JPH067610B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH067610B2
JPH067610B2 JP59040381A JP4038184A JPH067610B2 JP H067610 B2 JPH067610 B2 JP H067610B2 JP 59040381 A JP59040381 A JP 59040381A JP 4038184 A JP4038184 A JP 4038184A JP H067610 B2 JPH067610 B2 JP H067610B2
Authority
JP
Japan
Prior art keywords
laser device
semiconductor laser
absorption region
pulse
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59040381A
Other languages
Japanese (ja)
Other versions
JPS60186079A (en
Inventor
正 斉藤
喜久 山本
修 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59040381A priority Critical patent/JPH067610B2/en
Publication of JPS60186079A publication Critical patent/JPS60186079A/en
Publication of JPH067610B2 publication Critical patent/JPH067610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は可飽和吸収領域を有する短光パルス発生半導体
レーザ装置に関するものである。
TECHNICAL FIELD The present invention relates to a short optical pulse generating semiconductor laser device having a saturable absorption region.

〔発明の背景〕 小型、軽量な超短光パルス発生装置として半導体レーザ
装置が注目されているが、モード同期を用いて超短光パ
ルスを発生させるには、可飽和吸収体を制御性よく形成
することが重要である。E.P.Ippenらは半導体レー
ザ装置をエージングすることにより結晶欠陥を形成し、
これを可飽和吸収体として利用した(E.P.Ippen,
D.J.Eilenberger,and R.W.Dixon,Appl.
Phys.Lett.,vol.37,No.3(1980),pp.267〜
(269)。また彼らは第1図に示すように一端に反射防
止膜101を施した上記半導体レーザ装置102に、レンズ10
3、鏡104を用いた外部共振器を構成して短光パルスを発
生させた。しかしこのような半導体レーザ装置は次第に
劣化が進み、遂には発振しなくなってしまうという欠点
があった。また、J.P.van der Zielらは可飽和吸
収体をプロトン注入によって形成し、第2図に示すよう
に、レンズ204と鏡205および半透鏡206を用いたリング
共振器により短光パルスを発生させた(J.P.van de
r Ziel,R.A.Logan,andR.M.Mikulyak,A
ppl.Phys.Lett.,vol.39,No.11(1981),pp.
867〜869)。第2図において201はプロトン注入層202を
形成した半導体レーザ装置で、203は反射防止膜を示し
ている。上記の方法によると半導体レーザ装置201が発
振しなくなることはないが、プロトン注入層202の可飽
和吸収体の応答速度が早くできないという欠点が残る。
したがってこの場合もIppenらの場合と同様に外部共振
器を構成する必要がある。なお半導体レーザ装置の端面
は反射防止膜を形成しても反射率が0になることはな
く、このため外部共振器を用いると、端面の残留反射に
より帯域が制限され半導体の広いバンド幅を有効に利用
できず、波形が変調がかかってしまうだけでなく、半導
体レーザ装置の小形、軽量という特徴を生かしきれない
という欠点があった。
BACKGROUND OF THE INVENTION A semiconductor laser device has been attracting attention as a compact and lightweight ultrashort optical pulse generator. To generate an ultrashort optical pulse using mode locking, a saturable absorber is formed with good controllability. It is important to. E. P. Ippen et al. Form crystal defects by aging the semiconductor laser device,
This was used as a saturable absorber (EP Ippen,
D. J. Eilenberger, and R.M. W. Dixon, Appl.
Phys. Lett. , Vol. 37, No. 3 (1980), pp. 267 ~
(269). In addition, as shown in FIG. 1, they attach the lens 10 to the semiconductor laser device 102 having an antireflection film 101 at one end.
3. An external resonator using the mirror 104 was constructed to generate short optical pulses. However, such a semiconductor laser device has a drawback that it gradually deteriorates and eventually stops oscillating. Also, J. P. van der Ziel et al. formed a saturable absorber by proton injection and generated a short optical pulse by a ring resonator using a lens 204, a mirror 205 and a semitransparent mirror 206 as shown in FIG. 2 (J. P. van de
r Ziel, R.A. A. Logan, and R.M. M. Mikulyak, A
ppl. Phys. Lett. , Vol. 39, No. 11 (1981), pp.
867-869). In FIG. 2, 201 is a semiconductor laser device in which a proton injection layer 202 is formed, and 203 is an antireflection film. According to the above method, the semiconductor laser device 201 does not stop oscillating, but there is a drawback that the response speed of the saturable absorber of the proton injection layer 202 cannot be increased.
Therefore, also in this case, it is necessary to configure the external resonator as in the case of Ippen et al. Even if an antireflection film is formed on the end face of the semiconductor laser device, the reflectance does not become 0. Therefore, if an external resonator is used, the band is limited by the residual reflection on the end face, and a wide semiconductor bandwidth is effective. However, it has a drawback that the semiconductor laser device cannot be fully utilized because of its small size and light weight.

