal structure in order to enable high-density recording / reproduction. In order to form the non-magnetic metal underlayer having the above structure, it is necessary to optimize the conditions for forming the nonmagnetic metal underlayer, for example, the argon pressure, the substrate temperature, the film thickness, and the film formation rate. It is preferably 5 nm or more and less than 50 nm.

【0010】第二の方法は、非磁性金属下地膜の材料と
して、上記第一の群から選ばれた少なくとも一種の元素
を主たる成分として含有し,これにTi,Zr,Sc,
Y,Hf,Rh,Os,Zn,Cd,La,Ce,P
r,Nd,Ir,Pt,Au,Pd,Ag,Cu,T
l,Si,Ge,Sn,Pb,Pから成る第二の群から
選ばれた少なくとも一種の元素を1原子%以上30原子
%以下の濃度で添加した材料を用い、下地膜中の主たる
結晶粒がbcc型結晶構造を有し,かつ上記第二の群か
ら選ばれた少なくとも一種の元素が結晶粒中および/ま
たは結晶粒界に偏析した構造とする方法である。
In the second method, as a material for the non-magnetic metal underlayer, at least one element selected from the first group is contained as a main component, and Ti, Zr, Sc,
Y, Hf, Rh, Os, Zn, Cd, La, Ce, P
r, Nd, Ir, Pt, Au, Pd, Ag, Cu, T
The main crystal grains in the underlayer are made of a material to which at least one element selected from the second group consisting of 1, Si, Ge, Sn, Pb, and P is added at a concentration of 1 atomic% or more and 30 atomic% or less. Has a bcc type crystal structure and has a structure in which at least one element selected from the second group is segregated in the crystal grains and / or at the crystal grain boundaries.

【0011】また,第三の方法は、まず非磁性体ディス
ク基板上に上記第二の群から選ばれた少なくとも一種の
元素を主たる成分とする結晶配向制御膜を形成し、次に
この結晶配向制御膜上に、上記第一の群から選ばれた少
なくとも一種の元素を主たる成分とする非磁性金属下地
膜を、結晶配向制御膜の非磁性金属下地膜形成予定部全
体を覆うように形成するのではなく、形成予定部面積の
1%以上30%以下の面積だけ結晶配向制御膜表面を露
出した状態で形成する方法である。
In the third method, first, a crystal orientation control film containing at least one element selected from the second group as a main component is formed on a non-magnetic disk substrate, and then this crystal orientation control film is formed. A nonmagnetic metal underlayer film containing at least one element selected from the first group as a main component is formed on the control film so as to cover the entire nonmagnetic metal underlayer film formation planned portion of the crystal orientation control film. Instead of this, it is a method in which the surface of the crystal orientation control film is exposed in an area of 1% or more and 30% or less of the area to be formed.

【0012】非磁性金属下地膜上にCo基合金磁性膜を
膜厚10〜100nm形成し,保護膜としてカーボンを
膜厚10〜50nm形成し,さらに吸着性のパーフルオ
ロアルキルポリエーテル等の潤滑剤を膜厚1〜20nm
形成することにより高密度記録が可能な磁気記録媒体が
得られる。また,磁性膜としてCr,Mo,W,Zr,
Ta,Nb,Al,Si,Ptのいずれか少なくとも一
種の元素を添加した合金を用いると媒体の記録再生特性
および耐食性が向上するので好ましい。特に,磁性膜を
構成する磁性体がCoNi,CoCr,CoFe,Co
Mo,CoW,CoPt,CoRe等の合金である場合
に良好な記録再生特性が得られる。また,特に良好な耐
食性と記録再生特性が要求される場合には,磁性膜を構
成する磁性体としてCoNiZr,CoCrPt,Co
CrTa,CoNiCrを主たる成分とする合金が望ま
しい。また,保護膜としてWC,WMoC等の炭化物,
ZrNbN,Si34等の窒化物,SiO2,ZrO2
の酸化物,あるいはB,B4C,MoS2,Rh等を用い
ると耐摺動性,耐食性が向上するので好ましい。ディス
ク基板は,Al−Mg合金,化学強化ガラス,または有
機樹脂を使用することができ,かつこれらの基板の上
に,Ni−P,Ni−W−P,Ni−V等からなる非磁
性メッキ膜やアルマイト処理膜等の表面硬化,研磨処理
膜を形成したものを用いることも可能である。さらに上
記磁気記録媒体とトラック幅が10μm以下の磁気ヘッ
ドを組合せることにより,大容量で高信頼性の磁気記録
装置を提供することができる。
A Co-based alloy magnetic film having a film thickness of 10 to 100 nm is formed on a non-magnetic metal base film, a carbon film having a film thickness of 10 to 50 nm is formed as a protective film, and an adsorbent lubricant such as perfluoroalkyl polyether is formed. The film thickness of 1 to 20 nm
When formed, a magnetic recording medium capable of high density recording can be obtained. Further, as a magnetic film, Cr, Mo, W, Zr,
It is preferable to use an alloy containing at least one element selected from Ta, Nb, Al, Si, and Pt because the recording / reproducing characteristics and corrosion resistance of the medium are improved. In particular, the magnetic substance forming the magnetic film is CoNi, CoCr, CoFe, Co.
Good recording / reproducing characteristics can be obtained when the alloy is Mo, CoW, CoPt, CoRe, or the like. In addition, when particularly good corrosion resistance and recording / reproducing characteristics are required, CoNiZr, CoCrPt, Co are used as the magnetic material forming the magnetic film.
An alloy containing CrTa or CoNiCr as a main component is preferable. In addition, as a protective film, carbides such as WC and WMoC,
It is preferable to use a nitride such as ZrNbN, Si 3 N 4 or the like, an oxide such as SiO 2 , ZrO 2 or B, B 4 C, MoS 2 , Rh or the like because the sliding resistance and the corrosion resistance are improved. The disk substrate can use Al-Mg alloy, chemically strengthened glass, or organic resin, and non-magnetic plating made of Ni-P, Ni-WP, Ni-V, etc. on these substrates. It is also possible to use a film or alumite-treated film having a surface-hardened or polished film formed thereon. Furthermore, by combining the above magnetic recording medium with a magnetic head having a track width of 10 μm or less, it is possible to provide a magnetic recording device having a large capacity and high reliability.

【0013】[0013]

【作用】実験の結果、L/Pの値が1以上20以下とな
るように磁性膜を形成することにより、出力半減記録密
度D50の値が30kFCI以上かつ媒体S/Nの値が3以上
という本発明の目的を達成できることがわかった。
As a result of the experiment, by forming the magnetic film so that the L / P value is 1 or more and 20 or less, the output half recording density D 50 is 30 kFCI or more and the medium S / N value is 3 or more. It was found that the object of the present invention can be achieved.

【0014】この理由は次のように考えられる。従来の
ように、磁性体層として磁化容易軸が基板面と実質的に
平行方向となるように磁性結晶を形成すると高い再生出
力が得られるが,このような構造では記録ビットの境
界,すなわち磁化遷移領域において互いに向きの異なる
磁化が強い反発を起こすため,反磁界成分が大きくな
る。その結果、磁化の大きさや方向の揺らぎが大きくな
り、高密度で記録した時に媒体ノイズが大きくなりD50
およびS/N比が低下する。一方、本発明のように、実
質面内結晶粒と実質垂直結晶粒が混在した磁性膜構造と
すると、記録ビット境界において磁化の方向が実質的に
垂直となり、磁化の反発が実質的垂直方向に逃げる。そ
の結果、磁化の揺らぎが小さくなって,高密度で記録し
た時に媒体ノイズが小さくなり、D50および媒体S/N
比が向上する。
The reason for this is considered as follows. As in the conventional case, when a magnetic crystal is formed as the magnetic layer so that the easy axis of magnetization is substantially parallel to the substrate surface, a high reproduction output can be obtained. In the transition region, the magnetizations with different directions cause strong repulsion, and the demagnetizing field component increases. As a result, the magnitude of the magnetization and the fluctuation in the direction become large, and the medium noise becomes large when recording at a high density and D 50.
And the S / N ratio decreases. On the other hand, when a magnetic film structure in which substantially in-plane crystal grains and substantially perpendicular crystal grains are mixed as in the present invention, the magnetization direction becomes substantially perpendicular at the recording bit boundary, and the repulsion of magnetization becomes substantially perpendicular. escape. As a result, the fluctuation of the magnetization becomes small, medium noise is reduced when recording at high density, D 50 and the medium S / N
The ratio is improved.

【0015】上記L/Sの値を最適化する第一の方法で
は、非磁性金属下地膜の上では磁性膜の結晶が非磁性金
属下地膜の結晶格子上にエピタキシャル成長するため磁
性膜の磁化容易方向は基板面と実質的に平行となり、非
磁性金属下地膜のない部分では磁性膜結晶がc軸が基板
面と実質的に垂直となるように結晶配向成長する性質を
有するため,磁性膜の磁化容易方向は基板面と実質的に
垂直となる。その結果、実質平行結晶粒と実質垂直結晶
粒が混在した磁性膜を形成することができる。さらに,
この方法における構造の非磁性金属下地膜を形成するこ
とにより,連続的な非磁性金属下地膜を用いた場合に比
べて媒体と磁気ヘッドとの接触面積が減少し,磁気ヘッ
ドが接触した際の耐摺動性が向上し,信頼性が増す効果
もある。上記L/Sの値を最適化する第二の方法では、
結晶粒上では磁性膜結晶は非磁性金属下地膜の結晶格子
上にエピタキシャル成長して磁性膜の磁化容易方向は基
板面と実質的に平行となるが,結晶粒界上では磁性膜結
晶がc軸が基板面と実質的に垂直となるように配向成長
する性質を有するため,磁性膜の磁化容易方向は基板面
と実質的に垂直となる。その結果、実質平行結晶粒と実
質垂直結晶粒が混在した磁性膜を形成することができ
る。
In the first method for optimizing the L / S value, the crystal of the magnetic film is epitaxially grown on the crystal lattice of the nonmagnetic metal underlayer on the nonmagnetic metal underlayer, so that the magnetization of the magnetic film is easy. The direction is substantially parallel to the substrate surface, and the magnetic film crystal has the property of growing in a crystal orientation such that the c-axis is substantially perpendicular to the substrate surface in the portion where the non-magnetic metal underlayer is not present. The easy magnetization direction is substantially perpendicular to the substrate surface. As a result, a magnetic film in which substantially parallel crystal grains and substantially vertical crystal grains are mixed can be formed. further,
By forming the non-magnetic metal underlayer having the structure according to this method, the contact area between the medium and the magnetic head is reduced as compared with the case where a continuous non-magnetic metal underlayer is used. It also has the effect of improving sliding resistance and increasing reliability. In the second method of optimizing the value of L / S,
The magnetic film crystal grows epitaxially on the crystal lattice of the non-magnetic metal underlayer on the crystal grain, and the easy magnetization direction of the magnetic film is substantially parallel to the substrate surface, but on the crystal grain boundary, the magnetic film crystal is c-axis. Has a property of being oriented and grown so as to be substantially perpendicular to the substrate surface, so that the easy magnetization direction of the magnetic film is substantially perpendicular to the substrate surface. As a result, a magnetic film in which substantially parallel crystal grains and substantially vertical crystal grains are mixed can be formed.

