JPH0675090B2 - Cable insulation defect detection method and device - Google Patents

Cable insulation defect detection method and device

Info

Publication number
JPH0675090B2
JPH0675090B2 JP63227745A JP22774588A JPH0675090B2 JP H0675090 B2 JPH0675090 B2 JP H0675090B2 JP 63227745 A JP63227745 A JP 63227745A JP 22774588 A JP22774588 A JP 22774588A JP H0675090 B2 JPH0675090 B2 JP H0675090B2
Authority
JP
Japan
Prior art keywords
voltage
insulation
shield
conductor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63227745A
Other languages
Japanese (ja)
Other versions
JPH0275974A (en
Inventor
忠晴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63227745A priority Critical patent/JPH0675090B2/en
Publication of JPH0275974A publication Critical patent/JPH0275974A/en
Publication of JPH0675090B2 publication Critical patent/JPH0675090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は水トリー発生に起因する絶縁不良を生じたケー
ブルのように、直流低測定電圧下では極めて高抵抗を示
し、その不良点を探知することが不可能であるかまたは
標定誤差が大である場合に使用されるケーブル絶縁不良
点探知方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention shows extremely high resistance under a low DC measurement voltage, such as a cable having an insulation failure due to the generation of a water tree. The present invention relates to a cable insulation defect detecting method and device used when it is impossible to detect or the orientation error is large.

(ロ)従来技術 高抵抗を示すケーブルの絶縁不良点の探知に当たっては
一般に倒立型ブリッジが高感度であるために用いられ
る。しかし、抵抗値が10MΩ以上になると零位法である
倒立ブリッジでは感度不足になり、偏位法である電位差
比較法が有力となる。
(B) Conventional technology In detecting an insulation defect of a cable showing high resistance, an inverted bridge is generally used because of its high sensitivity. However, when the resistance value exceeds 10 MΩ, the sensitivity becomes insufficient in the inverted bridge, which is the null method, and the potential difference comparison method, which is the displacement method, becomes effective.

第2図は電位差比較法を示す回路構成図を示し、図中1
は絶縁不良ケーブル(3心ケーブルで例示する)の遮蔽
で、この中に3相の高圧導体2R、2S、2Tが含まれてい
る。この導体の内、2R、2Sは健全導体であり、2Tは測定
側端からケーブル全長(全長を100%とする)のX%の
位置に絶縁不良点3を有する絶縁不良導体である。遮蔽
1を往線、健全導体を帰線とてループを構成するため
に、健全導体2Sの非測定側端S100と遮蔽1の非測定側端
1100とが相互に接続され、測定端側では直列接続された
直流低電圧電源5と開閉器6とが遮蔽1の測定側端10
健全導体2Sの測定側端S0との間に接続されている。健全
導体2Rは非測定側端1100の電位を測定側端に導くために
用いられるものであって、健全導体2Rの非測定側端R100
は遮蔽1の非測定側端1100に接続され、測定側端R0は測
定端切換スイッチ7の一方の切換端である端子L100に接
続されている。切換スイッチ7の他方の切換端である端
子L0は遮蔽1の測定側端10に接続されて、10の電位を導
いている。切換スイッチ7の固定端子と端子Eとの間に
は微少電圧検出手段8と迷走電流打消装置9が接続され
ている。第2図では迷走電流打消装置9は直列型(電圧
打消方式)で示したため、微少電圧検出手段8からみた
外部抵抗が極めて高くなり、該手段8の時間応答性が悪
くなりがちであるのでこれを防ぐため分流抵抗10が並列
に接続されている。なお、迷走電流打消装置9として並
列型(電流打消方式)を使用する場合は微少電流検出手
段8に並列に設けられ、この場合は分流抵抗10は不要で
ある。前記端子Eは一般に接地されること無く絶縁不良
導体2Tの測定側端T0に接続される。
FIG. 2 is a circuit configuration diagram showing the potential difference comparison method, in which 1
Is a shield of a poorly insulated cable (exemplified by a three-core cable), which contains three-phase high-voltage conductors 2R, 2S, and 2T. Of these conductors, 2R and 2S are sound conductors, and 2T is a poorly insulated conductor having a poor insulation point 3 at a position X% of the entire cable length (100% is the total length) from the measurement side end. The non-measurement side end S 100 of the sound conductor 2S and the non-measurement side end of the shield 1 are used to form a loop with the shield 1 as the forward line and the sound conductor as the return line.
1 100 and are connected to each other, the measurement end side between the measuring side end S 0 of the series-connected DC low voltage power supply 5 and the switch 6 and a healthy conductor 2S a measurement end 1 0 shielding 1 It is connected. The sound conductor 2R is used to guide the potential of the non-measurement side end 1 100 to the measurement side end, and the non-measurement side end R 100 of the sound conductor 2R is used.
Is connected to the non-measuring end 1 100 of the shield 1, the measurement end R 0 is connected to the terminal L 100 is one of the switch end of the measuring end changeover switch 7. Terminal L 0 is the other switch end of the changeover switch 7 is connected to the measuring end 1 0 shielding 1, which led to the 1 0 potential. Between the fixed terminal of the changeover switch 7 and the terminal E, a minute voltage detecting means 8 and a stray current canceling device 9 are connected. In FIG. 2, since the stray current canceling device 9 is shown as a series type (voltage canceling system), the external resistance seen from the minute voltage detecting means 8 becomes extremely high, and the time response of the means 8 tends to deteriorate. A shunt resistor 10 is connected in parallel to prevent this. When the parallel type (current canceling method) is used as the stray current canceling device 9, the stray current canceling device 9 is provided in parallel with the minute current detecting means 8. In this case, the shunt resistance 10 is not necessary. The terminal E is generally connected to the measurement side end T 0 of the poorly insulated conductor 2T without being grounded.