〔発明の目的〕[Object of the Invention]

本発明は時間幅が短かく波形が整った短光パルスを発生
する半導体レーザ装置を得ることを目的とする。
It is an object of the present invention to obtain a semiconductor laser device which generates a short optical pulse having a short time width and a regular waveform.

〔発明の概要〕[Outline of Invention]

上記の目的を達成するために本発明による半導体レーザ
装置は、順方向にバイアスしたダブルヘテロ接合よりな
る増幅領域と、逆方向にバイアスしたダブルヘテロ接合
よりなる吸収領域とを、同一平面上で共振器長を形成す
る方向に配列し、上記吸収領域を、該吸収領域の中心と
少なくとも一方の共振器端面との距離が共振器長の整数
分の1になるように配置した半導体レーザ装置であっ
て、上記吸収領域での光パルスの衝突モード同期による
短光パルスを発生させるようにしたものである。
In order to achieve the above object, a semiconductor laser device according to the present invention resonates an amplification region composed of a forward-biased double heterojunction and an absorption region composed of a reverse-biased double heterojunction on the same plane. A semiconductor laser device in which the absorption regions are arranged so that the distance between the center of the absorption region and at least one of the cavity end faces is an integer fraction of the cavity length. Then, a short light pulse is generated by the collision mode synchronization of the light pulse in the absorption region.