【0016】上記L/Sの値を最適化する第三の方法で
は、非磁性金属下地膜上では磁性膜結晶が非磁性金属下
地膜の結晶格子上にエピタキシャル成長し磁性膜の磁化
容易方向は基板面と実質的に平行となるが,結晶配向制
御膜上では磁性膜結晶がc軸が基板面と実質的に垂直と
なるように配向成長する性質を有するため,磁性膜の磁
化容易方向は基板面と実質的に垂直となる。その結果、
実質平行結晶粒と実質垂直結晶粒が混在した磁性膜を形
成することができる。さらに,結晶配向制御膜を形成す
ることにより,非磁性金属下地膜のみの場合に比べ媒体
の膜強度が増加するため,磁気ヘッドが接触した際の耐
摺動性が向上し,信頼性が増す効果もある。
In the third method of optimizing the value of L / S, the magnetic film crystal is epitaxially grown on the crystal lattice of the nonmagnetic metal underlayer on the nonmagnetic metal underlayer, and the easy magnetization direction of the magnetic film is the substrate. Although it is substantially parallel to the plane, since the magnetic film crystal has the property of growing on the crystal orientation control film so that the c-axis is substantially perpendicular to the substrate surface, the easy direction of magnetization of the magnetic film is the substrate. Substantially perpendicular to the plane. as a result,
It is possible to form a magnetic film in which substantially parallel crystal grains and substantially vertical crystal grains are mixed. Further, by forming the crystal orientation control film, the film strength of the medium is increased as compared with the case of using only the non-magnetic metal underlayer, so that the sliding resistance when the magnetic head comes into contact is improved and the reliability is increased. There is also an effect.

【0017】非磁性金属下地膜や結晶配向制御膜の構造
による上記効果は磁性膜としてCoCrPtやCoCr
Taに限らず,Coの他にNi,Ti,Zr,Hf,T
a,Pt,Nb,Cr,Mo,W,Si,Geの中から
選ばれる少なくとも一つの元素を含有する合金について
も認められる。
The above-mentioned effects due to the structure of the non-magnetic metal underlayer film and the crystal orientation control film are obtained by using CoCrPt or CoCr as the magnetic film.
Not only Ta but also Ni, Ti, Zr, Hf, T in addition to Co
It is also recognized for alloys containing at least one element selected from a, Pt, Nb, Cr, Mo, W, Si and Ge.

【0018】本発明による媒体では磁化遷移領域におけ
る磁化のゆらぎの大きさが極めて小さいため媒体ノイズ
が小さく,トラック幅が10μm以下の磁気ヘッドで記
録した場合に50kBPI以上の高い記録密度において
S/Nが3以上,さらに,オーバーライト(O/W)特性
が26dB以上の大容量磁気記録装置が得られる。
In the medium according to the present invention, the fluctuation of the magnetization in the magnetization transition region is extremely small, so that the medium noise is small and the S / N at the high recording density of 50 kBPI or more when recording with the magnetic head having the track width of 10 μm or less. Of 3 or more, and a large-capacity magnetic recording device having an overwrite (O / W) characteristic of 26 dB or more can be obtained.

【0019】[0019]

【実施例】以下,実施例を参照して本発明をさらに詳細
に説明する。図1,図2,図3は本発明に係る薄膜型磁
気記録媒体の断面構造を模式的に示したものである。同
図において,11はAl−Mg合金あるいは化学強化ガ
ラス,有機樹脂,Ti,カーボン,セラミックス等から
なる磁気ディスク基板,12および12’は基板11の
両面に形成したNi−P,Ni−W−P等からなる非磁
性メッキ膜である。Al−Mg合金を基板として用いた
場合は通常このようなメッキ膜を備えたものを磁気ディ
スクの基板として使用する。13および13’はメッキ
膜12,12’の上に形成した上記第一の群から選ばれ
た少なくとも一種の元素を主な成分とする下地膜,14
および14’は当該下地膜の上に形成したCoNi,C
oCr,CoRe,CoPt,CoP,CoFe,Co
NiZr,CoCrAl,CoCrTa,CoCrP
t,CoNiCr,CoCrNb,CoNiP,CoN
iPt,CoCrSi等からなる磁性膜,15および1
5’は当該磁性膜の上に形成したカーボン,ボロン,B
4C,SiC,SiO2,Si34,WC,WMoC,W
ZrC等からなる非磁性保護膜,16および16’は上
記第二の群から選ばれた少なくとも一種の元素を主な成
分として下地膜中に偏析した成分,17および17’は
メッキ膜12,12’の上に形成した上記第二の群から
選ばれた少なくとも一種の元素を主な成分とする結晶配
向制御膜をそれぞれ示す。
EXAMPLES The present invention will be described in more detail below with reference to examples. 1, FIG. 2 and FIG. 3 schematically show the cross-sectional structure of the thin film magnetic recording medium according to the present invention. In the figure, 11 is a magnetic disk substrate made of Al-Mg alloy or chemically strengthened glass, organic resin, Ti, carbon, ceramics, etc., 12 and 12 'are Ni-P and Ni-W- formed on both sides of the substrate 11. It is a non-magnetic plating film made of P or the like. When an Al-Mg alloy is used as the substrate, one having such a plating film is usually used as the substrate of the magnetic disk. 13 and 13 'are base films formed on the plated films 12 and 12' and containing at least one element selected from the above-mentioned first group as a main component.
And 14 'are CoNi and C formed on the underlying film.
oCr, CoRe, CoPt, CoP, CoFe, Co
NiZr, CoCrAl, CoCrTa, CoCrP
t, CoNiCr, CoCrNb, CoNiP, CoN
Magnetic films made of iPt, CoCrSi, etc., 15 and 1
5'is carbon, boron, B formed on the magnetic film
4 C, SiC, SiO 2 , Si 3 N 4 , WC, WMoC, W
A non-magnetic protective film made of ZrC or the like, 16 and 16 'are components segregated in the base film with at least one element selected from the second group as a main component, and 17 and 17' are plated films 12 and 12 And a crystal orientation control film mainly composed of at least one element selected from the above-mentioned second group, which is formed on the above.