端子Eをフロートする理由は遮蔽1には有限の、時とし
ては非常に低い値である遮蔽絶縁抵抗4が必ずといって
よい位大地との間に存在し、測定回路全体の接地点は自
動的に遮蔽絶縁抵抗4の存在位置によって決まるからで
ある。遮蔽絶縁抵抗4の値が無限大か絶縁不良点3の値
より2桁以上高ければ端子Eを接地できるものの、通常
はこの条件は成立せず、無理に端子Eを接地すれば好ま
しくない迷走電流が遮蔽1に流れて誤差発生の原因とな
る。
The reason why the terminal E is floated is that there is a finite but sometimes very low value of the shield insulation resistance 4 in the shield 1 and the ground to the extent that it can be said that the ground point of the entire measurement circuit is automatic. This is because it is determined by the position of the shield insulation resistance 4. Although the terminal E can be grounded if the value of the shielding insulation resistance 4 is infinity or is higher than the value of the insulation failure point 3 by two digits or more, this condition is not normally established, and if the terminal E is forcibly grounded, it is not preferable stray current. Flows into the shield 1 and causes an error.

第2図の回路の絶縁不良点測定方法は次ぎの通りに行
う。開閉器6を開放の状態のまま迷走電流打消装置を稼
動させて微少電圧検出手段8の指示を零とする。この
時、測定端切換スイッチ7は切換位置L0でも位置L100
も良い。次いで、開閉器6を投入し、直流低電圧電源5
から、遮蔽1及び健全導体2Sからなるループ回路に電流
を流す。安定した指示が得られるようになった状態で切
換位置L0において微少電圧検出手段9の読み|E0|を
得、切換位置L100に切換えた時の読み|E100|を得る。
この測定結果から、絶縁不良点3の存在位置、即ち測定
側端から全長のX%、非測定側端から全長の(100−
X)%は として標定できる。
The insulation failure point measuring method of the circuit of FIG. 2 is performed as follows. The stray current canceling device is operated while the switch 6 is open, and the instruction of the minute voltage detecting means 8 is set to zero. At this time, the measuring end changeover switch 7 may be at the changeover position L 0 or the position L 100 . Next, the switch 6 is turned on, and the DC low voltage power source 5
To flow a current through the loop circuit composed of the shield 1 and the sound conductor 2S. The reading | E 0 | of the minute voltage detecting means 9 is obtained at the switching position L 0 in the state where a stable instruction can be obtained, and the reading | E 100 | when switching to the switching position L 100 is obtained.
From this measurement result, the position where the insulation failure point 3 exists, that is, X% of the total length from the measurement side end, and (100-
X)% is Can be oriented as

(ハ)この発明が解決しようとする課題 上述した従来のケーブル絶縁不良点探知方法および装置
では次の問題があった。
(C) Problems to be Solved by the Present Invention The above-described conventional method and apparatus for detecting cable insulation defects have the following problems.

測定対象は水トリー発生に起因する絶縁不良ケーブルで
あって、まだ電気破壊に至らず運転継続中である場合が
多い。そこで、絶縁不良点の標定作業が終われば運転再
開をしなければならないので、標定を容易にするため高
電圧をかけて抵抗値を下げる(いわゆる、焼成作業)こ
とは絶対に許されない。しかし、水トリー起因の絶縁不
良抵抗値は、金属抵抗や炭素被膜抵抗と異なり、極めて
電圧依存性がある。即ち、測定電圧を上昇させると抵抗
値が下がり、測定電圧を下げると抵抗値が上昇する。例
えば、1000Vメガで測定して10MΩ程度の値が得られたケ
ーブルでも10V程度の電圧で測定すると数百MΩに上昇
する。
The measurement target is a poorly insulated cable caused by the generation of a water tree, and in many cases it is still in operation without electrical breakdown. Therefore, since the operation must be restarted after the operation of locating the insulation defect point is completed, it is absolutely not allowed to apply a high voltage to lower the resistance value (so-called firing operation) in order to facilitate the orientation. However, the insulation failure resistance value due to the water tree is extremely voltage-dependent, unlike the metal resistance and the carbon film resistance. That is, when the measurement voltage is increased, the resistance value decreases, and when the measurement voltage is decreased, the resistance value increases. For example, even a cable that has a value of about 10 MΩ measured at 1000 V meggers will increase to several hundred MΩ when measured at a voltage of about 10 V.