〔発明の実施例〕Example of Invention

つぎに本発明の実施例を図面とともに説明する。第3図
は本発明による半導体レーザ装置の第1の実施例におけ
る光の出射方向に平行な断面図、第4図はファブリ・ペ
ロ共振器を用いた衝突パルスモード同期レーザ装置の模
式図で、(a)、(b)、(c)は可飽和吸収体と一方の共振
器端との距離が共振器長のそれぞれ1/2、1/3、1/4であ
る場合を示す図、第5図は本発明による半導体レーザ装
置の第2の実施例における光の出射方向に平行な断面
図、第6図は上記第3の実施例における光の出射方向に
平行な断面図である。第3図に示す第1の実施例は、n
形GaAs基板301上にn形AlGaAsクラッド層302、Ga
As活性層303、p形AlGaAsクラッド層304、p形GaA
sキャップ層305を順次エピタキシャル成長させて積層し
たのち、その表面にSiO2膜をマスクとして、所定の位
置に所定の幅で、上記p形GaAsキャップ層305の表面
からGaAs活性層303を貫通してn形AlGaAsクラッド
層302の一部に達する深さのプロトン注入層306を形成
し、上記SiO2膜を除去したp形GaAsキャップ層305
の各表面とn形GaAs基板301の裏面に、それぞれ電極3
07、308および309を蒸着し、両端面をへき開して半導体
レーザ装置を形成している。図における矢印はそれぞれ
光の出射方向を示している。上記半導体レーザ装置はプ
ロトン注入層306により増幅領域301と吸収領域311とに
分けられ、それぞれの領域は電気的に分離されているた
め上記各領域310および311はそれぞれ独立にバイアスす
ることができる。増幅領域310で増幅された光パルスが
吸収領域311における吸収媒質を通過するとき、パワー
レベルがあるしきい値を越えると吸収が急激に減少して
上記吸収媒質は透明化される。これは光励起された電子
が伝導体を埋めつくし、遷移の行く先がなくなるためで
ある。吸収領域311へのバイアス電流I2を0にした通常
の非励起状態では、この電子は10-7秒程度で充満帯で遷
移して緩和する。光パルスの立下がりは電子緩和時間に
より制限されるためこれ以上短かくすることはできな
い。しかし吸収領域311に逆バイアス電界をかけて、数
kV/cm程度の電界によって発生した少数キャリアを掃
出せば、10-13秒程度の時間で吸収が回復し光パルスの
立下がりが急峻になる。パルス幅は吸収媒質の透明化の
速度と電子の緩和速度によって決まるが、これらは吸収
領域311のバイアス電圧V32を変えることによって制御
できる。また吸収の回復が早くなるので、従来のように
パルス間隔を長くするために外部共振器を構成する必要
がなく、半導体の広いバンド幅を有効に利用することが
できる。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a sectional view parallel to the light emission direction in the first embodiment of the semiconductor laser device according to the present invention, and FIG. 4 is a schematic view of a collision pulse mode-locked laser device using a Fabry-Perot resonator. (a), (b), (c) are diagrams showing cases where the distance between the saturable absorber and one resonator end is 1/2, 1/3, and 1/4 of the resonator length, respectively. FIG. 5 is a sectional view parallel to the light emitting direction in the second embodiment of the semiconductor laser device according to the present invention, and FIG. 6 is a sectional view parallel to the light emitting direction in the third embodiment. The first embodiment shown in FIG.
N-type AlGaAs cladding layer 302, Ga on the GaAs substrate 301
As active layer 303, p-type AlGaAs clad layer 304, p-type GaAs
After the s-cap layer 305 is sequentially epitaxially grown and laminated, the surface of the p-type GaAs cap layer 305 is penetrated through the GaAs active layer 303 from the surface of the p-type GaAs cap layer 305 with a predetermined width using a SiO 2 film as a mask. A p-type GaAs cap layer 305 is formed by forming a proton injection layer 306 having a depth reaching a part of the n-type AlGaAs cladding layer 302 and removing the SiO 2 film.
On each surface of the n-type GaAs substrate 301 and the back surface of the n-type GaAs substrate 301.
07, 308 and 309 are vapor-deposited and both end faces are cleaved to form a semiconductor laser device. The arrows in the figure indicate the emission directions of light. The semiconductor laser device is divided into the amplification region 301 and the absorption region 311 by the proton injection layer 306, and since the respective regions are electrically separated, the respective regions 310 and 311 can be independently biased. When the optical pulse amplified in the amplification region 310 passes through the absorption medium in the absorption region 311, when the power level exceeds a certain threshold, the absorption sharply decreases and the absorption medium becomes transparent. This is because the photoexcited electrons fill the conductor and there is no transition destination. In a normal non-excited state in which the bias current I 2 to the absorption region 311 is set to 0, this electron transits in the full band and relaxes in about 10 −7 seconds. The fall of the light pulse is limited by the electron relaxation time and cannot be made shorter than this. However, if a reverse bias electric field is applied to the absorption region 311 to sweep out minority carriers generated by an electric field of about several kV / cm, absorption is recovered in about 10 -13 seconds and the fall of the optical pulse becomes sharp. . The pulse width is determined by the speed of transparency of the absorbing medium and the relaxation rate of electrons, and these can be controlled by changing the bias voltage V 32 of the absorbing region 311. Further, since the absorption is quickly recovered, it is not necessary to form an external resonator to increase the pulse interval as in the conventional case, and the wide bandwidth of the semiconductor can be effectively used.