【0020】実施例1 図1により薄膜型記録媒体の一実施例を説明する。外径
130mm,内径40mm,厚さ1.9mmの,Al−
4Mg(原子記号の前に付した数字は当該素材の含有量
を示す。この場合は重量%)からなるディスク基板11
の両面にNi−12P(重量%)からなる膜厚13μm
のメッキ膜12,12’を形成した。このNi−Pメッ
キ膜の表面を実質的円周方向(ヘッド走行方向)に研磨
し,表面を平坦化すると同時に,磁気ヘッド粘着抑止の
目的で中心線平均面粗さ5〜10nmの微細な凹凸を形
成した(このような表面加工を以後テクスチャ加工と略
記する)。次に、ディスク基板をマグネトロンスパッタ
リング装置に装填して,200℃の温度に保持し,5m
Torrのアルゴン圧の条件のもとでCr下地膜13,
13’を種々の膜厚で形成した(試料No.1〜8,比
較例:基板露出なし)。この下地膜の上にCo−12C
r−3Ta(原子%)からなる金属磁性膜14,14’
を膜厚40nm形成した。その後,磁性膜上に膜厚20
nmのカーボン保護膜15,15’を形成した。最後に
当該保護膜上に吸着性のパーフルオロアルキルポリエー
テル等の潤滑膜(図示せず)を形成し,薄膜型記録媒体
を作製した。
Example 1 An example of a thin film type recording medium will be described with reference to FIG. Outer diameter 130mm, inner diameter 40mm, thickness 1.9mm, Al-
Disk substrate 11 made of 4Mg (the number before the atomic symbol indicates the content of the material, in this case, wt%)
On both sides of the film made of Ni-12P (% by weight) 13 μm
Plating films 12 and 12 ′ were formed. The surface of the Ni-P plated film is polished substantially in the circumferential direction (head traveling direction) to flatten the surface, and at the same time, fine irregularities having a center line average surface roughness of 5 to 10 nm are provided for the purpose of suppressing adhesion of the magnetic head. Was formed (such a surface processing is hereinafter abbreviated as texturing). Next, the disk substrate was loaded into a magnetron sputtering device and kept at a temperature of 200 ° C. for 5 m.
Under the Ar pressure of Torr, the Cr underlayer 13,
13 'was formed with various film thicknesses (Sample Nos. 1 to 8, Comparative Example: No substrate exposed). Co-12C on top of this base film
Metal magnetic films 14, 14 'made of r-3Ta (atomic%)
To a thickness of 40 nm. After that, the film thickness of 20 on the magnetic film
nm carbon protective films 15 and 15 'were formed. Finally, a lubricating film (not shown) such as an adsorbent perfluoroalkylpolyether was formed on the protective film to manufacture a thin film type recording medium.

【0021】磁気記録媒体作製にあたり,断面や表面の
形状を走査電子顕微鏡(以後、SEMと略記する)、透
過電子顕微鏡(以後、TEMと略記する)或いは走査ト
ンネル顕微鏡(以後、STMと略記する)を用いて調
べ,下地膜の面積に対して基板が露出した面積の比率S
を求めた。また、磁性膜の結晶配向性をX線回折,電子
線回折法により調べ,実質平行結晶粒と実質垂直結晶粒
の含有率L,Pをを求めた。また,VSMにより媒体試
料の面内方向の保磁力を測定した。さらに,媒体の記録
再生特性を相対速度12m/s,浮上スペーシング0.
08μmにおいて,実効ギャップ長0.4μm,トラッ
ク幅10μmの薄膜磁気ヘッドを用いて,出力半減記録
密度(D50),媒体S/Nを求めた。これらの結果を表
1に示す。
In producing the magnetic recording medium, the shape of the cross section and the surface is a scanning electron microscope (hereinafter abbreviated as SEM), a transmission electron microscope (hereinafter abbreviated as TEM), or a scanning tunneling microscope (hereinafter abbreviated as STM). , The ratio of the area where the substrate is exposed to the area of the base film S
I asked. Further, the crystal orientation of the magnetic film was examined by X-ray diffraction and electron beam diffraction methods, and the contents L and P of substantially parallel crystal grains and substantially vertical crystal grains were obtained. In addition, the coercive force in the in-plane direction of the medium sample was measured by VSM. Furthermore, the recording / reproducing characteristics of the medium were set to a relative speed of 12 m / s and a floating spacing of 0.
At 08 μm, an output half recording density (D 50 ) and medium S / N were obtained using a thin film magnetic head having an effective gap length of 0.4 μm and a track width of 10 μm. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示されるように,Cr下地膜の膜厚
により基板露出面積比率Sが変化し,これに伴い保磁
力,出力半減記録密度D50,媒体S/Nの値が変化し
た。特に,Sの値が1%以上30%以下の時に、本発明
の目的である30kFCI以上の出力半減記録密度および3
以上の媒体S/Nを有する媒体が得られた。その時のL
/Pの値は1以上20以下の範囲に入っていた。また,
Cr下地膜厚が0.5nm以上10nm未満の時に,C
r下地膜の結晶粒径は1nm以上50nm未満の大きさ
であり、それぞれが互いに離れた構造となった。また、
下地膜中の主たる結晶構造はbcc型であることがX線
回折により確認された。また,下地膜としてCrの代わ
りにMo,W,V,Nb,Taのいずれかを主な成分と
する下地膜を用いた場合も同様の効果が認められた。
As shown in Table 1, the exposed area ratio S of the substrate changed depending on the film thickness of the Cr underlayer, and the coercive force, the output half recording density D 50 and the medium S / N also changed accordingly. In particular, when the S value is 1% or more and 30% or less, the output half recording density of 30 kFCI or more, which is the object of the present invention, and 3
A medium having the above medium S / N was obtained. L at that time
The value of / P was in the range of 1 or more and 20 or less. Also,
When the Cr underlayer thickness is 0.5 nm or more and less than 10 nm, C
The crystal grain size of the r base film was 1 nm or more and less than 50 nm, and the structures were separated from each other. Also,
It was confirmed by X-ray diffraction that the main crystal structure in the base film was the bcc type. Further, the same effect was observed when an underlayer film containing any of Mo, W, V, Nb, and Ta as a main component was used instead of Cr as the underlayer film.