第3図は直流測定電圧に対する絶縁不良抵抗値の変化の
実例を示している。この例では1000Vメガでは14MΩが測
定された。一般に標定作業で扱い得る直流電圧電源の電
圧値は50V以下である。第3図において100Vでは既に75M
Ω、10Vでは400MΩ以上に上昇している。ここで、測定
電源電圧6V以下で最高測定感度100MΩと性能標榜してい
ても実際には測定不能となる。かりに、測定電源として
100Vを用いたとしても(実際には電圧に比例してループ
通電電流が莫大となり、実用性からは外れる)、次の第
2の問題が生じる。微少電圧検出手段8により測定され
る電圧は遮蔽1の電圧降下、即ち長さXおよび100−X
に比例する電圧であるが、Xが50%の場合を除き微少電
圧検出手段の読みは長さに比例しなくなり、誤差を生じ
る。第3図の例において、例えばXが20%とすると、20
Vの電圧での抵抗値は245MΩ、80Vの電圧での抵抗値は87
MΩであるから、 と標定され、真値の20%から小さくなる方向に大きくず
れることになる。
FIG. 3 shows an example of the change in insulation failure resistance value with respect to the DC measurement voltage. In this example, 14 MΩ was measured at 1000 V megger. Generally, the voltage value of the DC voltage power supply that can be handled in the orientation work is 50V or less. In Fig. 3, at 100V, it is already 75M.
At Ω and 10V, it has risen to over 400MΩ. Here, even if the measured power supply voltage is 6 V or less and the maximum measurement sensitivity is 100 MΩ, the actual measurement is impossible. As a measurement power source
Even if 100V is used (actually, the loop current becomes enormous in proportion to the voltage and becomes out of practicality), the following second problem occurs. The voltage measured by the minute voltage detecting means 8 is the voltage drop of the shield 1, that is, the length X and 100-X.
However, the reading of the minute voltage detecting means is not proportional to the length except when X is 50%, resulting in an error. In the example of FIG. 3, assuming that X is 20%, 20
Resistance value at V voltage is 245 MΩ, resistance value at 80 V is 87
Since it is MΩ, It will be greatly deviated from 20% of the true value in the direction of decreasing.

上述のように、実用的な直流測定電圧では絶縁抵抗値が
高くなりすぎて標定が実施できない問題に加え、たとえ
標定できたとしても標定誤差が大きくなる問題があっ
た。
As described above, in addition to the problem that the insulation resistance value becomes too high at the practical DC measurement voltage and the orientation cannot be performed, there is a problem that the orientation error becomes large even if the orientation can be performed.

この発明の目的は、直流低測定電圧下では極めて高抵抗
値を示し、その不良点を探知することが感度不足のため
不可能な場合、及び標定誤差が大である場合に使用して
も正確な測定をすることができるケーブル絶縁不良点探
知方法及び装置を提供することである。
The object of the present invention is to show an extremely high resistance value under a low DC measurement voltage, which is accurate even when it is used when it is impossible to detect the defect point due to insufficient sensitivity and when the orientation error is large. It is an object of the present invention to provide a method and apparatus for detecting a cable insulation defect point that can perform various measurements.

(ニ)課題を解決するための手段 この発明のケーブル絶縁不良点探知方法は、絶縁不良導
体と遮蔽との間に、その二次側出力電圧は低圧の範囲に
とどまり、かつ一次側巻線に対する巻線抵抗が10000MΩ
以上の値を保有する交流低電圧変圧器の出力を、その静
電容量が前記絶縁不良導体と遮蔽間の静電容量より一桁
以上大きい値を有するコンデンサを介して印加すること
により、絶縁不良点の抵抗を低位に保持した状態でフィ
ルタ回路を保有する微少電圧検出手段により絶縁不良点
を標定する。
(D) Means for Solving the Problem In the cable insulation defect point detection method of the present invention, the secondary output voltage between the insulation defective conductor and the shield remains in the low voltage range, and the primary winding Winding resistance is 10000 MΩ
By applying the output of the AC low-voltage transformer having the above value through a capacitor whose electrostatic capacitance is one digit or more larger than the electrostatic capacitance between the insulation faulty conductor and the shield, insulation faulty The insulation failure point is located by the minute voltage detecting means having the filter circuit while the resistance of the point is kept low.

また、この発明のケーブル絶縁不良点探知装置は、絶縁
不良導体と遮蔽との間に、その二次側出力電圧を印加す
る交流低電圧変圧器と、その際に出力側に直列に挿入さ
れるコンデンサと、前記遮蔽の測定側端および非測定側
端と絶縁不良導体との間に電位差を測定する、フィルタ
回路を付加した微少電圧検出手段とを有し、前記交流低
電圧変圧器の二次側出力電圧は低圧の範囲にとどまり、
かつ一次側巻線に対する絶縁抵抗が10000MΩ以上の値を
保有するものであり、前記コンデンサはその静電容量が
前記絶縁不良導体と前記遮蔽間の静電容量より一桁以上
大きい値を有するものであり、前記フィルタ回路は前記
交流低電圧変圧器の二次側出力電圧の印加により前記微
少電圧検出手段の機能が阻害されることのない減衰特性
を保有するものである。
Further, the cable insulation defect detecting device of the present invention is an AC low voltage transformer for applying a secondary side output voltage between the insulation defective conductor and the shield, and is inserted in series on the output side at that time. A secondary voltage of the AC low-voltage transformer, comprising: a capacitor; and a minute voltage detecting means having a filter circuit for measuring a potential difference between the measurement-side end and the non-measurement-side end of the shield and a poorly insulated conductor. Side output voltage stays in the low voltage range,
In addition, the insulation resistance of the primary winding has a value of 10,000 MΩ or more, and the capacitance of the capacitor has a value larger than the capacitance between the insulation faulty conductor and the shield by one digit or more. Therefore, the filter circuit has an attenuation characteristic in which the function of the minute voltage detecting means is not hindered by the application of the secondary side output voltage of the AC low voltage transformer.

(ホ)実施例 第1図はこの発明の一実施例の測定回路の構成図を示し
ている。第2図に示した測定端切換スイッチ7の切換端
子L0と端子Eとの間に第1図においては交流変圧器13の
二次側出力をコンデンサ14を介して接続される。交流変
圧器13の一次側は通常の商用周波数低圧電源に接続され
る。測定端切換スイッチ7の固定接点と端子Eとの間に
はチョークコイル11を介して前記微少電圧検出手段8、
迷走電流打消装置9、分流抵抗10が接続され、さらに微
少電圧検出手段8にはコンデンサ12が並列に接続されて
いる。このほかの構成は第2図の場合と同様であるの
で、第2図と同一の符号を付して説明は省略する。
(E) Embodiment FIG. 1 is a block diagram of a measuring circuit according to an embodiment of the present invention. In FIG. 1, the secondary side output of the AC transformer 13 is connected via the capacitor 14 between the switching terminal L 0 and the terminal E of the measuring end changeover switch 7 shown in FIG. The primary side of the AC transformer 13 is connected to a normal commercial frequency low voltage power supply. Between the fixed contact of the measuring end changeover switch 7 and the terminal E, the minute voltage detecting means 8 is provided via a choke coil 11.
A stray current canceling device 9 and a shunt resistor 10 are connected, and a capacitor 12 is connected in parallel to the minute voltage detecting means 8. Other configurations are similar to those in the case of FIG. 2, and therefore, the same reference numerals as those in FIG.

ここで、測定電源として直流電圧に重畳して交流電圧を
印加する理由は、発明者の次の知見に基づく。
Here, the reason why the AC voltage is applied by superimposing it on the DC voltage as the measurement power source is based on the following knowledge of the inventor.

水トリー起因の絶縁不良ケーブルの絶縁抵抗値は可変
交流電圧下で一定直流電圧で測定すると、重畳交流電圧
の上昇に伴い大幅に減少する。第4図は重畳交流電圧に
対する絶縁抵抗値の変化の一例を示し、この例では直流
測定電圧を50Vとして重畳交流電圧を0Vから500Vまで変
化させた場合の絶縁抵抗を測定したものである。交流電
圧印加のない状態で直流電圧50Vで測定した場合は14000
MΩあった絶縁抵抗値が交流500V重畳下では400MΩに減
少している。
The insulation resistance of a cable with poor insulation caused by a water tree, when measured at a constant DC voltage under a variable AC voltage, decreases significantly as the superimposed AC voltage rises. FIG. 4 shows an example of the change of the insulation resistance value with respect to the superimposed AC voltage. In this example, the insulation resistance is measured when the superimposed AC voltage is changed from 0V to 500V with the DC measurement voltage being 50V. 14000 when measured with a DC voltage of 50 V without AC voltage applied
The insulation resistance value, which was MΩ, is reduced to 400 MΩ under the condition of 500 V AC superposition.

一定の交流電圧重畳下では直流電圧は0から100V程度
の範囲で変化しても絶縁抵抗値に大きな相異は無い。第
5図は直流測定電圧の変化に対する絶縁抵抗値の一例を
示している。第5図によると直流60V以下では直流測定
電圧を下げても絶縁抵抗値が上昇することは無く、ほぼ
一定としても良い。
Under constant AC voltage superposition, even if the DC voltage changes in the range of 0 to 100V, there is no great difference in the insulation resistance value. FIG. 5 shows an example of the insulation resistance value with respect to changes in the DC measurement voltage. According to FIG. 5, when the DC voltage is 60 V or less, the insulation resistance value does not increase even if the DC measurement voltage is decreased, and the insulation resistance value may be almost constant.

上述の理由により交流電圧を重畳して測定する本発明で
は、実用的に扱い易い低い直流測定電圧で、本来その電
圧下では極めて高い絶縁抵抗値を示すため感度不足で測
定不能であるか、測定できたとしても直流側電圧のケー
ブル遮蔽長さ方向の分配値の相異により標定値に大きい
誤差を与える問題を無くして測定することが可能にな
る。
In the present invention for measuring by superimposing an AC voltage for the above-mentioned reason, it is a low DC measurement voltage that is practically easy to handle, and it is impossible to measure due to insufficient sensitivity because it originally shows an extremely high insulation resistance value. Even if it is possible, it is possible to perform the measurement without the problem of giving a large error to the orientation value due to the difference in the distribution value of the DC side voltage in the cable shielding length direction.

前記変圧器13の二次側出力の一端は切換端子L0、即ち遮
蔽1の測定側端10に接続したが、健全導体2Rの測定側端
R0(即ち、遮蔽1の非測定側端1100と等価である)、あ
るいは健全導体2Sの測定側端S0に接続されても良い。要
は遮蔽1と絶縁不良導体2Tとの間に適当な交流電圧が印
加されれば良い。ただし、測定端切換スイッチ7の固定
端子に接続することは切換時に交流電圧の印加が途切れ
るので安定な測定のために好ましく無い。
Said transformer end of the secondary side output of the 13 switching terminal L 0, that is, connected to the measuring end 1 0 shielding 1, the measurement end of the sound conductor 2R
It may be connected to R 0 (that is, equivalent to the non-measurement side end 1 100 of the shield 1) or to the measurement side end S 0 of the sound conductor 2S. The point is that an appropriate AC voltage may be applied between the shield 1 and the poorly insulated conductor 2T. However, connecting to the fixed terminal of the measuring end changeover switch 7 is not preferable for stable measurement because the application of the AC voltage is interrupted during the changeover.

前記コンデンサ14は、低い直流抵抗を有する変圧器13の
二次巻線抵抗によって微少電圧検出手段8が側路されて
感度を失うことを防ぐためのものである。この静電容量
は交流出力電圧の低下が少ないように、即ち遮蔽1と絶
縁不良導体2Tの間の静電容量に比して少なくとも一桁以
上大きい値を有する必要がある。コンデンサ14は端子E
側、あるいは切換端子L0側のいずれに接続されても良
い。
The capacitor 14 is for preventing the minute voltage detecting means 8 from being bypassed by the secondary winding resistance of the transformer 13 having a low DC resistance and losing its sensitivity. This capacitance must have a value that is at least an order of magnitude larger than the capacitance between the shield 1 and the poorly insulated conductor 2T so that the AC output voltage does not drop significantly. Capacitor 14 is terminal E
Side or the switching terminal L 0 side may be connected.

前記チョークコイル11とコンデンサ12からなるフィルタ
回路が無い場合は、変圧器13の二次側電圧のほとんどが
微少電圧検出手段8に印加されることになり、該微少電
圧検出手段8が測定する直流電圧に比して大きすぎる交
流電圧の侵入のためその機能を失うことになる。従っ
て、微少電圧検出手段8の端子にはその性能を発揮する
のに影響のない程度にまで低減された微少交流電圧しか
重畳印加されないようにフィルタ回路を設計する必要が
ある。
If there is no filter circuit consisting of the choke coil 11 and the capacitor 12, most of the secondary side voltage of the transformer 13 is applied to the minute voltage detecting means 8, and the DC voltage measured by the minute voltage detecting means 8 is measured. Its function is lost due to the penetration of an alternating voltage that is too large compared to the voltage. Therefore, it is necessary to design the filter circuit so that only the minute AC voltage reduced to the extent that it does not affect the performance of the minute voltage detection means 8 is superposed and applied.