つぎに第3図に示す半導体レーザ装置の構造定数を計算
によって求める。この半導体レーザ装置の発振条件は利
得と損失との関係から である。ここにlg、αgはそれぞれ増幅領域310の長さと
利得係数、ll、αlはそれぞれ吸収領域311の長さと吸収
係数、Γは活性層への光閉じ込め係数、Rは端面反射率
である。一方、パルス幅tPで求められる。ここにWGは増幅媒質の利得幅、Iは素
子中の光強度、ISAは可飽和吸収媒質の飽和光強度で、
吸収断面積σA、光子が持つエネルギhν、吸収体の回
復時間τにより と表わされる。このときのパルス周回時間tRは素子中
の光パルスのピークパワーを、可飽和吸収媒質を飽和さ
せるためのピークパワーPの10%、P10%と仮定する
となる。ここにPavは平均出力パワー、d、wはそれぞ
れ活性層の厚さと幅とである。ここにPavは平均出力パ
ワー、d、wは それぞれ活性層の厚さと幅とである。共振器長L(=l
g+ll)はtRを用いて と表わされる。Vgは媒質中の光速度である。上記(1)、
(2)、(3)、(4)の各式を連立して方程式を解けばlgl
が求められる。実際に波長0.85μmのGaAs系半導体レ
ーザ装置の値として、αg=190cm-1、αl=610cm-1、Γ
=0.2、R=0.3、WG=4.43×1015、hν=2.34×1014
(W/cm2)、σA=4×10-15(cm2)、τ=0.2(p
s)、d=0.05(μm)、w=2(μm)、Pav=20(m
V)、Vg=8.33×109(cm/S)を用いると、lg=464
μm、ll=46μm、またこのときのパルス幅はtP=0.18
psec.となり、従来報告されている半導体レーザ装置か
ら発生された短光パルスに比較して最も時間幅が短い短
光パルスを発生することが期待できる。
Next, the structural constants of the semiconductor laser device shown in FIG. 3 are calculated. The oscillation condition of this semiconductor laser device is based on the relationship between gain and loss. Is. Where l g and α g are the length and gain coefficient of the amplification region 310, l l and α l are the length and absorption coefficient of the absorption region 311, respectively, Γ is the optical confinement coefficient to the active layer, and R is the end face reflectance. is there. On the other hand, the pulse width t P is Required by. Where W G is the gain width of the amplifying medium, I is the light intensity in the element, and I SA is the saturated light intensity of the saturable absorbing medium,
The absorption cross section σ A , the energy h ν of the photon, and the recovery time τ of the absorber Is represented. The pulse circulation time t R at this time is assumed that the peak power of the optical pulse in the element is 10% and P 10% of the peak power P for saturating the saturable absorbing medium. Becomes Here, P av is the average output power, and d and w are the thickness and width of the active layer, respectively. Here, P av is the average output power, and d and w are the thickness and width of the active layer, respectively. Resonator length L (= 1
g + l l ) is calculated using t R Is represented. V g is the speed of light in the medium. Above (1),
If the equations (2), (3), and (4) are combined and the equations are solved, then l g l l
Is required. Actually, as values of a GaAs semiconductor laser device having a wavelength of 0.85 μm, α g = 190 cm −1 , α l = 610 cm −1 , Γ
= 0.2, R = 0.3, W G = 4.43 × 10 15 , hν = 2.34 × 10 14
(W / cm 2 ), σ A = 4 × 10 -15 (cm 2 ), τ = 0.2 (p
s), d = 0.05 (μm), w = 2 (μm), P av = 20 (m
V), V g = 8.33 × 10 9 Using (cm / S), l g = 464
μm, l l = 46 μm, and the pulse width at this time is t P = 0.18
It becomes psec., and it can be expected that a short optical pulse having the shortest time width is generated as compared with the short optical pulse generated by a semiconductor laser device which has been conventionally reported.

第4図はファブリ・ペロ共振器を用いた衝突パルスモー
ド同期レーザ装置の模式図を示す。一般に鏡401間の距
離で示される共振器長Lのm分の1のところに可飽和吸
収媒質402を置いたときに、m個の光パルスが共振器内
に存在している場合を考えると、必ず2つの光パルス40
3が同時に可飽和吸収媒質402を通過する。404は利得媒
質である。第4図の(a)、(b)、(c)はそれぞれmが
2、3、4である場合の模式図を示す。衝突パルスモー
ド同期では、通常のモード同期の場内の2倍のパワーレ
ベルとなるため、この透明化は通常よりも急激に起きる
ことになる。光パルス403のパルス幅の可飽和吸収媒質4
02が透明化されている時間に対応するため、衝突パルス
モード同期では、通常の方法よりも短かいパルスを発生
させることができる。
FIG. 4 shows a schematic view of a collision pulse mode-locked laser device using a Fabry-Perot resonator. Considering a case where m optical pulses are present in the resonator when the saturable absorbing medium 402 is placed at 1 / m of the resonator length L generally indicated by the distance between the mirrors 401. , Surely two light pulses 40
3 simultaneously passes through the saturable absorbing medium 402. 404 is a gain medium. FIGS. 4 (a), (b), and (c) are schematic views when m is 2, 3, and 4, respectively. In the collision pulse mode locking, the power level is twice as high as that in the field of the normal mode locking, and thus the clearing occurs more rapidly than usual. Saturable absorption medium with pulse width of optical pulse 403 4
Since 02 corresponds to the time of being transparent, the collision pulse mode synchronization can generate a pulse shorter than the normal method.

第5図に示す第2の実施例は、可飽和吸収体である吸収
領域が共振器の中央に位置した場合(上記第4図(a)
が相当)におけるInP系半導体レーザ装置の例を示して
いる。n形InP基板501上にGaInAsP活性層502、p形
InPクラッド層503、p形GaInAsPキャップ層504を順
次エピタキシャル成長させて積層したのち、その表面に
SiO2膜をマスクとして、表面中央に所定の間隔を保ち
所定の幅を有する2個のプロトン注入層505を、p形Ga
InAsPキャップ層504の表面からそれぞれGaInAsP
活性層502を貫通してn形InP基板501の一部に達する
深さに設け、上記SiO2膜を除去したp形GaInAsP
キャップ層504のそれぞれの表面と、n形InP基板501
の裏面とに電極506、507および508を蒸着により設け、
両端面をへき開して半導体レーザ装置を形成している。
図における矢印はそれぞれの光の出射方向を示してい
る。上記半導体レーザ装置は各プロトン注入層により中
央部の吸収領域509とその両側の増幅領域510および511
に分けられ、それぞれの領域はプロトン注入層505によ
って電気的に分離されているため、上記各領域509、51
0、511はそれぞれ独立にバイアスすることができる。順
方向にバイアスされた増幅領域510および511で増幅され
た光パルスは、吸収領域509で吸収されるが、光パルス
のパワーが大きいときには前記したように吸収領域509
における吸収媒質を透明化する。特に本第2の実施例で
は吸収領域509が共振器の中央に位置し衝突パルスモー
ド同期となるため、左右両側からの光パルスが同時に吸
収領域509に入り、光パルスの立上がりが急峻となり、
このためさらに時間幅が短かい短光パルスが得られるこ
とになる。
In the second embodiment shown in FIG. 5, the absorption region, which is a saturable absorber, is located in the center of the resonator (see FIG. 4 (a) above).
Is an example) of an InP-based semiconductor laser device. GaInAsP active layer 502, p-type on n-type InP substrate 501
An InP clad layer 503 and a p-type GaInAsP cap layer 504 are sequentially epitaxially grown and laminated, and then two proton-implanted layers 505 having a predetermined width and a predetermined width at the center of the surface using a SiO 2 film as a mask. Is the p-type Ga
GaInAsP from the surface of the InAsP cap layer 504, respectively.
The p-type GaInAsP is formed by penetrating the active layer 502 to a depth reaching a part of the n-type InP substrate 501 and removing the SiO 2 film.
Each surface of the cap layer 504 and the n-type InP substrate 501
Electrodes 506, 507 and 508 are provided on the back surface of and by vapor deposition,
Both end faces are cleaved to form a semiconductor laser device.
The arrows in the figure indicate the emission directions of the respective lights. In the above semiconductor laser device, the absorption region 509 at the central portion and the amplification regions 510 and 511 on both sides thereof are formed by the respective proton injection layers.
And the respective regions are electrically separated by the proton injection layer 505.
0 and 511 can be independently biased. The light pulse amplified by the forward biased amplification regions 510 and 511 is absorbed by the absorption region 509, but when the power of the light pulse is large, as described above, the absorption region 509.
To make the absorbing medium transparent. Particularly in the second embodiment, since the absorption region 509 is located in the center of the resonator and is in collision pulse mode synchronization, light pulses from both left and right sides simultaneously enter the absorption region 509, and the rising edge of the light pulse becomes sharp.
Therefore, a short light pulse having a shorter time width can be obtained.

上記各実施例はいずれもプロトン注入層を設けて増幅領
域およびこれと逆方向にバイアスされた吸収領域を設け
ているが、本発明は上記したようなプロトン注入層の形
成に限るものでなく、順方向にバイアスしたダブルヘテ
ロ接合の増幅領域と逆方向にバイアスしたダブルヘテロ
接合の吸収領域とが、同一平面上で共振器長を形成する
方向に配列されていればよく、その一例として第3の実
施例を第6図に示す。第6図に示した半導体レーザ装置
は、p形GaAs基板601上に、p形AlGaAsクラッド層6
02、GaAs活性層603、n形AlGaAsクラッド層604、n
形GaAsキャップ層605を順次積層し、例えばZnなどの
注入によるp形拡散層606を設け、増幅領域607と吸収領
域608とを形成したもので、前記第1の実施例と同様の
効果を有する。
In each of the above embodiments, the proton injection layer is provided and the amplification region and the absorption region biased in the opposite direction are provided, but the present invention is not limited to the above-described formation of the proton injection layer. It is only necessary that the forward biased double heterojunction amplification region and the reverse biased double heterojunction absorption region are arranged in the direction in which the resonator length is formed on the same plane. An example of is shown in FIG. The semiconductor laser device shown in FIG. 6 has a p-type AlGaAs cladding layer 6 on a p-type GaAs substrate 601.
02, GaAs active layer 603, n-type AlGaAs cladding layer 604, n
A GaAs cap layer 605 is sequentially laminated, a p-type diffusion layer 606 is formed by implantation of Zn or the like, and an amplification region 607 and an absorption region 608 are formed. The same effects as those of the first embodiment are obtained. .

〔発明の効果〕〔The invention's effect〕

上記のように本発明による半導体レーザ装置は、順方向
にバイアスしたダブルヘテロ接合よりなる増幅領域と、
逆方向にバイアスしたダブルヘテロ接合よりなる吸収領
域とを、同一平面上で共振器長を形成する方向に配列
し、上記吸収領域を、該吸収領域の中心と少なくとも一
方の共振器端面との距離が共振器長の整数分の1になる
ように配置した半導体レーザ装置であって、上記吸収領
域での光パルスの衝突モード同期による短光パルスを発
生させることにより、吸収領域に逆バイアス電界をかけ
て光パルスの立下がりを急峻にしパルス幅を制御するこ
とができ、また吸収の回復が速いから、従来のように外
部共振器を必要とせず、半導体の広いバンド幅を有効に
利用したパルス幅が短かい短光パルスを得ることができ
る。したがって本発明による半導体レーザ装置を使用す
ることによって、光通信や光情報処理の超高速化、大容
量化が可能であり、また物性探究における極微小時間の
緩和現象等を直接測定するのに役立てることができる。
As described above, the semiconductor laser device according to the present invention has an amplification region composed of a double heterojunction biased in the forward direction,
An absorption region composed of a double heterojunction biased in the opposite direction is arranged in a direction forming a resonator length on the same plane, and the absorption region is separated from the center of the absorption region and at least one resonator end face. Is a semiconductor laser device arranged such that is equal to an integer fraction of the cavity length, and a reverse optical field is generated in the absorption region by generating a short optical pulse by collision mode locking of the optical pulse in the absorption region. The pulse width can be controlled by making the falling edge of the optical pulse steep, and the absorption recovery is fast, so there is no need for an external resonator as in the past, and a pulse that effectively uses the wide bandwidth of a semiconductor is used. A short light pulse having a short width can be obtained. Therefore, by using the semiconductor laser device according to the present invention, it is possible to realize ultra-high-speed and large-capacity optical communication and optical information processing, and it is useful for directly measuring the relaxation phenomenon of extremely minute time in the search for physical properties. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は結晶欠陥を形成した半導体レーザ装置による短
光パルス発生時の外部共振器の構成を示す図、第2図は
プロトン注入層を可飽和吸収体として用いたときのリン
グ共振器の構成を示す図、第3図は本発明による半導体
レーザ装置の第1の実施例における光の出射方向に平行
な断面図、第4図はファブリ・ペロ共振器を用いた衝突
パルスモード同期レーザ装置の模式図で、(a)、(b)、
(c)は可飽和吸収体と一方の共振器端との距離が共振器
長のそれぞれ1/2、1/3、1/4である場合を示す図、第5
図は本発明による半導体レーザ装置の第2の実施例にお
ける光の出射方向に平行な断面図、第6図は上記第3の
実施例における光の出射方向に平行な断面図である。 310、510、511、607…増幅領域 311、509、608…吸収領域
FIG. 1 is a diagram showing a structure of an external resonator when a short optical pulse is generated by a semiconductor laser device having a crystal defect, and FIG. 2 is a structure of a ring resonator when a proton injection layer is used as a saturable absorber. FIG. 3 is a sectional view parallel to the light emission direction in the first embodiment of the semiconductor laser device according to the present invention, and FIG. 4 is a collision pulse mode-locked laser device using a Fabry-Perot resonator. In the schematic diagram, (a), (b),
FIG. 5C shows a case where the distance between the saturable absorber and one resonator end is 1/2, 1/3, and 1/4 of the resonator length, respectively.
FIG. 6 is a sectional view parallel to the light emitting direction in the second embodiment of the semiconductor laser device according to the present invention, and FIG. 6 is a sectional view parallel to the light emitting direction in the third embodiment. 310, 510, 511, 607 ... Amplification area 311, 509, 608 ... Absorption area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】順方向にバイアスしたダブルヘテロ接合よ
りなる増幅領域と、逆方向にバイアスしたダブルヘテロ
接合よりなる吸収領域とを、同一平面上で共振器長を形
成する方向に配列し、上記吸収領域を、該吸収領域の中
心と少なくとも一方の共振器端面との距離が共振器長の
整数分の1になるように配置した半導体レーザ装置であ
って、上記吸収領域での光パルスの衝突モード同期によ
る短光パルスを発生させることを特徴とする半導体レー
ザ装置。
1. An amplification region composed of a double-heterojunction biased in the forward direction and an absorption region composed of a double-heterojunction biased in the reverse direction are arranged in the direction of forming a cavity length on the same plane. What is claimed is: 1. A semiconductor laser device in which an absorption region is arranged such that a distance between the center of the absorption region and at least one of the resonator end faces is an integer fraction of the resonator length, wherein an optical pulse collides in the absorption region. A semiconductor laser device characterized by generating a short light pulse by mode synchronization.
JP59040381A 1984-03-05 1984-03-05 Semiconductor laser device Expired - Lifetime JPH067610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040381A JPH067610B2 (en) 1984-03-05 1984-03-05 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040381A JPH067610B2 (en) 1984-03-05 1984-03-05 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS60186079A JPS60186079A (en) 1985-09-21
JPH067610B2 true JPH067610B2 (en) 1994-01-26

Family

ID=12579073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040381A Expired - Lifetime JPH067610B2 (en) 1984-03-05 1984-03-05 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH067610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291987A (en) * 1986-06-12 1987-12-18 Mitsubishi Electric Corp Optical integrated device
US5548607A (en) * 1994-06-08 1996-08-20 Lucent Technologies, Inc. Article comprising an integrated laser/modulator combination

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145385A (en) * 1981-03-03 1982-09-08 Nippon Telegr & Teleph Corp <Ntt> Method for generating light pulse train
JPS57159080A (en) * 1981-03-26 1982-10-01 Nec Corp Semiconductor laser element

Also Published As

Publication number Publication date
JPS60186079A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
US6594297B1 (en) Laser apparatus in which surface-emitting semiconductor is excited with semiconduct laser element and high-order oscillation modes are suppressed
US6356693B1 (en) Semiconductor optical pulse compression waveguide
JPH06196681A (en) Light-receiving-and-emitting integrated element
JP5023419B2 (en) Semiconductor quantum dot device
Murray et al. Regenerative compression of laser pulses
JPH04296067A (en) Super luminescent diode
Uchiyama et al. GaInAsP/InP surface emitting injection laser with a ring electrode
JPH067610B2 (en) Semiconductor laser device
EP0812041B1 (en) Optical short pulse reshaping device
JPS6083389A (en) Surface luminescent laser oscillator
JPH0595152A (en) Semiconductor short optical pulse generator and generating method for short optical pulse
JPH08288586A (en) 2mum band semiconductor laser
JP2758472B2 (en) Light modulator
JPH0521902A (en) Semiconductor laser device
JPS58202581A (en) Controller for laser diode beam
Oe et al. GaInAsP/InP planar stripe lasers prepared by using sputtered SiO2 film as a Zn‐diffusion mask
JP2661307B2 (en) Semiconductor laser
JP2518255B2 (en) Multiple quantum well type optical bistable semiconductor laser
JP2941285B2 (en) Semiconductor laser device
JPH04234188A (en) Optoelectronic element and laser and their uses in optical detector manufacture
Schorr et al. Development of self-pulsations due to self-annealing of proton bombarded regions during aging in proton bombarded stripe-geometry AlGaAs DH lasers grown by molecular beam epitaxy
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JPH08162709A (en) Semiconductor pulse laser device, and its oscillating method
JP2740165B2 (en) Semiconductor laser
JP2702964B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term