【0024】実施例2 図2により薄膜型記録媒体の他の実施例を説明する。実
施例1と同様のディスク基板11,12,12’をマグ
ネトロンスパッタリング装置に装填して,200℃の温
度に保持し,2mTorrのアルゴン圧の条件のもとで
Crと,Ti,Zr,Sc,Y,Hf,Rh,Os,Z
n,Cd,La,Ce,Pr,Nd,Ir,Pt,A
u,Pd,Ag,Cu,Tl,Si,Ge,Sn,P
b,Pからなる第二群の何れか一つの元素を含む下地膜
13,13’を膜厚100nm形成した(試料No.9
〜33,比較例:無添加)。その際、第二群中の元素の
添加量,基板加熱時間,成膜速度を制御することによ
り,下地膜中のCrを主に含む結晶粒がbcc結晶構造
を有し,さらに上記第二群中の元素が上記結晶粒中およ
び結晶粒の間に偏析した構造16,16’となるよう下
地膜を形成した。次に、下地膜上にCo−13Cr−6
Pt(原子%)からなる膜厚30nmの金属磁性膜1
4,その上に膜厚20nmのカーボン保護膜15,1
5’を形成した。最後に実施例1と同様の潤滑膜(図示
せず)を形成し,薄膜型記録媒体を作製した。また,磁
性膜の結晶配向性を実施例1と同様の方法により調べ,
実質平行結晶粒と実質垂直結晶粒の含有率L,Pを求め
た。また,VSMにより媒体試料の面内方向の保磁力を
測定した。さらに媒体の記録再生特性を相対速度12m
/s,浮上スペーシング0.1μmにおいて,CoTa
Zr合金を記録用磁極材とし,MR再生素子を有する録
再分離型薄膜磁気ヘッドを用いて,出力半減記録密度,
媒体S/Nを求めた。これらの測定結果を表2および表
3に示す。
Embodiment 2 Another embodiment of the thin film type recording medium will be described with reference to FIG. The same disk substrates 11, 12 and 12 'as in Example 1 were loaded in a magnetron sputtering apparatus, kept at a temperature of 200 ° C., and under the condition of an argon pressure of 2 mTorr, Cr, Ti, Zr, Sc, Y, Hf, Rh, Os, Z
n, Cd, La, Ce, Pr, Nd, Ir, Pt, A
u, Pd, Ag, Cu, Tl, Si, Ge, Sn, P
Underlayer films 13 and 13 'containing any one element of the second group consisting of b and P were formed to a film thickness of 100 nm (Sample No. 9).
~ 33, comparative example: no addition). At that time, by controlling the addition amount of the element in the second group, the substrate heating time, and the film formation rate, the crystal grains mainly containing Cr in the base film have a bcc crystal structure. The base film was formed so that the elements therein had the structures 16 and 16 'segregated in the crystal grains and between the crystal grains. Next, Co-13Cr-6 was formed on the base film.
Metal magnetic film 1 made of Pt (atomic%) and having a thickness of 30 nm
4, a carbon protective film 15, 1 having a film thickness of 20 nm thereon
Formed 5 '. Finally, a lubricating film (not shown) similar to that of Example 1 was formed to manufacture a thin film type recording medium. Further, the crystal orientation of the magnetic film was examined by the same method as in Example 1,
The contents L and P of the substantially parallel crystal grains and the substantially vertical crystal grains were determined. In addition, the coercive force in the in-plane direction of the medium sample was measured by VSM. Furthermore, the recording / reproducing characteristics of the medium are set to a relative speed of 12 m.
/ S, levitating spacing 0.1 μm, CoTa
A Zr alloy is used as a recording magnetic pole material, and a recording / reproducing thin film magnetic head having an MR reproducing element is used.
The medium S / N was determined. The measurement results are shown in Tables 2 and 3.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】表2および表3に示されるように,下地膜
中に上記第二群中の元素を添加することにより、本発明
の目的である30kFCI以上の出力半減記録密度および3
以上の媒体S/Nを有する媒体が得られた。その時のL
/Pの値は1以上20以下の範囲に入っていた。ここ
で,下地膜中の主たる結晶構造はbcc型であることが
X線回折により確認され,さらに,結晶粒の中および結
晶粒の間に上記第二郡中の元素が偏析していることが蛍
光X線分析法,オージェ電子分光法あるいは光電子分光
法により確認された。また,下地膜としてCrの代わり
にMo,W,V,Nb,Taのいずれかを主な成分とす
る下地膜を用いた場合も同様の効果が認められた。
As shown in Tables 2 and 3, by adding the elements in the second group to the underlayer, the output half recording density of 30 kFCI or more, which is the object of the present invention, and 3
A medium having the above medium S / N was obtained. L at that time
The value of / P was in the range of 1 or more and 20 or less. Here, it was confirmed by X-ray diffraction that the main crystal structure in the base film was the bcc type, and further, the fact that the elements in the second group were segregated in the crystal grains and between the crystal grains showed fluorescence. It was confirmed by X-ray analysis, Auger electron spectroscopy or photoelectron spectroscopy. Further, the same effect was observed when an underlayer film containing any of Mo, W, V, Nb, and Ta as a main component was used instead of Cr as the underlayer film.

【0028】実施例3 図3により薄膜型記録媒体の他の実施例を説明する。実
施例1と同様のディスク基板11,12,12’をマグ
ネトロンスパッタリング装置に装填して,200℃の温
度に保持し,2mTorrのアルゴン圧の条件のもとで
Ti,Zr,Sc,Y,Hf,Rh,Os,Zn,C
d,La,Ce,Pr,Nd,Ir,Pt,Au,P
d,Ag,Cu,Tl,Si,Ge,Sn,Pb,Pか
らなる第二群中の元素からなる結晶配向制御膜17,1
7’を膜厚100nm成膜した(試料No.34〜5
8,比較例:結晶配向制御膜なし)。この上に実施例1
と同様の方法によりCr下地膜13,13’を膜厚5n
m形成し,Cr下地膜面積の1〜30%の結晶配向制御
膜がCr下地膜により覆われない構造とした。次に、下
地膜上にCo−12Cr−4Ta(原子%)からなる膜
厚30nmの金属磁性膜14,14’,その上に膜厚2
0nmのカーボン保護膜15,15’を形成した。最後
に実施例1と同様の潤滑膜(図示せず)を形成し,薄膜
型記録媒体を作製した。また,上記方法により形成した
媒体の作成直後およびコンタクト・スタート・アンド・
ストップ(以後CSSと略記する)5万回後のディスク
記録面当たりの記録再生エラービット数を測定し,CS
S前後でのエラー数の増加を測定した。また,磁性膜の
結晶配向性を実施例1と同様の方法により調べ,実質平
行結晶粒と実質垂直結晶粒の含有率L,Pを求めた。ま
た,VSMにより媒体試料の面内方向の保磁力を測定し
た。さらに,媒体の記録再生特性を実施例2と同様の磁
気ヘッド,条件にて測定し,D50,媒体S/Nの値を求
めた。これらの測定結果を表4および表5に示す。
Embodiment 3 Another embodiment of the thin film type recording medium will be described with reference to FIG. The same disk substrates 11, 12 and 12 'as in Example 1 were loaded in a magnetron sputtering apparatus, kept at a temperature of 200 ° C., and Ti, Zr, Sc, Y, Hf under the condition of an argon pressure of 2 mTorr. , Rh, Os, Zn, C
d, La, Ce, Pr, Nd, Ir, Pt, Au, P
Crystal orientation control films 17 and 1 made of elements in the second group consisting of d, Ag, Cu, Tl, Si, Ge, Sn, Pb and P.
7 ′ was formed into a film having a thickness of 100 nm (Sample Nos. 34 to 5).
8, Comparative Example: No crystal orientation control film). Example 1 on this
Cr underlayer films 13 and 13 ′ with a film thickness of 5 n
The crystal orientation control film having a thickness of 1 to 30% of the area of the Cr underlayer is not covered with the Cr underlayer. Next, a metal magnetic film 14, 14 'of Co-12Cr-4Ta (atomic%) with a film thickness of 30 nm is formed on the underlayer film, and a film thickness of 2 is formed thereon.
Carbon protective films 15 and 15 'having a thickness of 0 nm were formed. Finally, a lubricating film (not shown) similar to that in Example 1 was formed to manufacture a thin film type recording medium. Immediately after creating the medium formed by the above method, contact start and
The number of read / write error bits per disk recording surface after 50,000 stops (hereinafter abbreviated as CSS) was measured, and
The increase in the number of errors before and after S was measured. Further, the crystal orientation of the magnetic film was examined by the same method as in Example 1, and the contents L and P of substantially parallel crystal grains and substantially vertical crystal grains were obtained. In addition, the coercive force in the in-plane direction of the medium sample was measured by VSM. Further, the recording / reproducing characteristics of the medium were measured under the same magnetic head and conditions as in Example 2, and the values of D 50 and medium S / N were obtained. The results of these measurements are shown in Tables 4 and 5.

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】表4および表5に示されるように,Cr下
地膜面積の1〜30%の結晶配向制御膜がCr下地膜に
より覆われない膜構造を形成することにより、本発明の
目的である30kFCI以上の出力半減記録密度および3以
上の媒体S/Nを有する媒体が得られた。その時のL/
Pの値は1以上20以下の範囲に入っていた。また,上
記結晶配向制御膜を形成することによりCSS前後での
エラー数の増加が減少し,媒体の耐摺動信頼性が向上し
た。さらに、下地膜としてCrの代わりにMo,W,
V,Nb,Taのいずれかを主な成分とする合金からな
る下地膜を用いた場合も同様の効果が認められた。
As shown in Tables 4 and 5, it is an object of the present invention to form a film structure in which the crystal orientation control film of 1 to 30% of the Cr underlayer area is not covered with the Cr underlayer. A medium having an output half recording density of 30 kFCI or more and a medium S / N of 3 or more was obtained. L / at that time
The value of P was in the range of 1 or more and 20 or less. Further, by forming the crystal orientation control film, the increase in the number of errors before and after CSS was reduced, and the sliding resistance of the medium was improved. Further, as a base film, instead of Cr, Mo, W,
Similar effects were observed when an underlayer film made of an alloy containing any of V, Nb, and Ta as a main component was used.

【0032】実施例4 図4により磁気記録装置の実施例を説明する。これまで
の実施例で示した磁気記録媒体21を4枚使用し,Co
TaZr合金を記録用磁極材とし,再生部にMR素子を
有するMR型複合薄膜磁気ヘッド23を7個組み合わ
せ,その他磁気記録媒体駆動部22、磁気ヘッド駆動部
24、記録再生信号処理系25を有する磁気記録装置を
試作した。この磁気記録装置を使用し,スペーシング
0.08μmにおいて記録再生特性を測定した結果,従
来品に比較し面記録密度を2倍以上に高めることがで
き,従来装置に比べ小形の磁気記録装置を提供できた。
また,本実施例ではCoTaZr合金を磁極材とするM
R型複合薄膜磁気ヘッドを用いた場合について説明した
が,NiFe,CoFe合金等を記録用磁極材とする録
再分離型薄膜磁気ヘッドを用いた場合や,CoTaZ
r,FeAlSi合金等をギャップ部に設けたメタル・
イン・ギャップ型(MIG)録再分離複合磁気ヘッドや従
来の誘導型薄膜ヘッド,MIGヘッドを用いた場合でも
同様の効果が得られることを確認した。
Embodiment 4 An embodiment of the magnetic recording apparatus will be described with reference to FIG. Using four magnetic recording media 21 shown in the above embodiments, Co
A TaZr alloy is used as a recording magnetic pole material, seven MR type composite thin film magnetic heads 23 each having an MR element in a reproducing section are combined, and a magnetic recording medium driving section 22, a magnetic head driving section 24 and a recording / reproducing signal processing system 25 are provided. A magnetic recording device was prototyped. Using this magnetic recording device, we measured the recording / reproducing characteristics at a spacing of 0.08 μm, and as a result, we could increase the areal recording density more than double that of the conventional product, and a smaller magnetic recording device than the conventional device. I was able to provide it.
Further, in the present embodiment, M using CoTaZr alloy as the magnetic pole material is used.
The case of using the R-type composite thin film magnetic head has been described. However, the case of using a recording / reproducing separation type thin film magnetic head using a recording magnetic pole material such as NiFe or CoFe alloy or CoTaZ
Metal with r, FeAlSi alloy, etc. provided in the gap
It was confirmed that the same effect can be obtained even when an in-gap (MIG) recording / reproducing composite magnetic head, a conventional inductive thin film head, or a MIG head is used.

【0033】[0033]

【発明の効果】本発明によれば、高密度記録が可能な磁
気記録媒体および,これを用いた小形で大容量の磁気記
録装置を提供できる。
According to the present invention, it is possible to provide a magnetic recording medium capable of high-density recording and a small-sized and large-capacity magnetic recording apparatus using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の薄膜型磁気記録媒体の断面
構造図である。
FIG. 1 is a sectional structural view of a thin film magnetic recording medium of Example 1 of the present invention.

【図2】本発明の実施例2の薄膜型磁気記録媒体の断面
構造図である。
FIG. 2 is a sectional structural view of a thin film magnetic recording medium of Example 2 of the present invention.

【図3】本発明の実施例3の薄膜型磁気記録媒体の断面
構造図である。
FIG. 3 is a sectional structural view of a thin film magnetic recording medium of Example 3 of the present invention.

【図4】本発明の実施例4の磁気記録装置の断面構造図
である。
FIG. 4 is a cross-sectional structure diagram of a magnetic recording device of Example 4 of the invention.

【符号の説明】[Explanation of symbols]

11…磁気ディスク基板,12,12’…非磁性メッキ
膜,13,13’…金属下地膜,14,14’…金属磁
性膜,15,15’…非磁性保護膜,16,16’…下
地膜中偏析領域,17,17’…結晶配向制御膜,21
…磁気記録媒体,22…磁気記録媒体駆動部,23…磁
気ヘッド,24…磁気ヘッド駆動部,25…記録再生信
号処理系。
11 ... Magnetic disk substrate, 12, 12 '... Non-magnetic plating film, 13, 13' ... Metal base film, 14, 14 '... Metal magnetic film, 15, 15' ... Non-magnetic protective film, 16, 16 '... Bottom Segregation region in the geological film, 17, 17 '... Crystal orientation control film, 21
... magnetic recording medium, 22 ... magnetic recording medium drive section, 23 ... magnetic head, 24 ... magnetic head drive section, 25 ... recording / reproducing signal processing system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 城石 芳博 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 大野 徒之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 屋久 四男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 加藤 幸男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihiro Shiroishi 1-280 Higashi-Kengokubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi Ltd. (72) Inventor Toshiyuki Ono 1-280 Higashi-Kengokubo, Kokubunji-shi, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Yasuo Yaku 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Institute (72) Inventor Yukio Kato 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Co., Ltd. In-house

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板と、該非磁性基板上に形成され
た下地膜と、該下地膜上に形成された磁性膜を有する磁
気記録媒体において、上記下地膜はCr,Mo,W,
V,Nb,Taからなる第一の群から選ばれた少なくと
も一種の元素を主たる成分として含み、上記磁性膜はC
o基合金から成り、かつ上記磁性膜は上記基板面と実質
的に平行方向に磁化容易軸を有する第1の結晶粒と上記
基板面と実質的に垂直方向に磁化容易軸を有する第2の
結晶粒で実質的に構成され、該第1および第2の結晶粒
の上記磁性膜中の含有率をそれぞれL,Pと定義したと
きL/Pの値が1以上20以下であることを特徴とする
磁気記録媒体。
1. A magnetic recording medium having a non-magnetic substrate, a base film formed on the non-magnetic substrate, and a magnetic film formed on the base film, wherein the base film is Cr, Mo, W,
The magnetic film contains at least one element selected from the first group consisting of V, Nb, and Ta as a main component.
a first crystal grain having an easy axis of magnetization in a direction substantially parallel to the substrate surface, and a second magnetic film having an easy axis of magnetization in a direction substantially perpendicular to the substrate surface. It is substantially composed of crystal grains, and when the contents of the first and second crystal grains in the magnetic film are defined as L and P, respectively, the value of L / P is 1 or more and 20 or less. And a magnetic recording medium.
【請求項2】上記下地膜形成部における上記基板表面の
一部は上記下地膜で覆われずに露出しており、該露出面
積の比率は上記下地膜面積の1%以上30%以下である
請求項1記載の磁気記録媒体。
2. A part of the surface of the substrate in the base film forming portion is exposed without being covered with the base film, and a ratio of the exposed area is 1% or more and 30% or less of the base film area. The magnetic recording medium according to claim 1.
【請求項3】上記下地膜の結晶粒径は1nm以上50n
m未満であり、かつ該結晶粒は互いに離れている請求項
2記載の磁気記録媒体。
3. The crystal grain size of the underlying film is 1 nm or more and 50 n or less.
The magnetic recording medium according to claim 2, wherein the magnetic grains are less than m and the crystal grains are separated from each other.
【請求項4】上記下地膜の結晶粒は体心立方格子型の結
晶構造を有する請求項2記載の磁気記録媒体。
4. The magnetic recording medium according to claim 2, wherein the crystal grains of the underlayer film have a body-centered cubic lattice type crystal structure.
【請求項5】上記下地膜の膜厚は0.5nm以上50n
m未満である請求項2に記載の磁気記録媒体。
5. The thickness of the base film is 0.5 nm or more and 50 n
The magnetic recording medium according to claim 2, which is less than m.
【請求項6】上記下地膜は上記第一の群から選ばれた少
なくとも一種の元素を主たる成分として含み、さらにT
i,Zr,Sc,Y,Hf,Rh,Os,Zn,Cd,
La,Ce,Pr,Nd,Ir,Pt,Au,Pd,A
g,Cu,Tl,Si,Ge,Sn,Pb,Pから成る
第二の群から選ばれた少なくとも一種の元素を1原子%
以上30原子%以下の範囲で含み、上記下地膜中の主た
る結晶粒が体心立方格子型結晶構造を有し,かつ上記第
二の群から選ばれた少なくとも一種の元素が結晶粒中お
よび/または結晶粒界に偏析している請求項1記載の磁
気記録媒体。
6. The undercoat film contains at least one element selected from the first group as a main component, and further comprises T
i, Zr, Sc, Y, Hf, Rh, Os, Zn, Cd,
La, Ce, Pr, Nd, Ir, Pt, Au, Pd, A
1 atom% of at least one element selected from the second group consisting of g, Cu, Tl, Si, Ge, Sn, Pb and P
In the range of 30 atomic% or less, the main crystal grains in the underlying film have a body-centered cubic lattice type crystal structure, and at least one element selected from the second group is The magnetic recording medium according to claim 1, wherein the magnetic recording medium is segregated at grain boundaries.
【請求項7】上記磁気記録媒体はさらに上記基板と上記
下地膜の間に形成されたTi,Zr,Sc,Y,Hf,
Rh,Os,Zn,Cd,La,Ce,Pr,Nd,I
r,Pt,Au,Pd,Ag,Cu,Tl,Si,G
e,Sn,Pb,Pから成る第二の群から選ばれた少な
くとも一種の元素を主たる成分とする結晶配向制御膜を
有しており、上記結晶配向制御膜表面の一部は上記下地
膜で覆われずに露出しており、該露出面積の比率は上記
下地膜面積の1%以上30%以下である請求項1に記載
の磁気記録媒体。
7. The magnetic recording medium further comprises Ti, Zr, Sc, Y, Hf, formed between the substrate and the base film.
Rh, Os, Zn, Cd, La, Ce, Pr, Nd, I
r, Pt, Au, Pd, Ag, Cu, Tl, Si, G
It has a crystal orientation control film containing at least one element selected from the second group consisting of e, Sn, Pb and P as a main component, and a part of the surface of the crystal orientation control film is the underlayer film. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is exposed without being covered, and the ratio of the exposed area is 1% or more and 30% or less of the area of the base film.
【請求項8】上記下地膜の膜厚は0.5nm以上50n
m未満である請求項7記載の磁気記録媒体。
8. The thickness of the base film is 0.5 nm or more and 50 n
The magnetic recording medium according to claim 7, which is less than m.
【請求項9】磁気記録媒体と,磁気記録媒体回転駆動部
と,磁気ヘッドと,磁気ヘッド駆動部と,記録再生信号
処理系とを有する磁気ディスク装置において、上記磁気
記録媒体は請求項1乃至8のいずれか一項に記載の磁気
記録媒体から成ることを特徴とする磁気記録装置。
9. A magnetic disk device comprising a magnetic recording medium, a magnetic recording medium rotation drive section, a magnetic head, a magnetic head drive section, and a recording / reproducing signal processing system, wherein the magnetic recording medium is any one of claims 1 to 3. 9. A magnetic recording device comprising the magnetic recording medium according to claim 8.
JP6305792A 1992-01-22 1992-03-19 Magnetic recording medium and magnetic recorder Pending JPH05266456A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6305792A JPH05266456A (en) 1992-03-19 1992-03-19 Magnetic recording medium and magnetic recorder
US08/007,969 US5605733A (en) 1992-01-22 1993-01-22 Magnetic recording medium, method for its production, and system for its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6305792A JPH05266456A (en) 1992-03-19 1992-03-19 Magnetic recording medium and magnetic recorder

Publications (1)

Publication Number Publication Date
JPH05266456A true JPH05266456A (en) 1993-10-15

Family

ID=13218334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6305792A Pending JPH05266456A (en) 1992-01-22 1992-03-19 Magnetic recording medium and magnetic recorder

Country Status (1)

Country Link
JP (1) JPH05266456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244831A (en) * 1994-03-04 1995-09-19 Akita Pref Gov Manufacture of magnetic recording medium
US7050253B2 (en) 1997-12-09 2006-05-23 Hitachi Global Storage Technologies Japan, Ltd. Magnetic recording media and magnetic storage apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244831A (en) * 1994-03-04 1995-09-19 Akita Pref Gov Manufacture of magnetic recording medium
US7050253B2 (en) 1997-12-09 2006-05-23 Hitachi Global Storage Technologies Japan, Ltd. Magnetic recording media and magnetic storage apparatus using the same

Similar Documents

Publication Publication Date Title
US5605733A (en) Magnetic recording medium, method for its production, and system for its use
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US8771849B2 (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
US20090073599A1 (en) Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus using the same
JP3755449B2 (en) Perpendicular magnetic recording medium
US20070082414A1 (en) Perpendicular magnetic recording medium, method for production of the same, and magnetic recording apparatus
JP6205871B2 (en) Magnetic recording medium
EP0531035B1 (en) Magnetic recording medium
US6524730B1 (en) NiFe-containing soft magnetic layer design for multilayer media
JP4534711B2 (en) Perpendicular magnetic recording medium
US7521136B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
US7498093B2 (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP2991672B2 (en) Magnetic recording media
JP3359706B2 (en) Magnetic recording media
US20050153168A1 (en) Co-based perpendicular magnetic recording media
US6168861B1 (en) High coercivity, high signal-to-noise ratio dual magnetic layer media
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP3564707B2 (en) Magnetic recording media
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JPH05266456A (en) Magnetic recording medium and magnetic recorder
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2003067909A (en) Perpendicular magnetic recording medium
JP2002324313A (en) Manufacturing method of magnetic recording medium
JPH05197942A (en) Magnetic recording medium and magnetic recorder
JP3029306B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic disk drive using the same