前記交流変圧器13の二次側出力電圧の値は次のように決
定する。第4図の例を参照すると常時使用電圧即ち1900
Vの重畳下では直流50Vで僅か50MΩと測定される。しか
し、測定者の安全確保上1900Vの高い交流電圧は用いる
ことはできない。二次側出力電圧の最高電圧値としては
工場構内での最大使用低圧としての440Vに留どめ、測定
者は装置全体をマウントした絶縁シート上に乗って測定
装置と同一電位になることが感電事故を防ぐために重要
である。交流変圧器13の必要容量は、測定対象ケーブル
の静電容量値によって決定される。仮に、二次側容量を
25VAと設定すると、その電流容量は25/440=0.0568
(A)となり60Hz。440V下で0.343μFの静電容量を充
電することができる。即ち、通常の高圧ケーブル約1Km
長に対し25VA程度の小形軽量の変圧器で足り、実用上都
合が良い。交流変圧器13の一次、二次間の絶縁抵抗性能
も重要である。通常、一次側低圧系統は一点で接地され
ているので、測定回路に好ましくない迷走電流パスを作
らないためには二次側巻線は一次側巻線(鉄芯その他金
属部分、シールド板を含む)に対し、変圧器の最高使用
温度で少なくとも10000MΩ以上の高い絶縁抵抗値を有す
ることが必要である。
The value of the secondary output voltage of the AC transformer 13 is determined as follows. Referring to the example of FIG.
Under V superposition, it is measured as only 50 MΩ at 50 V DC. However, a high AC voltage of 1900V cannot be used to ensure the safety of the measurer. The maximum output voltage of the secondary side is 440V, which is the maximum voltage used in the factory premises, and the measurer can get the same potential as the measuring device by riding on the insulating sheet that mounts the entire device. It is important to prevent accidents. The required capacity of the AC transformer 13 is determined by the capacitance value of the cable to be measured. If the secondary side capacity is
When set to 25VA, the current capacity is 25/440 = 0.0568
(A) and 60Hz. It can charge a capacitance of 0.343μF under 440V. That is, a normal high voltage cable is about 1 km
A small and lightweight transformer with a length of about 25VA is sufficient, which is convenient for practical use. Insulation resistance performance between the primary and secondary sides of the AC transformer 13 is also important. Normally, the primary side low voltage system is grounded at one point, so the secondary side winding should include the primary side winding (including iron core and other metal parts, shield plate) in order to avoid creating an undesired stray current path in the measurement circuit. ), It is necessary to have a high insulation resistance value of at least 10,000 MΩ or more at the maximum operating temperature of the transformer.

次に、第1図に示す測定回路を使用して絶縁不良点を探
知する方法を説明する。まず、開閉器6を開放した状態
で交流変圧器13を稼動する。すると、交流出力電流の大
部分は遮蔽1と絶縁不良導体2Tとの間の静電容量を通じ
て流れる。なお、健全導体2Rまたは2Sと遮蔽1との間に
も静電容量は存在するものの、これらは全部同一電位に
なっているので電流は流れず、交流変圧器13の負荷とは
ならない。この交流電圧の印加により絶縁不良点の値は
測定できる値までシフトされて保持されるから、以後、
第2図で説明した従来の方法と全く同じ方法により絶縁
不良点の位置X%を標定できる。なお、微少電圧検出手
段8を誤動作させる交流電圧の侵入はフィルタ素子11、
12の組合せにより阻止され、このため微少電圧検出手段
8は微少直流分に対してのみ反応する。さらに、微少電
圧検出手段8により遮蔽長さのX%、(100−X)%に
比例する電圧を測定する時、直列に入る絶縁抵抗3の値
は電圧が変わっても一定であるから標定結果に誤差がは
いることは無い。
Next, a method for detecting an insulation failure point using the measurement circuit shown in FIG. 1 will be described. First, the AC transformer 13 is operated with the switch 6 open. Then, most of the AC output current flows through the capacitance between the shield 1 and the poorly insulated conductor 2T. Although there is a capacitance between the sound conductor 2R or 2S and the shield 1, since they are all at the same potential, no current flows and the AC transformer 13 does not become a load. By the application of this AC voltage, the value of the insulation failure point is shifted to and held at a measurable value.
The position X% of the insulation failure point can be determined by exactly the same method as the conventional method described in FIG. In addition, the intrusion of the AC voltage that causes the minute voltage detection means 8 to malfunction is caused by the filter element 11,
It is prevented by the combination of 12, and therefore the minute voltage detecting means 8 reacts only to the minute DC component. Further, when the voltage proportional to X% and (100-X)% of the shielding length is measured by the minute voltage detecting means 8, the value of the insulation resistance 3 that enters in series is constant even if the voltage changes, so the orientation result There is no error in.

(ヘ)効果 この発明により、水トリー発生ケーブルの絶縁不良点探
知が容易に実現できる。しかも、従来では無理に直流電
圧を上昇させて測定可能とした場合には標定誤差が大に
なる欠点があったが、この発明により解消されて精度良
い測定が可能となる。このため絶縁不良部分だけのケー
ブルの部分的取替が可能になり、また絶縁不良部分と布
設環境との関連から絶縁不良発生原因の探求ができ、さ
らに新ケーブルの布設方法に対する示唆を得る等、実用
的に種々に利点を得ることができる。
(F) Effect According to the present invention, it is possible to easily realize the insulation failure point detection of the water tree generation cable. Moreover, conventionally, there was a drawback that the orientation error was large when the DC voltage was forcibly increased to enable the measurement, but this invention eliminates the problem, and accurate measurement is possible. For this reason, it is possible to partially replace the cable only in the defective insulation part, and it is possible to search the cause of the defective insulation from the relationship between the defective insulation part and the installation environment, and to obtain suggestions for the method of laying a new cable, etc. Various advantages can be practically obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す測定回路構成図、第
2図は従来の測定回路構成図、第3図は絶縁不良ケーブ
ルへ印加される直流測定電圧と絶縁抵抗の変化の関係を
示す図、第4図は絶縁不良ケーブルに印加される重畳交
流電圧と絶縁抵抗の変化の関係を例示する図、第5図は
一定の重畳交流電圧の印加のもとで直流測定電圧と絶縁
抵抗の変化の関係を例示する図である。 1…遮蔽、2R、2S…健全導体(高圧導体)、 2T…絶縁不良導体(高圧導体)、 3…絶縁不良点、5…直流低電圧電源、 6…開閉器、7…測定端切換スイッチ、 8…微少電圧検出手段、9…迷走電流打消装置、 11…チョークコイル、13…交流変圧器。
FIG. 1 is a block diagram of a measuring circuit showing an embodiment of the present invention, FIG. 2 is a block diagram of a conventional measuring circuit, and FIG. Fig. 4 is a diagram illustrating the relationship between the superimposed AC voltage applied to the insulation-defective cable and the change in the insulation resistance, and Fig. 5 is a DC measurement voltage and insulation resistance under the application of a constant superimposed AC voltage. It is a figure which illustrates the relationship of the change of. 1 ... Shielding, 2R, 2S ... Sound conductor (high voltage conductor), 2T ... Insulation poor conductor (high voltage conductor), 3 ... Poor insulation point, 5 ... DC low voltage power supply, 6 ... Switch, 7 ... Measuring end changeover switch, 8 ... Micro voltage detecting means, 9 ... Stray current canceling device, 11 ... Choke coil, 13 ... AC transformer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁不良ケーブルの遮蔽を往線、健全導体
を帰線としループを構成し、その開放端に直流低電圧電
源を接続してループに通電し、前記遮蔽の測定側端およ
び非測定側端と絶縁不良導体の間の電位差の比により絶
縁不良点を探知する方法において、 前記絶縁不良導体と前記遮蔽との間に、その二次側出力
電圧は低圧の範囲にとどまり、かつ一次側巻線に対する
巻線抵抗が10000MΩ以上の値を保有する交流低電圧変圧
器の出力を、その静電容量が前記絶縁不良導体と遮蔽間
の静電容量より一桁以上大きい値を有するコンデンサを
介して印加することにより、絶縁不良点の抵抗を低位に
保持した状態でフィルタ回路を保有する微少電圧検出手
段により絶縁不良点を標定することを特徴とするケーブ
ル絶縁不良点探知方法。
1. A loop is constructed with a shield of a poorly insulated cable as a forward line and a sound conductor as a return line, and a DC low-voltage power supply is connected to the open end of the loop to energize the loop. In the method of detecting the insulation failure point by the ratio of the potential difference between the measurement side end and the insulation failure conductor, between the insulation failure conductor and the shield, the secondary output voltage remains in the low voltage range, and the primary A capacitor with an output of an AC low-voltage transformer that has a winding resistance of 10,000 MΩ or more for the side winding and whose capacitance is one digit or more larger than the capacitance between the poorly-insulated conductor and the shield. A method for detecting a cable insulation defect point characterized by locating the insulation defect point by a minute voltage detection means having a filter circuit in a state where the resistance of the insulation defect point is maintained at a low level by applying the voltage via the above.
【請求項2】絶縁不良ケーブルの遮蔽を往線、健全導体
を帰線としてループを構成し、その開放端に直流低電圧
電源を接続してループに通電し、前記遮蔽の測定側端及
び非測定側端と絶縁不良導体との間の電位差の比により
絶縁不良点を探知する方法に用いる装置であって、 前記絶縁不良導体と前記遮蔽との間に、その二次側出力
電圧を印加する交流低電圧変圧器と、その際に出力側に
直列に挿入されるコンデンサと、前記遮蔽の測定側端お
よび非測定側端と絶縁不良導体との間に電位差を測定す
る、フィルタ回路を付加した微少電圧検出手段とを有
し、 前記交流低電圧変圧器の二次側出力電圧は低圧の範囲に
とどまり、かつ一次側巻線に対する絶縁抵抗が10000MΩ
以上の値を保有するものであり、前記コンデンサはその
静電容量が前記絶縁不良導体と前記遮蔽間の静電容量よ
り一桁以上大きい値を有するものであり、前記フィルタ
回路は前記交流低電圧変圧器の二次側出力電圧の印加に
より前記微少電圧検出手段の機能が阻害されることのな
い減衰特性を保有するものであることを特徴とするケー
ブル絶縁不良点探知装置。
2. A loop is constructed with a shield of a poorly insulated cable as a forward line and a sound conductor as a return line, and a DC low-voltage power source is connected to the open end of the loop to energize the loop, and the measurement side end and the non-side of the shield are connected. A device used in a method for detecting an insulation failure point by a ratio of a potential difference between a measurement side end and an insulation failure conductor, wherein a secondary side output voltage is applied between the insulation failure conductor and the shield. An AC low-voltage transformer, a capacitor inserted in series at the output side at that time, and a filter circuit for measuring the potential difference between the measuring side end and the non-measuring side end of the shield and the poorly insulated conductor were added. And a minute voltage detection means, the secondary output voltage of the AC low voltage transformer remains in the low voltage range, and the insulation resistance to the primary winding is 10000 MΩ
The capacitor has a value above, the capacitance of the capacitor has a value larger than the capacitance between the insulation faulty conductor and the shield by one digit or more, and the filter circuit has the AC low voltage. A cable insulation defect detecting device having a damping characteristic in which the function of the minute voltage detecting means is not hindered by the application of the secondary side output voltage of the transformer.
JP63227745A 1988-09-12 1988-09-12 Cable insulation defect detection method and device Expired - Fee Related JPH0675090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227745A JPH0675090B2 (en) 1988-09-12 1988-09-12 Cable insulation defect detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227745A JPH0675090B2 (en) 1988-09-12 1988-09-12 Cable insulation defect detection method and device

Publications (2)

Publication Number Publication Date
JPH0275974A JPH0275974A (en) 1990-03-15
JPH0675090B2 true JPH0675090B2 (en) 1994-09-21

Family

ID=16865707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227745A Expired - Fee Related JPH0675090B2 (en) 1988-09-12 1988-09-12 Cable insulation defect detection method and device

Country Status (1)

Country Link
JP (1) JPH0675090B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048406A (en) * 2003-11-19 2005-05-24 주식회사 노튼전기 Apparatus for measuring length of electric line
CN113899863B (en) * 2021-11-12 2023-06-20 国网湖南省电力有限公司 High-voltage cable hidden defect detection method and system based on gas characteristics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410947A (en) * 1977-06-27 1979-01-26 Sumitomo Electric Ind Ltd Searching method of poor insulating spots in errosion-prood layer by utilizing live lines
JPS5482691A (en) * 1977-12-15 1979-07-02 Sumitomo Electric Ind Ltd Measurement of fault points in cable
JPS60169774A (en) * 1984-02-13 1985-09-03 Sumitomo Electric Ind Ltd Locating method of insulating failure point of cable under live state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410947A (en) * 1977-06-27 1979-01-26 Sumitomo Electric Ind Ltd Searching method of poor insulating spots in errosion-prood layer by utilizing live lines
JPS5482691A (en) * 1977-12-15 1979-07-02 Sumitomo Electric Ind Ltd Measurement of fault points in cable
JPS60169774A (en) * 1984-02-13 1985-09-03 Sumitomo Electric Ind Ltd Locating method of insulating failure point of cable under live state

Also Published As

Publication number Publication date
JPH0275974A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
Bascom et al. Computerized underground cable fault location expertise
CA1305217C (en) Device for locating internal faults in a high-voltage capacitor battery
EP0437214B1 (en) Method for diagnosing an insulation deterioration of an electric apparatus
US4725778A (en) Detecting resistance faults
JPH0675090B2 (en) Cable insulation defect detection method and device
JPS6255571A (en) Automatic insulating characteristic analyzer
US3842344A (en) Bridge circuit for measuring dielectric properties of insulation
JP3964654B2 (en) Electrical circuit diagnostic equipment
RU2739386C2 (en) Method for determination of insulation resistance reduction point
RU2059257C1 (en) Method for checking deformation in windings of power transformers
JPS6035628B2 (en) How to apply DC voltage to high voltage distribution lines
SU1065951A1 (en) Device for single-phase ground leakage protection of a.c. isolated neutral system
JPS61132881A (en) Insulating state diagnosing method of transformer
JP2727324B2 (en) Resistance network analyzer
JPH0428065Y2 (en)
SU1221620A1 (en) Method of inspecting inner windings of power transformers
KR200210620Y1 (en) Lightning arrester test device
Shinmoto et al. Development of the DC superimposition bridge method for the measurement of high insulation resistance of medium voltage XLPE cables in operations
Brancato et al. Measurement of insulation resistance on energized systems
RU4171U1 (en) DEVICE FOR MONITORING THE STATE OF INSULATION OF HIGH VOLTAGE N-PHASE ELECTRICAL EQUIPMENT
JPH0668528B2 (en) Live wire earth resistance meter
JPS5836060Y2 (en) Single-phase high-voltage line ground fault fault detection device
JP2682078B2 (en) Sensitive current test device for earth leakage breaker
SU924676A1 (en) Device for testing relay working life
JPH0690245B2 (en) Insulation deterioration related quantity measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees