JPS6035628B2 - How to apply DC voltage to high voltage distribution lines - Google Patents

How to apply DC voltage to high voltage distribution lines

Info

Publication number
JPS6035628B2
JPS6035628B2 JP51022815A JP2281576A JPS6035628B2 JP S6035628 B2 JPS6035628 B2 JP S6035628B2 JP 51022815 A JP51022815 A JP 51022815A JP 2281576 A JP2281576 A JP 2281576A JP S6035628 B2 JPS6035628 B2 JP S6035628B2
Authority
JP
Japan
Prior art keywords
voltage
distribution line
voltage distribution
value
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51022815A
Other languages
Japanese (ja)
Other versions
JPS52105871A (en
Inventor
忠晴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP51022815A priority Critical patent/JPS6035628B2/en
Publication of JPS52105871A publication Critical patent/JPS52105871A/en
Publication of JPS6035628B2 publication Critical patent/JPS6035628B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は高圧配電線路とこれに接続されている電力ケ
ーブルとのそれぞれの絶縁抵抗を活線状態の下で測定す
るために、それら高圧配電線路および電力ケーブルに直
流電圧を印加する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION In order to measure the respective insulation resistances of a high-voltage distribution line and a power cable connected thereto under live conditions, the present invention applies a DC voltage to the high-voltage distribution line and the power cable connected to the high-voltage distribution line. Regarding the method of applying .

従来この種の直流電圧印加方法としては第1図に示すも
のが採用されている。
Conventionally, the method shown in FIG. 1 has been adopted as this type of DC voltage application method.

これを説明すれば第1図においてTrは電源変圧器、T
は高圧配電線、GPTは前記高圧配電線Tに接続された
接地用変圧器で一次側は人結線二次側は開放△結線で使
用される。Sは直流電源で一端は固定抵抗RSを介して
前記接地用変圧器OPTの中性点0に直稀電圧を印加す
るよう接続され、池端は電流計Msを介して接地されて
いる。Coは中性点0と大地との間に挿入された蓄電器
で、該蓄電器にoの両端間に並列に保安用アレスタAr
が挿入されている。
To explain this, in Fig. 1, Tr is a power transformer, and T
is a high-voltage distribution line, and GPT is a grounding transformer connected to the high-voltage distribution line T. The primary side is a human connection and the secondary side is an open Δ connection. S is a DC power source, one end of which is connected to the neutral point 0 of the grounding transformer OPT through a fixed resistor RS so as to apply a direct voltage, and the end of the voltage source is grounded through an ammeter Ms. Co is a capacitor inserted between the neutral point 0 and the earth, and a safety arrester Ar is connected to the capacitor in parallel between both ends of O.
is inserted.

上記の構成のもとに電源Sを活勢せしめて中性点0を介
して直流電源発生電圧Bが高圧配電線Tおよびこれに接
続する電力ケーブル(図示されていない)に印加される
が、この際上記の構成には、現実に高圧配電線Tおよび
前記電力ケーブルに印加される電圧E丁を測定する機能
が具えられていないので該電圧の値は、ET=E−IS
Rsの式から計算により推定する外ない。上式において
、lsは前記電源Sの出力電流で前記電流計NLで読み
取られ、電源発生電圧Eの値は上記構成にはこれを測定
する機能を具えていないので前記直流電源Sの公称発生
電圧値を使用する。従って上記の式から計算によって求
めたETの値は二重の推定のものとに求められたもので
正確なものとは言い難い。又高圧配電線Tの絶縁抵抗R
Tの値はRT:畠−RSにE,.S,RSの値をそれぞ
れ代入して求められるが、前記した如くEの値が正確な
ものとは言い難いのでRTの値には必然的に誤差が入る
。従って上記の方法により活線状態で高圧配電線および
これに接続する電力ケーブルに直流電圧を印加してそれ
ぞれの絶縁抵抗を求めるには計算による面倒さに加え求
められた値の精度が落ち信頼性が低下する欠点があった
。更に測定終了后被測定高圧配電線路に充電された電荷
を自然放電させるには該配電線路の静電容量が比較的大
きいため時間がか)り、又直ちにこれを短絡放電させる
とスイッチ接点の焼損、大きな放電音等が発生したり、
あるいは中性点電位の振動が生じてそのため談配電線路
の局部的絶案教線状態を危険にする恐れがある等の欠点
があった。この発明は叙上の欠点を除去できた精度の高
い絶縁抵抗値を簡易迅速に測定することができる高圧配
電線路およびそれに接続する電力ケーブルへの直流電圧
印加方法を提供するのをその目的とする。
Based on the above configuration, the power supply S is activated and the DC power generation voltage B is applied via the neutral point 0 to the high voltage distribution line T and the power cable (not shown) connected thereto. At this time, since the above configuration does not have a function to measure the voltage E actually applied to the high voltage distribution line T and the power cable, the value of the voltage is ET=E-IS.
There is no choice but to estimate it by calculation from the formula for Rs. In the above equation, ls is the output current of the power source S, which is read by the ammeter NL, and the value of the power source generated voltage E is the nominal generated voltage of the DC power source S, since the above configuration does not have a function to measure this. Use value. Therefore, the value of ET calculated from the above formula is obtained by double estimation and cannot be said to be accurate. Also, the insulation resistance R of the high voltage distribution line T
The value of T is RT:E, . It is obtained by substituting the values of S and RS, but as mentioned above, the value of E is hardly accurate, so the value of RT inevitably contains an error. Therefore, applying the DC voltage to the high-voltage distribution line and the power cable connected to it while the line is live and determining the insulation resistance of each using the above method requires calculations that are troublesome, and the accuracy of the determined value decreases, reducing reliability. There was a drawback that the value decreased. Furthermore, after the measurement is completed, it takes time to naturally discharge the charge accumulated in the high-voltage distribution line under test because the capacitance of the distribution line is relatively large, and if the line is short-circuited and discharged immediately, the switch contacts may burn out. , loud discharge noise etc. may occur,
Alternatively, there is a drawback that the neutral point potential oscillates, which may cause a dangerous local situation in the power distribution line. An object of the present invention is to provide a method for applying DC voltage to a high-voltage power distribution line and a power cable connected thereto, which eliminates the above-mentioned drawbacks and allows for simple and quick measurement of highly accurate insulation resistance values. .

この発明の要旨は叙上の特許請求の範囲に記載した高圧
配電線路への直流電圧印加方法の構成にある。
The gist of the invention lies in the structure of a method for applying a DC voltage to a high voltage distribution line as described in the claims above.

以下この発明を図示した実施例に基づいて説明する。The present invention will be described below based on illustrated embodiments.

第2図において、1は電源変圧器、2は前記変圧器1の
二次側に接続する高圧配電線でこれにケーブルC,,C
2,・・・・・・が接続している。3は前記高圧配電線
2に接続された接地用変圧器で一次側は人結線、二次側
は開放△結線で使用され、0は−次側中性点である。
In Fig. 2, 1 is a power transformer, 2 is a high-voltage distribution line connected to the secondary side of the transformer 1, and cables C, , and C are connected to it.
2,... are connected. 3 is a grounding transformer connected to the high voltage distribution line 2; the primary side is used for human connection, the secondary side is used for open delta connection, and 0 is the negative side neutral point.

前記中性点0と大地との間に蓄電器4が接続されその両
端に並列に保安用ァレスタ7が挿入されている。前記蓄
電器4の短絡回路にはスイッチ5,6が直列関係に設け
られ抵抗Roがスイッチ5に対し直列に、スイッチ6に
対し並列に挿入されている。直流電圧印加時以外は前記
スイッチ5,6は常時開の状態に維持される。更に前記
中性点0と大地との間には直流電圧測定用倍率器抵抗R
Mおよび直流電圧計Mvが直列に接続されて挿入される
と共に更にこれに並列に固定抵抗RS、可変抵抗Rv、
直流電源8および前記直流電源8からの出力電流lsの
測定用電流計NLがそれぞれ直列に接続されて挿入され
ている。又第2図において絶縁抵抗を測定すべき電力ケ
ーブル群につき説明を簡略にするため電力ケ−ブルC,
のみについて示す。
A capacitor 4 is connected between the neutral point 0 and the ground, and safety arresters 7 are inserted in parallel at both ends of the capacitor 4. In the short circuit of the capacitor 4, switches 5 and 6 are connected in series, and a resistor Ro is inserted in series with the switch 5 and in parallel with the switch 6. The switches 5 and 6 are kept open at all times except when a DC voltage is applied. Furthermore, between the neutral point 0 and the ground, there is a multiplier resistor R for measuring DC voltage.
M and a DC voltmeter Mv are connected and inserted in series, and a fixed resistor RS, a variable resistor Rv,
A DC power supply 8 and an ammeter NL for measuring the output current ls from the DC power supply 8 are connected and inserted in series, respectively. In addition, in Fig. 2, power cables C,
Shown only.

電力ケーブルC,の金属被覆(図では点線で示す)の近
端および遠端はそれぞれ蓄電器9,11を介して交流的
に接地されるが、近端は常時閉の状態に維持される短絡
スイッチ12を介して接地され、前記スイッチ12は前
記電力ケーブノに,の絶縁抵抗測定時には開放される。
前記高圧配電線2に印加された直流電圧から前記電力ケ
ーブルC,の絶縁抵抗Rx,を通じて時間経過に対し変
化しない直流洩れ電流lx、蓄電器9,10及びチョー
クコイル13とからなる炉波回路を通って電流計Mx及
び大地を経由して直流電源8に還流する。
The near and far ends of the metal sheath (indicated by dotted lines in the figure) of the power cable C are electrically grounded via capacitors 9 and 11, respectively, while the near end is connected to a short-circuit switch that is kept closed at all times. 12, and the switch 12 is opened when measuring the insulation resistance of the power cable.
The DC voltage applied to the high-voltage distribution line 2 passes through the insulation resistance Rx of the power cable C, a DC leakage current lx that does not change over time, and a furnace wave circuit consisting of capacitors 9 and 10 and a choke coil 13. The current flows back to the DC power supply 8 via the ammeter Mx and the ground.

第2図に示し上記のように構成された回路を用いて高圧
配電線2及びこれに接続された電力ケーブル群の内、例
えば電力ケーブルC,にそれぞれ活線状態において直流
電圧を印加する際の動作について説明する。
Using the circuit shown in FIG. 2 and configured as described above, when applying a DC voltage to the high-voltage distribution line 2 and the power cable C among the power cables connected thereto, for example, in a live line state, The operation will be explained.

第2図においてスイッチ5,6は直流電圧印加時以外は
常時開の状態にあるから前記接地用変圧器3の中性点0
は直接大地に接続されている。先づ直流電源8を活勢化
するが、その発生電圧値は高圧配電線2の電圧値が雛V
の場合はDCIKV程度磯Vの場合はDC泌V程度であ
ることがのぞましく、直流電源としては電池又はェリミ
ネータあるいは両者の組合せのものが用いられるが、絶
縁抵抗測定の目的のためには電圧安定度が極めて高いこ
とが必要である。直流電源8が活勢化されると出力電流
lsが送り出され、その値は電流計Msで読み取られる
(目盛が電流で表示されている場合)。
In FIG. 2, the switches 5 and 6 are always open except when DC voltage is applied, so the neutral point of the grounding transformer 3 is 0.
is directly connected to the earth. First, the DC power supply 8 is activated, and the generated voltage value is equal to the voltage value of the high-voltage distribution line 2, which is V.
In the case of IsoV, it is preferable to use DCIKV, and in the case of IsoV, it is preferable to use DCIKV or so.As the DC power source, a battery or an eliminator, or a combination of both, is used, but for the purpose of insulation resistance measurement, It is necessary that the voltage stability be extremely high. When the DC power supply 8 is activated, an output current ls is sent out, the value of which is read with an ammeter Ms (if the scale is displayed in current).

この場合可変抵抗Rvを調整して前記出力電流lsの値
が前記電流計NLのフルスケールを指示するようにする
。この状態では前記倍率抵抗RMに流れる電流は0であ
るから前記電圧計Mvの指針は全く振れない。次に前記
スイッチ5,6を同時かもし〈はスイッチ6次いでスイ
ッチ5の順序で開放すると前記高圧配電線2に直流電圧
が印加される。この際現実に印加されている直流電圧値
ETは直流電源8の発生電圧値Eではなく前記高圧配電
線2の線路全体としての対大地絶縁抵抗値RT(電力ケ
ーブルC.……)等の絶縁抵抗も全部並列化して含む)
の程度に応じて変動するが、この際前記倍率器抵抗RM
を通じて流れる電流IMにより作動する前記電圧計MV
により前記直流電圧値ETを読み取ることができ同時に
前記出力電流lsは前記電流計Msの指示していた値(
電流計MSのフルスケール)から減少して、その値は主
として前記高圧配電線路全体の絶縁抵抗値RTの変動に
よって変動する関数として指示される。(前記電流IM
の値は微小であるから上記関数的に指示される前記電流
計Mの値に対しその影響は省略してもよいし又必要なら
ばその影響による補正を考慮することもできる)。例え
ば前記電流計Msがそのフルスケールの半分を指示する
場合はRT=Rs+Rv(直流電源8の内部抵抗をも考
慮に入れて)であるから前記電流計Msの指示は電流目
盛でなく高圧配電線2の線路全体の絶縁抵抗RTの値で
目盛ることができる。又固定抵抗Rsの値は高圧配電線
2の線路全体の絶縁抵抗RTの値を予想してその大小に
相応して設定すればよいが、その値に応じて前記出力電
流lsの値も変動するからその都度感度の異なる電流計
Msを選択しなければならないことは言うまでもない。
更に数値例により説明すれば、前記電流計地の1/2目
盛が50KQを指示するよう選択すれば1′20目盛す
なわち通常の最小目盛に相当する最高絶縁抵抗値は95
0KQであるから絶縁抵抗値は0からIMQまでがその
目盛範囲となる。この場合Rs+Rvの値は標準状態で
50KQと設定するが更に具体的に示すと直流電源8の
電圧が1050Vから900Vの間に渡って変動するも
のであればRSは4弧○に又RVは0〜7.弧0に設定
し、出力電流計Msには2仇hAフルスケールのものを
使用する。上記操作により活線状態において高圧配電線
2に直流電圧ETが印加されて回路が作動すれば高一圧
配電線2の線路全体の対大地絶縁抵抗RTは前記出力電
流計Msが絶縁抵抗目盛の場合にはこれを直読でき、電
流目盛の場合には式RT=Er/ISから計算により求
める。
In this case, the variable resistor Rv is adjusted so that the value of the output current ls indicates the full scale of the ammeter NL. In this state, the current flowing through the multiplier resistor RM is 0, so the pointer of the voltmeter Mv does not swing at all. Next, when the switches 5 and 6 are opened simultaneously or in the order of switch 6 and switch 5, a DC voltage is applied to the high voltage distribution line 2. At this time, the actually applied DC voltage value ET is not the generated voltage value E of the DC power supply 8, but the insulation resistance value RT to ground of the entire line of the high-voltage distribution line 2 (power cable C...), etc. (including all resistors in parallel)
In this case, the multiplier resistance RM
said voltmeter MV operated by a current IM flowing through
can read the DC voltage value ET, and at the same time the output current ls becomes the value indicated by the ammeter Ms (
(full scale of the ammeter MS), its value is indicated as a function that varies primarily due to variations in the insulation resistance RT of the entire high voltage distribution line. (The current IM
Since the value of is very small, its influence on the value of the ammeter M indicated by the above-mentioned function may be omitted, and if necessary, correction based on the influence may be taken into consideration). For example, when the ammeter Ms indicates half of its full scale, RT = Rs + Rv (taking into consideration the internal resistance of the DC power supply 8), so the indication of the ammeter Ms is not based on the current scale, but on the high voltage distribution line. It can be scaled by the value of the insulation resistance RT of the entire line (No. 2). Further, the value of the fixed resistor Rs may be set according to the magnitude of the predicted insulation resistance RT of the entire line of the high-voltage distribution line 2, but the value of the output current ls also varies according to that value. Needless to say, it is necessary to select an ammeter Ms having a different sensitivity each time.
To further explain with a numerical example, if the 1/2 scale of the current meter is selected to indicate 50KQ, the maximum insulation resistance value corresponding to the 1'20 scale, that is, the normal minimum scale, is 95.
Since it is 0KQ, the scale range of the insulation resistance value is from 0 to IMQ. In this case, the value of Rs + Rv is set to 50KQ in the standard state, but to be more specific, if the voltage of the DC power supply 8 fluctuates between 1050V and 900V, RS will be 4 arcs and RV will be 0. ~7. Set the arc to 0, and use a 2 hA full scale output ammeter Ms. By the above operation, when the DC voltage ET is applied to the high voltage distribution line 2 in the live line state and the circuit is activated, the insulation resistance RT to earth of the entire line of the high voltage distribution line 2 will be determined by the output ammeter Ms on the insulation resistance scale. In the case of a current scale, it can be read directly, and in the case of a current scale, it is calculated from the formula RT=Er/IS.

次に前記高圧配電線2に接続された電力ケーブル群のそ
れぞれの電力ケーブルの絶縁抵抗測定を第2図における
電力ケーブルC,について説明すれば、常時閉の短絡ス
イッチ12を開いて前記炉浄回路に流れる直流洩れ電流
IXIの値を前記電流計Mxにて読めば電力ケーブルC
,の絶縁抵抗Rx,の値は式Rx,=ET/lx,から
計算によって求められる。図では説明を簡単にするため
電力ケーブルC,のみについて示したがその他のそれぞ
れの電力ケーブルについては図において符号Kで示した
個所において金属被覆端からのりード線を取換えること
により上記電力ケーブルC,の場合と全く同様にしてそ
れぞれの絶縁抵抗値を求めることができる。かくして高
圧配電線2の線路全体とこれに綾競された各電力ケーブ
ルとのそれぞれの絶縁抵抗値を求めた後、前記直流電源
8を消勢して前記スイッチ5を開とすれば比較的大きい
対大地静電容量を有する高圧配電線路と蓄電器4とに充
電された電荷は前記抵抗Roを介して放電されるが、前
記抵抗Roの抵抗値および電力容量を適当に、例えば充
電容量50仏F、充電電圧1000Vを放電するのに抵
抗値IKQ電力容量25Wに、設定すれば、前記スイッ
チ5の接点の焼損、放電音の発生等は防止でき、しかも
短時間内に電荷の大部分は吸収されて熱損失に転換され
る。その後スイッチ6を閉として前記接地用変圧器3の
中性点0を完全に接地状態に復して常時状態に戻す。こ
の発明は叙上の構成および動作を有するので、この発明
に従えば宿線状態において高圧配電線路が複雑な絶縁状
態を該線路に現実に印加されている直流電源値から求め
るのであるから求められた絶縁抵抗値は精度が高く信頼
性に富み、かつその値は計器の目盛を抵抗値とすること
により直読できるから簡易かつ迅速に絶縁抵抗値を求め
ることができ、又電力ケーブルの絶縁抵抗測定において
は現実に印加されている直流電圧値を読むことができる
ので直流電源の発生電圧の変動や回路抵抗による電圧降
下による影響が測定値に混入せず精度の高い信頼性に富
む絶縁抵抗値が得られ、更に測定終了後比較的静電容量
の大きい高圧配電線路と蓄電器とに充電された電荷は適
当に設定された抵抗値および雷溶容量とを有する抵抗を
介して短絡放電されるから短絡スイッチ接点の焼損、大
きな放電音の発生は除去され又短絡放電の際中性点電位
が振動して該配電線路の局部的絶縁不良個所の絶縁破壊
を惹起せしめるような懸念は全く無くなる等、この発明
の実施による配電線路保守上の工業的効果は大きい。
Next, to explain the insulation resistance measurement of each power cable of the power cable group connected to the high voltage distribution line 2, for the power cable C in FIG. If the value of the DC leakage current IXI flowing in the power cable C is read with the ammeter Mx,
The value of the insulation resistance Rx, of , can be calculated from the formula Rx,=ET/lx. In the figure, only the power cable C is shown to simplify the explanation, but for each of the other power cables, the above power cable Each insulation resistance value can be determined in exactly the same manner as in the case of C. After determining the respective insulation resistance values of the entire line of the high-voltage distribution line 2 and each of the power cables running therethrough, if the DC power supply 8 is de-energized and the switch 5 is opened, the insulation resistance value is relatively large. The charges charged in the high-voltage distribution line and the capacitor 4, which have a capacitance to the ground, are discharged through the resistor Ro. If the resistance value IKQ and the power capacity are set to 25W to discharge a charging voltage of 1000V, it is possible to prevent the contacts of the switch 5 from burning out and the generation of discharge noise, and moreover, most of the charge is absorbed within a short time. is converted into heat loss. Thereafter, the switch 6 is closed, and the neutral point 0 of the grounding transformer 3 is completely returned to the grounded state, returning to the normal state. Since the present invention has the configuration and operation described above, according to the present invention, the complicated insulation state of a high voltage distribution line in a housed line state is determined from the DC power value actually applied to the line. The insulation resistance value is highly accurate and reliable, and the value can be read directly by using the scale of the meter as the resistance value, so the insulation resistance value can be easily and quickly determined, and it can also be used to measure the insulation resistance of power cables. Since it is possible to read the DC voltage value that is actually applied, the measured value is not affected by fluctuations in the voltage generated by the DC power supply or voltage drops due to circuit resistance, making it possible to obtain highly accurate and reliable insulation resistance values. Furthermore, after the measurement is completed, the charges charged in the high-voltage distribution line and the capacitor, which have a relatively large capacitance, are short-circuited and discharged through a resistor having an appropriately set resistance value and lightning capacitance. Burnout of switch contacts and generation of loud discharge noise are eliminated, and there is no longer any concern that the neutral point potential will oscillate during short-circuit discharge and cause dielectric breakdown at local insulation failure points on the distribution line. The industrial effects of implementing the invention on distribution line maintenance are significant.

図面の簡単な説明第1図は従来の活線状態において絶縁
抵抗測定のため高圧配電線路えの直流電圧印加方法の説
明用結線図、第2図はこの発明の1実施例の説明用結線
図である。
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a wiring diagram for explaining a conventional method of applying DC voltage to a high-voltage distribution line for measuring insulation resistance in a live line state, and Fig. 2 is a wiring diagram for explaining one embodiment of the present invention. It is.

1・・・・・・電源変圧器、2・・・…高圧配電線、3
・・・・・・接地用変圧器、4,9,10,11・・・
・・・蓄電器、5,6,12・・・・・・スイッチ、8
・・・・・・直流電源、13…・・・チョークコイル、
C.・・・・・・電力ケーブル。
1...Power transformer, 2...High voltage distribution line, 3
・・・・・・Grounding transformer, 4, 9, 10, 11...
...Condenser, 5, 6, 12...Switch, 8
...DC power supply, 13...Choke coil,
C.・・・・・・Power cable.

葵ノ図第2図Aoi no zu diagram 2

Claims (1)

【特許請求の範囲】[Claims] 1 高圧配電線路全体及びこれに接続されたそれぞれの
電力ケーブルの絶縁抵抗測定のため活線状態において前
記高圧配電線路全体及び前記電力ケーブルに、前記高圧
配電線路に設置された接地用変圧器の中性点に、蓄電器
、該蓄電器の短絡用回路及び直流電源、抵抗、出力電流
計よりなる前記直流電源よりの直流電圧印加機能とをそ
れぞれ並列に接続して、前記中性点を介して直流電圧を
印加する方法において、前記高圧配電線路及び前記電力
ケーブルとに現実に印加されている直流電圧値を前記中
性点と大地間で測定する機能を設けて直流電圧を印加す
ることを特徴とする高圧配電線路への直流電圧印加方法
1. In order to measure the insulation resistance of the entire high-voltage distribution line and each power cable connected thereto, the entire high-voltage distribution line and the power cable are connected to the grounding transformer installed on the high-voltage distribution line in a live state. A capacitor, a short-circuit circuit for the capacitor, and a DC voltage application function from the DC power source consisting of a DC power source, a resistor, and an output ammeter are connected in parallel to the neutral point, and the DC voltage is applied via the neutral point. The method for applying DC voltage is characterized in that a function is provided to measure the DC voltage value actually applied to the high-voltage distribution line and the power cable between the neutral point and the ground, and the DC voltage is applied. Method of applying DC voltage to high voltage distribution lines.
JP51022815A 1976-03-02 1976-03-02 How to apply DC voltage to high voltage distribution lines Expired JPS6035628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51022815A JPS6035628B2 (en) 1976-03-02 1976-03-02 How to apply DC voltage to high voltage distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51022815A JPS6035628B2 (en) 1976-03-02 1976-03-02 How to apply DC voltage to high voltage distribution lines

Publications (2)

Publication Number Publication Date
JPS52105871A JPS52105871A (en) 1977-09-05
JPS6035628B2 true JPS6035628B2 (en) 1985-08-15

Family

ID=12093175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51022815A Expired JPS6035628B2 (en) 1976-03-02 1976-03-02 How to apply DC voltage to high voltage distribution lines

Country Status (1)

Country Link
JP (1) JPS6035628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643326U (en) * 1987-06-23 1989-01-10
JPH0290530U (en) * 1988-12-28 1990-07-18
US11567020B2 (en) 2019-10-13 2023-01-31 General Electric Company Gas sensing assembly and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024057961A (en) * 2022-10-13 2024-04-25 株式会社日立産機システム DC insulation resistance monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643326U (en) * 1987-06-23 1989-01-10
JPH0290530U (en) * 1988-12-28 1990-07-18
US11567020B2 (en) 2019-10-13 2023-01-31 General Electric Company Gas sensing assembly and method

Also Published As

Publication number Publication date
JPS52105871A (en) 1977-09-05

Similar Documents

Publication Publication Date Title
US4853818A (en) System and method for detecting arcing in dynamoelectric machines
US4103225A (en) System and method for determining capacitance and cable length in the presence of other circuit elements
EP1295133A1 (en) Capacitor coupled voltage transformers
US5150059A (en) Method and apparatus for testing the condition of insulating system
US4577148A (en) Surge arrester equipped for monitoring functions and method of use
WO1983002162A1 (en) Insulation analyzer apparatus and method of use
US4866393A (en) Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis
CA1128131A (en) Cable condition analyzing system for electric arc furnace conductors
JPS6035628B2 (en) How to apply DC voltage to high voltage distribution lines
US3916309A (en) Short circuit capacity measuring device
JPH04248472A (en) Method of measuring resistance value
US3842344A (en) Bridge circuit for measuring dielectric properties of insulation
JP2578766B2 (en) Live tan δ measuring device
US4142142A (en) High voltage A.C. test set for measuring true leakage current
CN112051486B (en) Method for calculating system capacitance current by utilizing head-end fault moment
US2131517A (en) Earthing arrangement for electric apparatus
JPS5928371Y2 (en) Gears press lightning arrester protection device
JPS5827250Y2 (en) flame detection device
SU627344A1 (en) Monitoring device
JPH0650330B2 (en) Deterioration diagnosis method for zinc oxide type arrester
Turner Voltmeter for ac mains fluctuation
HU181224B (en) Circuit array for measuring corona-loss of high-voltage cverhead lines
JPH0675090B2 (en) Cable insulation defect detection method and device
US2064663A (en) Electrical testing
JPH01180464A (en) Capacitor measuring instrument