JP3964654B2 - Electrical circuit diagnostic equipment - Google Patents

Electrical circuit diagnostic equipment Download PDF

Info

Publication number
JP3964654B2
JP3964654B2 JP2001345268A JP2001345268A JP3964654B2 JP 3964654 B2 JP3964654 B2 JP 3964654B2 JP 2001345268 A JP2001345268 A JP 2001345268A JP 2001345268 A JP2001345268 A JP 2001345268A JP 3964654 B2 JP3964654 B2 JP 3964654B2
Authority
JP
Japan
Prior art keywords
circuit
capacitor
target device
diagnosis target
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001345268A
Other languages
Japanese (ja)
Other versions
JP2003149283A (en
Inventor
克哉 鈴木
庄一 藤本
三郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2001345268A priority Critical patent/JP3964654B2/en
Publication of JP2003149283A publication Critical patent/JP2003149283A/en
Application granted granted Critical
Publication of JP3964654B2 publication Critical patent/JP3964654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Protection Of Static Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機器内部の回路に使用されているコンデンサ等の劣化を診断する電気回路診断方法に関する。
【0002】
【従来の技術】
従来の電気回路診断装置としては、特開昭62−238471に開示されるものがあり、これを図10に示す。図10は、従来の電気回路診断装置の概念図である。
【0003】
前記図10において、従来の電気回路診断装置は、放電抵抗器102が両端に接続され、かつ、電荷が充電された電解コンデンサ101と、上記放電抵抗器102が両端に接続された状態にある上記電解コンデンサ101の製品初期時における放電特性を予め記憶した記録装置123と、上記電界コンデンサ101の放電時における放電電圧を入力し、その放電電圧の減衰が上記記録装置123に記録された放電特性の減衰より早いとき、その電界コンデンサ101に劣化が生じていると判断する演算装置122とを備える構成である。
この放電抵抗器102と並列接続されている電圧分圧器103と演算装置122との間にはアナログ/デジタル変換機121が接続される。
【0004】
前記構成に基づく従来の電気回路診断装置は、演算装置122にて、その電解コンデンサ101の放電時における放電電圧を入力し、その放電電圧の減衰がその記録装置123に記録された放電特性の減衰より大きいとき、その電解コンデンサ101に劣化が生じると判別するように構成したので、一時遅れ演算器や信号判別器などを設けずに電解コンデンサ101の劣化を判別できるため、一時遅れ演算器等の経年変化を考慮する必要がなくなり、精度の高いものを得ることができる。
【0005】
また、前記とは別に、従来の電気回路診断装置としては、特開平5−215800に開示されるものがあり、これを図11に示す。図11は、従来の電気回路診断装置の概念図である。
前記図11において、この従来の電気回路診断装置は、電力変換装置であり直流を任意の周波数の交流に変換するパワートランジスタ部202に電源であるバッテリ201及びモータ203が接続され、バッテリ201とパワートランジスタ部202との間に第1のスイッチSW1及び抵抗204が直列に接続され、抵抗204にスイッチSW2が並列接続され、パワートランジスタ部202に対して並列に電解コンデンサ205が接続され、両スイッチSW1、SW2は図示しない制御装置によりオン、オフ制御される構成である。
【0006】
前記構成において、スイッチSW1の投入から抵抗204を介して充電されるコンデンサ205の充電電圧が所定電圧に到達するまでの充電時間が測定され、正常なコンデンサの場合に前記所定電圧まで充電するのに必要な基準時間と前記充電時間が比較され、充電時間が基準時間より短いときにコンデンサ205の劣化と判定される。コンデンサ205が正常であっても電源電圧が変化すると所定電圧に達するまでの充電時間も変化する。電源がバッテリ201であると、バッテリ201の放電により電源電圧が変化する。しかし、基準時間が当該充電時間測定時のバッテリ電圧を基準として設定されるため、電源電圧が変化しても、コンデンサ205の劣化診断に支障を来さない。
【0007】
【発明が解決しようとする課題】
従来の特開昭62−238471に開示される電気回路診断装置は以上のように構成されていたことから、診断対象は長期間使用されている間にコンデンサと並列接続される回路のインピーダンス低下方向の劣化がある場合は、このインピーダンス低下により劣化判断を誤るという課題を有する。即ち、電気回路中のコンデンサ101が正常であるにも拘らず、コンデンサ101と並列接続されるインピーダンスの劣化によりコンデンサ101の充電時間が変化してコンデンサ101が劣化したかの如く判断されるという課題を有する。他方、電気回路中のコンデンサ101が異常であるにも拘らず、コンデンサ101と並列接続されるインピーダンスの劣化によりコンデンサ101の充電時間が変化してコンデンサ101が正常であるかの如く判断されるという課題を有する。
【0008】
また、従来の特開昭62−238471及び特開平5−215800に開示される電気回路診断装置は以上のように構成されていたことから、診断するために診断対象機器内のコンデンサ101(又は205)の電圧を使用するためにコンデンサ101(又は205)の電圧を測定しなければならず、診断対象機器にコンデンサ101(又は205)の電圧を測定する手段を備えさせるか、診断対象機器を分解してコンデンサ101(又は205)の電圧を測定しなければならないという課題を有する。
【0009】
本発明は、前記課題を解決するためになされ、静電容量低下方向の劣化による劣化診断を誤らず、コンデンサの電圧を直接測定しなくても診断対象機器の劣化の診断を行える電気回路診断方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る電気回路診断方法は、電源に接続される配線路をスイッチにより閉し、第1の抵抗素子及び診断対象のコンデンサを有する診断対象機器を直列接続し、当該第1の抵抗素子及び診断対象機器に並列に接続され、前記第1の抵抗素子と同一の抵抗値を有する第2の抵抗素子及び前記診断対象機器の正常時における等価回路からなる正常機器を直列接続し、前記第1の抵抗素子及び診断対象機器の直列回路の電源供給線と第2の抵抗素子及び正常機器の直列回路の電源供給線を一方を順方向、他方を逆方向に電流が流れるように変流器一次側に通過させ、当該変流器2次側で発生した電流を検出する電流検出手段を接続し、前記スイッチを投入した後に前記電流検出手段で検出される過渡状態における特性変動により前記診断対象機器を診断するものである。このように本発明においては、診断対象機器と正常機器と同一抵抗値の2つの抵抗素子とを備えた構成とし、スイッチの投入により電圧を印加させ、この投入時の過渡状態における特性変動を検出しているので、診断対象機器と正常機器とに発生する過渡状態の各電流を直接比較して診断対象機器のコンデンサを含む総ての素子の劣化を総合的に判断することができる。さらに、診断対象機器の接続点をブリッジ回路の接続端子に接続するのみで、別途試験端子を設ける必要がなく、あわせて、負荷電流が流れることによる磁束変化により発生する電流を電流検出手段で測定するために回路全体の小型化を図ることができる。
【0014】
【発明の実施の形態】
(本発明の第1の実施形態)以下、本発明の第1の実施形態に係る電気回路診断方法を電気回路診断装置と共に図1ないし図8に基づいて説明する。この図1は本実施形態に係る電気回路診断方法に使用する診断装置の全体回路図、図2は本実施形態に係る電気回路方法に使用する診断装置の部分回路図、図3は本実施形態に係る電気回路診断方法の動作フローチャート、図4は本実施形態に係るコンデンサの電圧動作状態図、図5は本実施形態に係る診断対象機器を電力用開閉器の制御回路とした場合の動作説明図、図6は図5に記載の電力用開閉器制御回路の詳細回路図、図7は図6に記載の制御回路の等価回路図、図8は本実施形態に係る診断対象として電力用開閉器の制御回路を用いた場合の電圧動作状態図を示す。前記各図において本実施形態に係る電気回路診断方法に使用する診断装置は、交流電源(図示を省略)に接続される配線路300を開閉するスイッチ1と、前記交流電源から印加される電圧によりコンデンサが充電されるまでの過渡状態中にコンデンサ劣化を検出するブリッジ回路2を備える構成である。
【0015】
このブリッジ回路2は、ブリッジ回路を形成する矩形回路の相隣る辺2a、2bの各中間に接続される同一の抵抗値からなる抵抗11、12と、前記矩形回路の他の2辺2c、2dの各中間に形成され、診断対象機器4を接続するための診断接続端子13及び正常機器3を接続するための正常接続端子14と、前記抵抗11及び診断接続端子13の接続点cと抵抗12及び正常接続端子14の接続点dとの間(前記矩形回路の対角辺に相当)に接続される平衡検出回路17とを備える構成である。この平衡検出回路17は、前記ブリッジ回路の接続点c及び接続点dの電位差を検出する電位差検出用トランス15と、この電位差検出用トランス15の二次巻線に接続される電圧計16とから構成され、検流検出手段として採用される。
【0016】
前記ブリッジ回路2は、前記各辺2a、2b、2c、2dの接続点a、b、c、dのうち対向する二つの接続点を電源接点a、bとしてスイッチ1を介して交流電源に接続されている。
前記正常接続端子14に接続する正常機器3として図2(A)に示す前記診断対象機器4の正常な状態における回路構成の正常機器回路に対応する等価回路として表すことができる。この正常機器3の回路は、入出力接点14aに接続されるダイオードブリッジ20と、このダイオードブリッジ20と接続点gを介して並列接続されている抵抗21及び可変抵抗22と、この抵抗21と直列接続しているコンデンサ23とを備える構成である。
【0017】
前記診断接続端子13に接続する診断対象機器4として図2(B)に示すように診断対象機器回路の等価回路として表すことができる。ここで、等価回路の抵抗22、32は、機器回路の負荷抵抗分であり、コンデンサ23、33の放電回路を形成するものである。この診断対象機器4の回路は、入出力接点13aに接続されるダイオードブリッジ30と、このダイオードブリッジ30と接続点eを介して並列接続されている抵抗31、32と、この抵抗31と直列接続しているコンデンサ33とを備える構成である。
【0018】
次に、本実施形態に係る電気回路診断方法の静電容量診断動作について説明する。まず、スイッチ1を投入することで交流電源から交流電圧がブリッジ回路2に印加され、分岐したそれぞれの抵抗11、12に分流し、この分流した電流により正常機器3及び診断対象機器4の各コンデンサ23、33に電荷が充電される(ステップ10)。このスイッチ1が投入された後の定常状態においてブリッジ回路2内の平衡が保たれているかを判断する(ステップ11)。前記ステップ11において、定常状態においてブリッジ回路2内の平衡が保たれていると判断した場合、スイッチ1を開放する(ステップ12)。コンデンサ23、33の放電回路が形成され、コンデンサが放電する所定時間が経過するまで待機する(ステップ13)。再びスイッチ1を投入することで、交流電源から交流電圧がブリッジ回路2に印加される(ステップ14)。
【0019】
前記スイッチ1の投入時からブリッジ回路2が定常状態になるまでの過渡状態を、電圧計16を用いて平衡検出回路17の過渡電圧を測定して測定電圧Vnとして出力する(ステップ15)。前記ステップ15で測定した測定電圧Vnの大きさが、基準値Vref以下であるかどうか判断する(ステップ16)。前記ステップ16において、この測定電圧Vnの大きさが基準値Vref以下であると判断した場合は劣化無しであると判断し(ステップ17)、基準値Vref以下でないと判断した場合は劣化有りであると判断する(ステップ18)。 前記ステップ11において、定常状態においてブリッジ回路2内の平衡が保たれていないと判断した場合、正常機器3の可変抵抗22を調節して平衡状態にして(ステップ19)、ステップ11に移行する。即ち、この可変抵抗22の調節により、診断対象機器4内におけるコンデンサ33以外の素子の影響を排除できることとなる。
前記基準値Vrefは、0より許容される値であり、診断対象となる機器の製造誤差等と同程度の値である。
【0020】
次に、診断接続端子13に診断を行っていない診断対象機器である診断対象機器4A、4Bを順次接続した場合について前記静電容量診断動作を図4を参照して説明を行う。図4において、αが正常機器3のコンデンサ23による充電電圧特性図、βが診断対象機器4Aのコンデンサ33による充電電圧特性図、γが診断対象機器4Bのコンデンサ33による充電電圧特性図を示す。同図において開始時刻T0より所定時間経過した時刻T1(過渡状態の範囲内)における電圧値は、コンデンサ23の充電電位がV0、診断対象機器Aのコンデンサ33の充電電位がV1、診断対象機器Bのコンデンサ33の充電電位がV2である。時刻T1において電圧計16は診断対象機器4が診断対象機器Aの場合に電位差|V1−V0|を示し、診断対象機器4が診断対象機器Bの場合に電位差|V2−V0|を示す。電位差|V1−V0|が基準値Vrefより以下であるため診断対象機器4Aは劣化無しであると判断し、電位差|V2−V0|が基準値Vrefより以下でないため診断対象機器4Bは劣化有りであると判断する。
【0021】
前記電気回路診断方法が例として対象とする診断対象装置としては図5及び図6に示すような電力用開閉器44の制御回路があり、正常機器としてはこの電力用開閉器44の制御回路に対応する等価回路である図7がある。図5における自動化子局42に接続されている電源線40を自動化子局42より外して電気回路診断装置に接続し、診断対象装置である電力用開閉器の制御回路接続線45を自動化子局42より外して電気回路診断装置の診断接続端子13に接続して、上記と同様に電気回路診断装置を動作させる。このように電力用開閉器44の制御回路に対して電気回路診断装置を使用することで、電力用開閉器44の制御回路内のコンデンサの劣化を簡単に診断することができる。
【0022】
図8(A)は、診断対象装置が正常であった場合において、▲1▼は接続点d・接続点b間の時系列の電圧のグラフ、▲2▼は接続点c・接続点b間の時系列の電圧のグラフ、▲3▼は接続点c・接続点d間の時系列の電圧のグラフを示す。図8(B)は、診断対象装置が劣化している場合において、▲1▼は接続点d・接続点b間の時系列の電圧のグラフ、▲2▼は接続点c・接続点b間の時系列の電圧のグラフ、▲3▼は接続点c・接続点d間の時系列の電圧のグラフを示す。図8(A)▲1▼と▲2▼とは電圧の波形がほぼ同一で、▲3▼は▲1▼と▲2▼との差分が波形に生じるのでほぼゼロの一定となり、診断対象装置に劣化が生じてないことがわかる。図8(B)▲1▼と▲2▼とは電圧の波形が過渡状態において波形が異なり、▲3▼は▲1▼と▲2▼との差分が波形に生じるので同様に過渡状態において波形が一定とならず、診断対象装置に劣化が生じていることがわかる。
【0023】
このように本実施形態に係る電気回路診断方法によれば、ブリッジ回路2の診断接続端子13及び正常接続端子14に、診断対象機器4と正常機器3をそれぞれ接続し、スイッチ1を投入して電圧を印加してブリッジ回路2を一旦定常状態にし、可変抵抗22の調節によりブリッジ回路2を可能な限り平衡に近づけた後に、スイッチ1を開放して電圧の印加を停止し、コンデンサ23,33が放電後スイッチ1を投入して電圧を印加すると、過渡状態において、ブリッジ回路2の平衡が保たれている場合は電圧計16で電圧が検出されず、ブリッジ回路2の平衡が保たれていない場合は電圧計16で電圧が検出されるので、過渡状態において所定以上に電圧計16で電圧が検出されていない場合はブリッジ回路2の平衡が保たれて診断対象機器4内のコンデンサ33の劣化はないと判断でき、過渡状態において所定以上に電圧計16で電圧が検出される場合はブリッジ回路2の平衡が保たれず診断対象機器4内のコンデンサ33の劣化があると判断でき、診断対象機器4と正常機器3とを電気回路診断装置に接続することで簡単に診断対象機器4内のコンデンサ33の劣化を診断することができる。
【0024】
(本発明の第2の実施形態)以下、本発明の第2の実施形態に係る電気回路診断方法を図9に基づいて説明する。この図9は本実施形態に係る電気回路診断方法に使用する診断装置の全体回路図を示す。前記図9において本実施形態に係る電気回路診断方法に使用する診断装置は、交流電源(図示を省略)に接続される配線路400を開閉するスイッチ401を有し、抵抗411及び正常機器3を接続するための正常接続端子414を直列接続し、この抵抗411及び正常接続端子414に並列に接続され、前記抵抗411と同一の抵抗値を有する抵抗412及び診断対象機器404を接続するための診断接続端子413を直列接続し、前記抵抗411及び正常接続端子414の電源供給線と抵抗412及び診断接続端子413の電源供給線を、一方を順方向、他方を逆方向に電流が流れるように各電源供給線をクランプして電流検出回路417を配設した構成である。
【0025】
前記正常接続端子414に接続する正常機器及び診断接続端子413に接続する診断対象機器は、前記第1の実施形態と同様に正常機器3及び診断対象機器4である。
前記電流検出回路417は、変流器415及び電流計416からなり、負荷電流I2が流れることによる磁束変化により変流器415で発生する電流を電流計416で検出する構成である。
【0026】
次に、本実施形態に係る電気回路診断方法の静電容量診断動作について説明する。まず、スイッチ401を投入することで交流電源から交流電流が分岐したそれぞれの抵抗411、412に流れ、この分流した電流により正常機器3及び診断対象機器4の各コンデンサ23、33に電荷が充電される。この充電電流を含む各負荷電流I1、I2は、スイッチ401が投入された後の定常状態になるまでの過渡電流として流れる。この各負荷電流I1、I2による磁束変化より生じる測定電流Inを電流計416を用いて電流検出回路417の過渡電流として出力する。この測定した測定電流Inの大きさが、基準値Iref以下であるかどうか判断し、この測定電流Inの大きさが基準値Iref以下であると判断した場合は劣化無しであると判断し、基準値Iref以下でないと判断した場合は劣化有りであると判断する。前記基準値Irefは、0より許容される値であり、診断対象となる機器の製造誤差等と同程度の値である。
【0027】
本実施形態に係る電気回路診断方法によれば、診断接続端子413及び正常接続端子414に、診断対象機器4と正常機器3をそれぞれ接続し、スイッチ401を投入して電圧を印加すると、過渡状態において逆方向同士に略同一の電流が流れている場合は電流計416で電流が検出されず、略同一の電流が流れていない場合は電流計416で電流が検出されるので、過渡状態において所定以上に電流計416で電流が検出されていない場合は診断対象機器4内のコンデンサ33の劣化はないと判断でき、過渡状態において所定以上に電流計416で電流が検出される場合は診断対象機器4内のコンデンサ33の劣化があると判断でき、診断対象機器4と正常機器3とを電気回路診断装置に接続することで簡単に診断対象機器4内のコンデンサ33の劣化を診断することができる。さらに、変流器415を用いて負荷電流I2による磁束変化により発生する電流を電流検出回路417の電流計416で測定するために回路全体の小型化を図ることができる。
【0028】
(本発明のその他の実施形態)なお、前記第1の実施形態に係る電気回路診断方法においては、正常機器3の接続辺に可変抵抗22を備えさせているが、備えさせなくてもよく、動作時にステップ10〜13を行うことなしに、ステップ14以下を行う構成とすることもでき、診断対象機器4と正常機器3とを直接比較して診断対象機器4のコンデンサ33を含む総ての素子の劣化を総合的に判断することができる。さらに、診断対象機器4の入出力接点13aをブリッジ回路2の診断接続端子13に接続するのみで、別途接続端子を設ける必要がない。
【0029】
また、前記第1の実施形態に係る電気回路診断方法においては、動作時に予め回路毎に定めてある抵抗分の誤差を可変抵抗22で調節し、ステップ10〜13を行うことなしに、ステップ14以下を行う構成とすることもでき、診断対象機器4内の抵抗の製造誤差等を補正した上で、診断対象機器4と正常機器3とを直接比較して診断対象機器4の劣化を判断することができる。また、前記第1の実施形態に係る電気回路診断方法においては、ブリッジ回路2内の抵抗11、12の抵抗値を診断対象機器4が不動作となる値以上に選定することもでき、診断対象機器4が動作することによるインピーダンス変動を防止して高精度の診断ができる。
【0030】
また、前記第1の実施形態に係る電気回路診断方法においては、ブリッジ回路2内の抵抗11、12の抵抗値を診断対象機器4のインピーダンス値以上に選定することもでき、正常機器3に印加させる電圧を低くくすることもできて電気回路診断装置を小型軽量化することができる。また、前記第1の実施形態に係る電気回路診断方法においては、電源に交流電源を用いているが、直流電源とすることもでき、対角辺の平衡検出回路部17を直流検流計とし、前記スイッチ1を投入した後の過渡状態時のこの検流計に流れる電流の方向により、いずれのコンデンサ23、33の静電容量が大きいかを判別し、当該判別結果に基づいて前記診断対象機器4を診断することができる。
【0031】
【発明の効果】
本発明においては、診断対象機器と正常機器と同一抵抗値の2つの抵抗素子とを備えた構成とし、スイッチの投入により電圧を印加させ、この投入時の過渡状態における特性変動を検出しているので、診断対象機器と正常機器とに発生する過渡状態の各電流を直接比較して診断対象機器のコンデンサを含む総ての素子の劣化を総合的に判断することができるという効果を有する。さらに、診断対象機器の接続点をブリッジ回路の接続端子に接続するのみで、別途試験端子を設ける必要がなく、あわせて、負荷電流が流れることによる磁束変化により発生する電流を電流検出手段で測定するために回路全体の小型化を図ることができるという効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る電気回路診断方法に使用する診断装置の全体回路図である。
【図2】本発明の第1の実施形態に係る電気回路診断方法に使用する診断装置の部分回路図である。
【図3】本発明の第1の実施形態に係る電気回路診断方法の動作フローチャートである。
【図4】本発明の第1の実施形態に係るコンデンサの電圧動作状態図である。
【図5】本発明の第1の実施形態に係る診断対象機器を電力用開閉器の制御回路とした場合の動作説明図である。
【図6】図5に記載の電力用開閉器制御回路の詳細回路図である。
【図7】図6に記載の制御回路の等価回路図である。
【図8】本発明の第1の実施形態に係る診断対象として電力用開閉器の制御回路を用いた場合の電圧動作状態図である。
【図9】本発明の第2の実施形態に係る電気回路診断方法に使用する診断装置の全体回路図である。
【図10】従来の電気回路診断装置の概念図である。
【図11】従来の電気回路診断装置の概念図である。
【符号の説明】
a、b 電源接点
c、d、e、f、g、h 接続点
1、401 スイッチ
2 ブリッジ回路
2a、2b、2c、2d 辺
3 正常機器
4 診断対象機器
11、12、21、31、32、411、412 抵抗
13、413 診断接続端子
13a、14a 入出力接点
14、414 正常接続端子
15 電位差検出用トランス
16 電圧計
17 平衡検出回路
20、30 ダイオードブリッジ
22 可変抵抗
23、33 コンデンサ
40 電源線
41 電源スイッチ
42 自動化子局
43 制御電源トランス
44 電力用開閉器
45 制御回路接続線
101 電界コンデンサ
102 放電抵抗器
103 電圧分圧器
107 警報器
121 アナログ/デジタル変換機
122 演算装置
123 記録装置
201 バッテリ
202 パワートランジスタ
203 モータ
204 抵抗
205 電解コンデンサ
206 電圧検出部
207 診断装置
300、400 配線路
415 変流器
416 電流計
417 電流検出回路
α 正常機器のコンデンサによる充電電圧特性図
β 診断対象機器Aのコンデンサによる充電電圧特性図
γ 診断対象機器Bのコンデンサによる充電電圧特性図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric circuit diagnosis method for diagnosing deterioration of a capacitor or the like used in a circuit inside a device.
[0002]
[Prior art]
As a conventional electric circuit diagnostic apparatus, there is one disclosed in Japanese Patent Laid-Open No. 62-238471, which is shown in FIG. FIG. 10 is a conceptual diagram of a conventional electric circuit diagnostic apparatus.
[0003]
In FIG. 10, the conventional electrical circuit diagnostic apparatus is such that the discharge resistor 102 is connected to both ends, the electrolytic capacitor 101 is charged, and the discharge resistor 102 is connected to both ends. The recording device 123 in which the discharge characteristics of the electrolytic capacitor 101 at the initial stage of the product are stored in advance, and the discharge voltage at the time of discharge of the electric field capacitor 101 are input, and the decay of the discharge voltage is recorded in the recording device 123. It is a structure provided with the arithmetic unit 122 which judges that deterioration has arisen in the electric field capacitor 101 when it is earlier than attenuation | damping.
An analog / digital converter 121 is connected between the voltage divider 103 connected in parallel to the discharge resistor 102 and the arithmetic unit 122.
[0004]
In the conventional electric circuit diagnostic apparatus based on the above-described configuration, a discharge voltage at the time of discharge of the electrolytic capacitor 101 is input by the arithmetic unit 122, and the decay of the discharge voltage recorded in the recording device 123 is attenuated. Since it is determined that the electrolytic capacitor 101 is deteriorated when larger, the deterioration of the electrolytic capacitor 101 can be determined without providing a temporary delay calculator or a signal determiner. It is not necessary to consider the secular change, and a highly accurate product can be obtained.
[0005]
In addition to the above, a conventional electric circuit diagnostic apparatus is disclosed in Japanese Patent Laid-Open No. 5-215800, which is shown in FIG. FIG. 11 is a conceptual diagram of a conventional electric circuit diagnostic apparatus.
In FIG. 11, the conventional electric circuit diagnostic apparatus is a power converter, and a battery 201 and a motor 203 as a power source are connected to a power transistor unit 202 that converts a direct current into an alternating current of an arbitrary frequency. A first switch SW1 and a resistor 204 are connected in series with the transistor portion 202, a switch SW2 is connected in parallel to the resistor 204, and an electrolytic capacitor 205 is connected in parallel to the power transistor portion 202. Both switches SW1 , SW2 is on / off controlled by a control device (not shown).
[0006]
In the above configuration, the charging time from when the switch SW1 is turned on until the charging voltage of the capacitor 205 charged through the resistor 204 reaches a predetermined voltage is measured, and in the case of a normal capacitor, the charging voltage is charged to the predetermined voltage. The required reference time and the charging time are compared, and when the charging time is shorter than the reference time, it is determined that the capacitor 205 is deteriorated. Even if the capacitor 205 is normal, if the power supply voltage changes, the charging time until the predetermined voltage is reached also changes. When the power source is the battery 201, the power source voltage changes due to the discharge of the battery 201. However, since the reference time is set on the basis of the battery voltage at the time of measuring the charging time, even if the power supply voltage changes, the deterioration diagnosis of the capacitor 205 is not hindered.
[0007]
[Problems to be solved by the invention]
Since the conventional electrical circuit diagnostic apparatus disclosed in Japanese Patent Laid-Open No. Sho 62-238471 is configured as described above, the direction of impedance reduction of a circuit connected in parallel with a capacitor while being used for a long time is a diagnostic target. If there is degradation, there is a problem that the degradation judgment is wrong due to this impedance reduction. That is, although the capacitor 101 in the electric circuit is normal, it is determined as if the capacitor 101 has deteriorated due to a change in the charging time of the capacitor 101 due to deterioration of the impedance connected in parallel with the capacitor 101. Have On the other hand, although the capacitor 101 in the electric circuit is abnormal, the charging time of the capacitor 101 is changed due to the deterioration of the impedance connected in parallel with the capacitor 101, and it is determined that the capacitor 101 is normal. Has a problem.
[0008]
In addition, since the conventional electric circuit diagnosis apparatus disclosed in Japanese Patent Laid-Open Nos. 62-238471 and 5-215800 is configured as described above, the capacitor 101 (or 205) in the diagnosis target device is used for diagnosis. ), The voltage of the capacitor 101 (or 205) must be measured, and the device to be diagnosed is provided with means for measuring the voltage of the capacitor 101 (or 205) or the device to be diagnosed is disassembled. Thus, the voltage of the capacitor 101 (or 205) must be measured.
[0009]
The present invention has been made to solve the above-mentioned problems, and an electrical circuit diagnostic method capable of diagnosing deterioration of a device to be diagnosed without erroneously performing deterioration diagnosis due to deterioration in the direction of decreasing capacitance and without directly measuring a capacitor voltage. The purpose is to provide.
[0010]
[Means for Solving the Problems]
Electrical circuit diagnosis method according to the present invention, closed open wiring line connected to the power supply by the switch, the diagnosis target device having a first resistance element and the diagnostic object of the capacitors connected in series, said first resistor element And a second resistor element connected in parallel to the diagnosis target device, having a resistance value identical to that of the first resistance element, and a normal device composed of an equivalent circuit of the diagnosis target device in a normal state, connected in series, A current transformer so that a current flows in the forward direction and the other in the reverse direction in the power supply line of the series circuit of the first resistive element and the device to be diagnosed and the power supply line of the series circuit of the second resistive element and the normal device The current detection means is connected to the primary side and detects the current generated on the secondary side of the current transformer. After the switch is turned on, the diagnosis target is detected by the characteristic fluctuation in the transient state detected by the current detection means. It is intended to diagnose the vessel. As described above, in the present invention, the device to be diagnosed and the normal device are provided with two resistance elements having the same resistance value, a voltage is applied by turning on the switch, and a characteristic variation in a transient state at the time of turning on is detected. Therefore, it is possible to comprehensively determine the deterioration of all elements including the capacitor of the diagnosis target device by directly comparing the currents in the transient state generated in the diagnosis target device and the normal device. In addition, it is not necessary to provide a separate test terminal simply by connecting the connection point of the device to be diagnosed to the connection terminal of the bridge circuit. In addition, the current detection means measures the current generated by the magnetic flux change caused by the load current flowing. Therefore, the entire circuit can be reduced in size.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
(First Embodiment of the Present Invention) An electric circuit diagnosis method according to a first embodiment of the present invention will be described below together with an electric circuit diagnosis apparatus with reference to FIGS. 1 is an overall circuit diagram of a diagnostic apparatus used in the electrical circuit diagnostic method according to the present embodiment, FIG. 2 is a partial circuit diagram of the diagnostic apparatus used in the electrical circuit method according to the present embodiment, and FIG. 3 is the present embodiment. operation flowchart of the electrical circuit diagnosis method according to, Figure 4 is voltage operation state diagram of a capacitor according to the present embodiment, FIG. 5 operation when the diagnosis target device according to the present embodiment is the control circuit of the power switch 6 is a detailed circuit diagram of the power switch control circuit shown in FIG. 5, FIG. 7 is an equivalent circuit diagram of the control circuit shown in FIG. 6, and FIG. 8 is a power switch as a diagnosis target according to the present embodiment. The voltage operation state figure at the time of using the control circuit of a device is shown. In each figure, the diagnostic device used in the electrical circuit diagnostic method according to the present embodiment is based on the switch 1 that opens and closes the wiring line 300 connected to an AC power supply (not shown) and the voltage applied from the AC power supply. The bridge circuit 2 is configured to detect capacitor deterioration during a transient state until the capacitor is charged.
[0015]
The bridge circuit 2 includes resistors 11 and 12 having the same resistance value connected to the middle of adjacent sides 2a and 2b of the rectangular circuit forming the bridge circuit, and the other two sides 2c of the rectangular circuit. 2d, a diagnostic connection terminal 13 for connecting the diagnostic target device 4 and a normal connection terminal 14 for connecting the normal device 3, and a connection point c and a resistance of the resistor 11 and the diagnostic connection terminal 13 12 and a connection point d of the normal connection terminal 14 (equal to the diagonal side of the rectangular circuit) and a balance detection circuit 17 connected. The balance detection circuit 17 includes a potential difference detection transformer 15 that detects a potential difference between the connection point c and the connection point d of the bridge circuit, and a voltmeter 16 that is connected to the secondary winding of the potential difference detection transformer 15. It is comprised and is employ | adopted as a galvanometer detection means.
[0016]
The bridge circuit 2 connects two connecting points a, b, c, and d of the sides 2a, 2b, 2c, and 2d as power contacts a and b to the AC power source through the switch 1. Has been.
The normal device 3 connected to the normal connection terminal 14 can be represented as an equivalent circuit corresponding to a normal device circuit having a circuit configuration in a normal state of the diagnosis target device 4 shown in FIG. The circuit of the normal device 3 includes a diode bridge 20 connected to the input / output contact 14a, a resistor 21 and a variable resistor 22 connected in parallel to the diode bridge 20 via a connection point g, and the resistor 21 in series. The capacitor 23 is connected.
[0017]
The diagnosis target device 4 connected to the diagnosis connection terminal 13 can be represented as an equivalent circuit of the diagnosis target device circuit as shown in FIG. Here, the resistors 22 and 32 of the equivalent circuit are the load resistances of the device circuit, and form the discharge circuit of the capacitors 23 and 33. The circuit of the diagnosis target device 4 includes a diode bridge 30 connected to the input / output contact 13a, resistors 31 and 32 connected in parallel to the diode bridge 30 via a connection point e, and a series connection with the resistor 31. The capacitor 33 is provided.
[0018]
Next, the capacitance diagnosis operation of the electric circuit diagnosis method according to the present embodiment will be described. First, when the switch 1 is turned on, an AC voltage is applied from the AC power source to the bridge circuit 2 and is shunted to the branched resistors 11 and 12, and each capacitor of the normal device 3 and the diagnosis target device 4 is divided by this shunted current. Charges 23 and 33 are charged (step 10). It is determined whether the balance in the bridge circuit 2 is maintained in a steady state after the switch 1 is turned on (step 11). If it is determined in step 11 that the balance in the bridge circuit 2 is maintained in the steady state, the switch 1 is opened (step 12). A discharge circuit for the capacitors 23 and 33 is formed, and the process waits until a predetermined time for discharging the capacitors elapses (step 13). When the switch 1 is turned on again, an AC voltage is applied from the AC power source to the bridge circuit 2 (step 14).
[0019]
The transient state from when the switch 1 is turned on to when the bridge circuit 2 is in a steady state is measured by using the voltmeter 16 to measure the transient voltage of the balance detection circuit 17 and output it as the measured voltage Vn (step 15). It is determined whether or not the magnitude of the measured voltage Vn measured in step 15 is equal to or less than a reference value Vref (step 16). If it is determined in step 16 that the measured voltage Vn is less than or equal to the reference value Vref, it is determined that there is no deterioration (step 17). If it is determined that the measured voltage Vn is not less than or equal to the reference value Vref, there is deterioration. (Step 18). If it is determined in step 11 that the balance in the bridge circuit 2 is not maintained in the steady state, the variable resistor 22 of the normal device 3 is adjusted to the balanced state (step 19), and the process proceeds to step 11. That is, by adjusting the variable resistor 22, the influence of elements other than the capacitor 33 in the diagnosis target device 4 can be eliminated.
The reference value Vref is a value that is allowed from 0, and is a value that is comparable to a manufacturing error of a device to be diagnosed.
[0020]
Next, the capacitance diagnosis operation will be described with reference to FIG. 4 when the diagnosis target devices 4A and 4B, which are diagnosis target devices that have not been diagnosed, are sequentially connected to the diagnosis connection terminal 13. 4, α is a charging voltage characteristic diagram by the capacitor 23 of the normal device 3, β is a charging voltage characteristic diagram by the capacitor 33 of the diagnosis target device 4A, and γ is a charging voltage characteristic diagram by the capacitor 33 of the diagnosis target device 4B. In the figure, the voltage value at time T1 (within a transient state range) after a predetermined time has elapsed from the start time T0 is that the charging potential of the capacitor 23 is V0, the charging potential of the capacitor 33 of the diagnosis target device A is V1, and the diagnosis target device B. The charging potential of the capacitor 33 is V2. At time T1, the voltmeter 16 indicates a potential difference | V1-V0 | when the diagnosis target device 4 is the diagnosis target device A, and indicates a potential difference | V2-V0 | when the diagnosis target device 4 is the diagnosis target device B. Since the potential difference | V1-V0 | is less than the reference value Vref, it is determined that the diagnosis target device 4A is not deteriorated. Since the potential difference | V2-V0 | is not less than the reference value Vref, the diagnosis target device 4B is deteriorated. Judge that there is.
[0021]
The device to be diagnosed as an example of the electrical circuit diagnosis method includes a control circuit for the power switch 44 as shown in FIGS. 5 and 6, and a normal device is a control circuit for the power switch 44. There is a corresponding equivalent circuit in FIG. The power line 40 connected to the automated slave station 42 in FIG. 5 is disconnected from the automated slave station 42 and connected to the electrical circuit diagnostic device, and the control circuit connection line 45 of the power switch as the diagnostic target device is connected to the automated slave station. It is removed from 42 and connected to the diagnostic connection terminal 13 of the electric circuit diagnostic device, and the electric circuit diagnostic device is operated in the same manner as described above. Thus, by using the electric circuit diagnostic device for the control circuit of the power switch 44, it is possible to easily diagnose the deterioration of the capacitor in the control circuit of the power switch 44.
[0022]
FIG. 8A shows the time-series voltage graph between the connection point d and the connection point b, and (2) the connection point c and the connection point b when the diagnosis target apparatus is normal. (3) shows a time-series voltage graph between the connection point c and the connection point d. FIG. 8B shows the time-series voltage graph between the connection point d and the connection point b, and (2) the connection point c and the connection point b when the diagnosis target device is deteriorated. (3) shows a time-series voltage graph between the connection point c and the connection point d. In FIG. 8A, (1) and (2) have almost the same voltage waveform, and (3) has a difference between (1) and (2) in the waveform, so it becomes almost zero and the diagnosis target device. It can be seen that there is no deterioration. In FIG. 8B, (1) and (2) are different in the waveform of the voltage in the transient state, and (3) is the same in the transient state because the difference between (1) and (2) occurs in the waveform. Is not constant, and it can be seen that the diagnosis target device has deteriorated.
[0023]
As described above, according to the electrical circuit diagnosis method according to the present embodiment, the diagnosis target device 4 and the normal device 3 are connected to the diagnosis connection terminal 13 and the normal connection terminal 14 of the bridge circuit 2, respectively, and the switch 1 is turned on. The voltage is applied to bring the bridge circuit 2 into a steady state once, and the adjustment of the variable resistor 22 brings the bridge circuit 2 as close to equilibrium as possible. Then, the switch 1 is opened to stop the voltage application, and the capacitors 23 and 33 When the switch 1 is turned on and voltage is applied after discharging, the voltage is not detected by the voltmeter 16 when the bridge circuit 2 is balanced in the transient state, and the bridge circuit 2 is not balanced. In this case, since the voltage is detected by the voltmeter 16, if the voltage is not detected by the voltmeter 16 more than a predetermined value in the transient state, the bridge circuit 2 is balanced and the device to be diagnosed 4, it can be determined that there is no deterioration of the capacitor 33, and when the voltage is detected by the voltmeter 16 more than a predetermined value in a transient state, the balance of the bridge circuit 2 is not maintained and the capacitor 33 in the diagnosis target device 4 is deteriorated. It can be determined that there is, and the deterioration of the capacitor 33 in the diagnosis target device 4 can be easily diagnosed by connecting the diagnosis target device 4 and the normal device 3 to the electric circuit diagnosis device.
[0024]
(Second Embodiment of the Present Invention) An electric circuit diagnosis method according to a second embodiment of the present invention will be described with reference to FIG. FIG. 9 shows an overall circuit diagram of a diagnostic apparatus used in the electrical circuit diagnostic method according to the present embodiment. In FIG. 9, the diagnostic device used in the electrical circuit diagnostic method according to the present embodiment includes a switch 401 that opens and closes a wiring path 400 connected to an AC power supply (not shown), and includes a resistor 411 and a normal device 3. A normal connection terminal 414 for connection is connected in series, and a resistance 412 connected in parallel to the resistor 411 and the normal connection terminal 414 and having the same resistance value as the resistor 411 and a diagnosis for connecting the diagnosis target device 404 are connected. The connection terminals 413 are connected in series, and the resistor 411 and the normal connection terminal 414 are connected to the power supply line and the resistor 412 and the diagnosis connection terminal 413 so that the current flows in the forward direction and the other in the reverse direction. The power supply line is clamped and a current detection circuit 417 is provided.
[0025]
The normal devices connected to the normal connection terminal 414 and the diagnosis target devices connected to the diagnosis connection terminal 413 are the normal device 3 and the diagnosis target device 4 as in the first embodiment.
The current detection circuit 417 includes a current transformer 415 and an ammeter 416, and the ammeter 416 detects a current generated by the current transformer 415 due to a magnetic flux change caused by the load current I2.
[0026]
Next, the capacitance diagnosis operation of the electric circuit diagnosis method according to the present embodiment will be described. First, when the switch 401 is turned on, an alternating current flows from the alternating current power source to each of the resistors 411 and 412, and charges are charged to the capacitors 23 and 33 of the normal device 3 and the diagnosis target device 4 by the divided current. The Each of the load currents I1 and I2 including the charging current flows as a transient current until the steady state after the switch 401 is turned on. A measurement current In generated from a change in magnetic flux due to the load currents I 1 and I 2 is output as a transient current of the current detection circuit 417 using an ammeter 416. It is determined whether or not the magnitude of the measured current In is less than or equal to the reference value Iref. If it is determined that the magnitude of the measured current In is less than or equal to the reference value Iref, it is determined that there is no deterioration, and the reference If it is determined that the value is not less than the value Iref, it is determined that there is deterioration. The reference value Iref is a value that is allowed from 0 and is a value that is comparable to a manufacturing error or the like of a device to be diagnosed.
[0027]
According to the electrical circuit diagnostic method according to the present embodiment, when the diagnosis target device 4 and the normal device 3 are respectively connected to the diagnosis connection terminal 413 and the normal connection terminal 414, the switch 401 is turned on, and a voltage is applied, In the case where substantially the same current flows in the opposite directions, the current is not detected by the ammeter 416. If the substantially same current is not flowing, the current is detected by the ammeter 416. As described above, when no current is detected by the ammeter 416, it can be determined that the capacitor 33 in the diagnosis target device 4 is not deteriorated. When a current is detected by the ammeter 416 more than a predetermined value in a transient state, the diagnosis target device is detected. 4 can be determined that the capacitor 33 is deteriorated, and the condenser 4 in the diagnosis target device 4 can be easily connected by connecting the diagnosis target device 4 and the normal device 3 to the electric circuit diagnosis device. 33 deterioration of can be diagnosed. Furthermore, since the current generated by the magnetic flux change due to the load current I2 is measured by the ammeter 416 of the current detection circuit 417 using the current transformer 415, the entire circuit can be reduced in size.
[0028]
(Other Embodiments of the Present Invention) In the electrical circuit diagnostic method according to the first embodiment, the variable resistor 22 is provided on the connection side of the normal device 3, but it is not necessary to provide it. It is also possible to adopt a configuration in which step 14 and the subsequent steps are not performed without performing steps 10 to 13 during operation, and all the devices including the capacitors 33 of the diagnosis target device 4 are directly compared with the diagnosis target device 4 and the normal device 3. The deterioration of the element can be comprehensively determined. Furthermore, only the input / output contact 13a of the diagnosis target device 4 is connected to the diagnosis connection terminal 13 of the bridge circuit 2, and there is no need to provide a separate connection terminal.
[0029]
Further, in the electrical circuit diagnostic method according to the first embodiment, the error corresponding to the resistance predetermined for each circuit during operation is adjusted by the variable resistor 22, and step 14 is performed without performing steps 10-13. It can also be configured to perform the following, and after correcting the manufacturing error of the resistance in the diagnosis target device 4, the diagnosis target device 4 and the normal device 3 are directly compared to determine the deterioration of the diagnosis target device 4. be able to. In the electrical circuit diagnosis method according to the first embodiment, the resistance values of the resistors 11 and 12 in the bridge circuit 2 can be selected to be greater than or equal to a value at which the diagnosis target device 4 does not operate. Impedance fluctuation due to the operation of the device 4 can be prevented and highly accurate diagnosis can be performed.
[0030]
In the electrical circuit diagnosis method according to the first embodiment, the resistance values of the resistors 11 and 12 in the bridge circuit 2 can be selected to be equal to or higher than the impedance value of the diagnosis target device 4 and applied to the normal device 3. The voltage to be applied can be lowered, and the electric circuit diagnostic apparatus can be reduced in size and weight. In the electrical circuit diagnostic method according to the first embodiment, an AC power source is used as a power source. However, a DC power source can be used, and the diagonal side balance detection circuit unit 17 is a DC galvanometer. Based on the direction of the current flowing through the galvanometer in the transient state after the switch 1 is turned on, it is determined which of the capacitors 23 and 33 has a large capacitance, and the diagnosis target is determined based on the determination result. The device 4 can be diagnosed.
[0031]
【The invention's effect】
In the present invention, the diagnosis target device and the normal device are provided with two resistance elements having the same resistance value, a voltage is applied by turning on the switch, and a characteristic variation in a transient state at the time of turning on is detected. Therefore, there is an effect that it is possible to comprehensively judge deterioration of all elements including the capacitor of the diagnosis target device by directly comparing each current in the transient state generated in the diagnosis target device and the normal device. In addition, it is not necessary to provide a separate test terminal simply by connecting the connection point of the device to be diagnosed to the connection terminal of the bridge circuit. In addition, the current detection means measures the current generated by the magnetic flux change caused by the load current flowing. Therefore, the entire circuit can be reduced in size.
[Brief description of the drawings]
FIG. 1 is an overall circuit diagram of a diagnostic apparatus used in an electrical circuit diagnostic method according to a first embodiment of the present invention.
FIG. 2 is a partial circuit diagram of a diagnostic apparatus used in the electrical circuit diagnostic method according to the first embodiment of the present invention.
FIG. 3 is an operation flowchart of the electrical circuit diagnostic method according to the first embodiment of the present invention.
FIG. 4 is a voltage operation state diagram of the capacitor according to the first embodiment of the present invention.
FIG. 5 is an operation explanatory diagram when the diagnosis target device according to the first embodiment of the present invention is a control circuit for a power switch.
6 is a detailed circuit diagram of the power switch control circuit shown in FIG. 5; FIG.
7 is an equivalent circuit diagram of the control circuit shown in FIG. 6;
FIG. 8 is a voltage operation state diagram when a control circuit for a power switch is used as a diagnosis target according to the first embodiment of the present invention.
FIG. 9 is an overall circuit diagram of a diagnostic device used in an electrical circuit diagnostic method according to a second embodiment of the present invention.
FIG. 10 is a conceptual diagram of a conventional electric circuit diagnostic apparatus.
FIG. 11 is a conceptual diagram of a conventional electric circuit diagnostic apparatus.
[Explanation of symbols]
a, b Power contact c, d, e, f, g, h Connection point 1, 401 Switch 2 Bridge circuit 2a, 2b, 2c, 2d Side 3 Normal device 4 Diagnosis target device 11, 12, 21, 31, 32, 411, 412 Resistors 13, 413 Diagnostic connection terminals 13a, 14a Input / output contacts 14, 414 Normal connection terminals 15 Potential difference detection transformer 16 Voltmeter 17 Balance detection circuit 20, 30 Diode bridge 22 Variable resistance 23, 33 Capacitor 40 Power line 41 Power switch 42 Automation slave station 43 Control power transformer 44 Power switch 45 Control circuit connection line 101 Electric field capacitor 102 Discharge resistor 103 Voltage divider 107 Alarm 121 Analog / digital converter 122 Computing device 123 Recording device 201 Battery 202 Power Transistor 203 Motor 204 Resistor 205 Electrolytic capacitor Sensor 206 Voltage detection unit 207 Diagnosis device 300, 400 Wiring path 415 Current transformer 416 Ammeter 417 Current detection circuit α Charging voltage characteristic diagram by capacitor of normal device β Charging voltage characteristic diagram by capacitor of diagnosis target device A γ Diagnosis target device Charging voltage characteristics with B capacitor

Claims (1)

電源に接続される配線路をスイッチにより閉し
第1の抵抗素子及び診断対象のコンデンサを有する診断対象機器を直列接続し、
当該第1の抵抗素子及び診断対象機器に並列に接続され、前記第1の抵抗素子と同一の抵抗値を有する第2の抵抗素子及び前記診断対象機器の正常時における等価回路からなる正常機器を直列接続し、
前記第1の抵抗素子及び診断対象機器の直列回路の電源供給線と第2の抵抗素子及び正常機器の直列回路の電源供給線を一方を順方向、他方を逆方向に電流が流れるように変流器一次側に通過させ、
当該変流器2次側で発生した電流を検出する電流検出手段を接続し、
前記スイッチを投入した後に前記電流検出手段で検出される過渡状態における特性変動により前記診断対象機器を診断することを
特徴とする電気回路診断方法
The wiring line connected to a power supply closed open by the switch,
A diagnostic target device having a first resistance element and a diagnostic target capacitor is connected in series;
A normal device that is connected in parallel to the first resistance element and the diagnosis target device, and includes a second resistance element having the same resistance value as the first resistance element and an equivalent circuit of the diagnosis target device in a normal state. Connected in series,
The power supply line of the series circuit of the first resistance element and the device to be diagnosed and the power supply line of the series circuit of the second resistance element and the normal device are changed so that current flows in one direction in the forward direction and the other in the reverse direction. Let it pass to the primary side
Connect a current detection means for detecting the current generated on the secondary side of the current transformer,
An electrical circuit diagnostic method comprising diagnosing the device to be diagnosed based on a characteristic variation in a transient state detected by the current detection means after the switch is turned on.
JP2001345268A 2001-11-09 2001-11-09 Electrical circuit diagnostic equipment Expired - Fee Related JP3964654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345268A JP3964654B2 (en) 2001-11-09 2001-11-09 Electrical circuit diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345268A JP3964654B2 (en) 2001-11-09 2001-11-09 Electrical circuit diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2003149283A JP2003149283A (en) 2003-05-21
JP3964654B2 true JP3964654B2 (en) 2007-08-22

Family

ID=19158635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345268A Expired - Fee Related JP3964654B2 (en) 2001-11-09 2001-11-09 Electrical circuit diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3964654B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050120A (en) * 2009-08-25 2011-03-10 Fuji Electric Systems Co Ltd Power conversion apparatus
JP6671891B2 (en) * 2015-08-21 2020-03-25 学校法人 芝浦工業大学 Electronic component test equipment, electronic component test method
JP7331707B2 (en) * 2020-01-16 2023-08-23 東京電力ホールディングス株式会社 Inspection method
CN112214950B (en) * 2020-09-08 2023-03-28 青岛四方阿尔斯通铁路运输设备有限公司 Capacitor capacity abnormity detection method

Also Published As

Publication number Publication date
JP2003149283A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP6345312B2 (en) Insulation detector and electrical equipment
US11545839B2 (en) System for charging a series of connected batteries
CN101363895B (en) Method and system for detecting DC loop fault
US9588180B2 (en) Architecture and method to determine leakage impedance and leakage voltage node
US9523730B2 (en) Architecture and method to determine leakage impedance and leakage voltage node
US20100171511A1 (en) Motor insulation deterioration detection device
KR940701546A (en) Method and device for charging and testing the battery
EP3317683A1 (en) Energy storage cell impedance measuring apparatus, methods and related systems
JP3964654B2 (en) Electrical circuit diagnostic equipment
JP3890503B2 (en) Insulation detector for ungrounded power supply
CN201335870Y (en) DC circuit fault detection system
JP2002040064A (en) Battery voltage detector
CN112180265A (en) Battery tester
JP3962991B2 (en) Insulation detector for ungrounded power supply
JP2002228695A (en) Resistance measuring apparatus
JP3805478B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
JP7331543B2 (en) BUILD BATTERY MONITORING SYSTEM AND BATTERY FAILURE DETERMINATION METHOD
JP3890504B2 (en) Insulation detector for ungrounded power supply
JP5012430B2 (en) DC test equipment and semiconductor test equipment
JPH095368A (en) Method for measuring resistance of wiring
JPH09257848A (en) Maintenance inspecting apparatus for electric circuit
RU2718695C2 (en) Measurement circuit for electronic signaling circuitry
WO2013126427A1 (en) Architecture and method to determine leakage impedance and leakage voltage node
JPH09233185A (en) Equipment and method for subscriber line test
JPH05870Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees