JPH0674977A - Non-contact type ammeter - Google Patents

Non-contact type ammeter

Info

Publication number
JPH0674977A
JPH0674977A JP4228312A JP22831292A JPH0674977A JP H0674977 A JPH0674977 A JP H0674977A JP 4228312 A JP4228312 A JP 4228312A JP 22831292 A JP22831292 A JP 22831292A JP H0674977 A JPH0674977 A JP H0674977A
Authority
JP
Japan
Prior art keywords
coil
current
accuracy
sample
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4228312A
Other languages
Japanese (ja)
Inventor
Yutaka Matsunobu
豊 松延
Kiyoshi Yamaguchi
潔 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4228312A priority Critical patent/JPH0674977A/en
Publication of JPH0674977A publication Critical patent/JPH0674977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To provide an ammeter with higher accuracy by shaping a detecting section like the form of a superconducting trochoidal coil, and using a ferromagnetic material for a winding core. CONSTITUTION:When current flows across a sample, current also flows in a Rogowskii coil and magnetic field is generated with a sensor coil connected to the Rogowskii coil in superconducting state. Thus, when a Hall element is laid across the sensor coil, Hall voltage is generated. In this case, accuracy is determined only on the basis of the performance of the Hall element and no accuracy improvement results. For this reason, a coil to offset a magnetic flux generated with the current flowing across the sample is provided, and the Hall element is used as a zero-point sensor entirely free from an error, even when subjected to an influence by external magnetic field. According to this constitution, a clear linear relationship is established between the sample current and cancel current, and highly accurate measurements can be undertaken. Furthermore, a ferromagnetic material is used for the winding core of the sensor coil, and the coil is shaped like a trochoidal form free from flux leak, thereby enabling measurement accuracy to be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極低温において試料電
流を非接触で測定する電流計の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an ammeter for measuring a sample current in a non-contact manner at a very low temperature.

【0002】[0002]

【従来の技術】従来の技術は、ホール素子のみを用いて
試料電流が作る磁束を測定する方法がある。この方法
は、試料電流が大きくなった場合にホール素子の線形性
が崩れるため、校正が困難でありかつ誤差も大きい。ま
た、外部磁場が印加された場合、外部磁場によって試料
電流が作る磁束の変化が埋もれてしまい、誤差が±30
%と非常に大きくなる。
2. Description of the Related Art As a conventional technique, there is a method of measuring a magnetic flux generated by a sample current using only a Hall element. This method is difficult to calibrate and has a large error because the linearity of the Hall element collapses when the sample current increases. Moreover, when an external magnetic field is applied, the change in the magnetic flux created by the sample current is buried by the external magnetic field, and the error is ± 30.
It becomes very large with%.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、従来
技術での誤差±30%を誤差±0.1% にまで高精度化
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the accuracy of the conventional technique of ± 30% to an error of ± 0.1%.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明はホール素子を狂いのないゼロ点センサとし
て用いるために、電流計の構成を、試料導体電流の変化
によって生じる磁束を検出する超電導ロゴスキーコイル
と磁気シールドで覆われた検出部、及び試料電流によっ
て生じた磁束を打ち消すための超電導ロゴスキーコイル
からなるものとし、更に、検出部の形状が超電導トロイ
ダルコイル形状をなし、かつ巻芯に強磁性体を用いる。
In order to achieve the above-mentioned object, the present invention uses a Hall element as a zero point sensor without any deviation so that an ammeter is configured to detect a magnetic flux generated by a change in a sample conductor current. It shall consist of a superconducting Rogowski coil, a detection unit covered with a magnetic shield, and a superconducting Rogowski coil for canceling the magnetic flux generated by the sample current. A ferromagnetic material is used for the core.

【0005】[0005]

【作用】この構成によると、外部磁場印加時にも、誤差
±0.1% にまで高精度化することができる。
According to this structure, even when an external magnetic field is applied, the accuracy can be increased to ± 0.1%.

【0006】[0006]

【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0007】図1は、本発明の一実施例による非接触式
電流計のブロック図である。
FIG. 1 is a block diagram of a non-contact type ammeter according to an embodiment of the present invention.

【0008】図1を用いて本発明に関して説明する。図
1において試料に電流が流れるとロゴスキーコイルに電
流が流れ、ロゴスキーコイルと超電導接続されたセンサ
コイルにより磁界が発生する。よってホール素子をセン
サコイルの間に配置することによりホール電圧が発生す
る。以上の構成のみであるとホール素子の性能のみで精
度が決定されてしまうため精度向上が困難である。した
がって、試料電流が作る磁束を打ち消すコイルを設ける
ことにより、ホール素子を外部磁場などの影響を受けて
も、絶対に狂いのないゼロ点センサとして用いる。この
構成では試料電流とキャンセル電流の間にはきれいな線
形性が成立し、高精度の測定が可能となる。更に、図2
のように、センサコイルの巻芯に純鉄などの強磁性体を
用い、コイル形状を磁束の漏れのないトロイダル形状に
することにより、高精度化が可能となる。純鉄などの強
磁性体をコイルの巻枠として用いることは、磁場が強く
なった場合の飽和の影響のため通常は用いられないが、
この構成ではゼロ磁場を測定するためのものであるの
で、ゼロ近傍であれば、空心の場合よりも約100倍の
磁束を生成し、高精度化に寄与できる。空心の場合と鉄
心の場合の精度の比較を図3に示す。また、トロイダル
コイルはソレノイドコイルと比較して磁束の漏れが少な
いため約2倍の精度に寄与できる。空心トロイダルコイ
ルと空心ソレノイドコイルの精度の比較を図4に示す。
以上の効果により測定誤差を±0.1%以下に減少する
ことができる。
The present invention will be described with reference to FIG. In FIG. 1, when a current flows through the sample, a current flows through the Rogowski coil, and a magnetic field is generated by the sensor coil superconductingly connected to the Rogowski coil. Therefore, the Hall voltage is generated by disposing the Hall element between the sensor coils. With only the above configuration, it is difficult to improve the accuracy because the accuracy is determined only by the performance of the Hall element. Therefore, by providing a coil that cancels the magnetic flux generated by the sample current, the Hall element is used as a zero point sensor that is absolutely stable even when affected by an external magnetic field or the like. With this configuration, a clean linearity is established between the sample current and the cancel current, which enables highly accurate measurement. Furthermore, FIG.
As described above, by using a ferromagnetic material such as pure iron for the core of the sensor coil and making the coil shape a toroidal shape with no leakage of magnetic flux, high accuracy can be achieved. The use of a ferromagnetic material such as pure iron as the coil winding frame is not normally used because of the effect of saturation when the magnetic field becomes strong,
Since this configuration is for measuring the zero magnetic field, if it is near zero, a magnetic flux of about 100 times that in the case of the air core is generated, which can contribute to higher accuracy. Figure 3 shows a comparison of the accuracy between the air core and the iron core. Further, since the toroidal coil has less leakage of magnetic flux than the solenoid coil, it can contribute to about twice the accuracy. A comparison of the accuracy of the air-core toroidal coil and the air-core solenoid coil is shown in FIG.
Due to the above effects, the measurement error can be reduced to ± 0.1% or less.

【0009】[0009]

【発明の効果】本発明によれば、大電流で高磁場下の超
電導導体の測定においても±0.1%以下の高精度測定
を非接触式で行なうことが出来る。また、非接触方式な
ので永久電流モードで使用する機器の電流測定が高精度
で行なえる。
According to the present invention, highly accurate measurement of ± 0.1% or less can be performed in a non-contact manner even in the measurement of a superconducting conductor under a large magnetic field and a high magnetic field. In addition, since it is a non-contact method, it is possible to measure the current of devices used in the permanent current mode with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における非接触式電流計のブロック図。FIG. 1 is a block diagram of a non-contact ammeter according to the present invention.

【図2】本発明におけるトロイダルコイル形状鉄心セン
サコイルの斜視図。
FIG. 2 is a perspective view of a toroidal coil-shaped iron core sensor coil according to the present invention.

【図3】センサコイルを鉄心トロイダル形状にした場合
と空心トロイダル形状にした場合の誤差を示す特性図。
FIG. 3 is a characteristic diagram showing an error when the sensor coil has an iron core toroidal shape and an air core toroidal shape.

【図4】センサコイルを空心トロイダル形状にした場合
と空心ソレノイド形状にした場合の誤差を示す特性図。
FIG. 4 is a characteristic diagram showing an error when the sensor coil has an air-core toroidal shape and when the sensor coil has an air-core solenoid shape.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】試料導体電流の変化によって生じる磁束を
検出する超電導ロゴスキーコイルとその検出部、及び前
記試料導体電流によって生じた磁束を打ち消すための超
電導ロゴスキーコイルから構成される非接触式電流計に
おいて、前記検出部の形状が超電導トロイダルコイル形
状をなし、巻芯に強磁性体を用いていることを特徴とす
る非接触式電流計。
1. A non-contact type current composed of a superconducting Rogowski coil for detecting a magnetic flux generated by a change in a sample conductor current and its detecting portion, and a superconducting Rogowski coil for canceling a magnetic flux generated by the sample conductor current. The non-contact ammeter, wherein the detector has a superconducting toroidal coil shape and a ferromagnetic material is used for the winding core.
【請求項2】請求項1において、前記巻芯に用いている
前記強磁性体が純鉄である非接触式電流計。
2. The non-contact ammeter according to claim 1, wherein the ferromagnetic material used for the winding core is pure iron.
【請求項3】請求項1において、前記検出部の形状が超
電導ソレノイドコイル形状をなし、前記巻芯に強磁性体
を用いている非接触式電流計。
3. A non-contact type ammeter according to claim 1, wherein the detecting portion has a superconducting solenoid coil shape and a ferromagnetic material is used for the winding core.
【請求項4】請求項1において、前記検出部におけるゼ
ロ点の検出センサにホール素子を用いている非接触式電
流計。
4. The non-contact ammeter according to claim 1, wherein a Hall element is used as a zero point detection sensor in the detection section.
【請求項5】請求項1において、前記検出部が磁気シー
ルドで覆われている非接触式電流計。
5. The non-contact ammeter according to claim 1, wherein the detection unit is covered with a magnetic shield.
JP4228312A 1992-08-27 1992-08-27 Non-contact type ammeter Pending JPH0674977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4228312A JPH0674977A (en) 1992-08-27 1992-08-27 Non-contact type ammeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4228312A JPH0674977A (en) 1992-08-27 1992-08-27 Non-contact type ammeter

Publications (1)

Publication Number Publication Date
JPH0674977A true JPH0674977A (en) 1994-03-18

Family

ID=16874471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4228312A Pending JPH0674977A (en) 1992-08-27 1992-08-27 Non-contact type ammeter

Country Status (1)

Country Link
JP (1) JPH0674977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452711B1 (en) * 2000-06-19 2004-10-12 교리츠 덴끼 게이끼 가부시키가이샤 Non-contact type current measuring instrument
CN116500330A (en) * 2023-06-27 2023-07-28 中国科学院合肥物质科学研究院 Detection device for secondary loop current of superconducting transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452711B1 (en) * 2000-06-19 2004-10-12 교리츠 덴끼 게이끼 가부시키가이샤 Non-contact type current measuring instrument
CN116500330A (en) * 2023-06-27 2023-07-28 中国科学院合肥物质科学研究院 Detection device for secondary loop current of superconducting transformer
CN116500330B (en) * 2023-06-27 2023-09-08 中国科学院合肥物质科学研究院 Detection device for secondary loop current of superconducting transformer

Similar Documents

Publication Publication Date Title
US4059798A (en) Method and apparatus for measuring the current flowing in a workpiece
US5438257A (en) Reduced magnetic flux current sensor
JP3445362B2 (en) AC current sensor
DE3476586D1 (en) A detector circuit for current measurements
JP2010529425A (en) Device for measuring the current through a conductor
JPH11281678A (en) Current sensor
JPH0674977A (en) Non-contact type ammeter
JPH0618568A (en) Current sensor
JPH04296663A (en) Current measuring device
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JPH0763833A (en) Superconductor-loop type magnetic-field measuring apparatus
US3267370A (en) Magnetically shielded apparatus for indicating the number of turns and the presence of shorted turns in electric coils
CN219811394U (en) Magnetic core and coil assembly based on TMR weak current sensor
US11573280B2 (en) Coil assembly for compensation current sensor
JPS58193469A (en) Measuring device for current flowing through conductor
JPS60205372A (en) Clip-on ammeter
JP4006919B2 (en) Permeability measuring device and permeability measuring method
JPS5633521A (en) Device for measuring stress
JP2024000752A (en) Current measurement device
CN116580942A (en) Magnetic core and coil assembly based on TMR weak current sensor
JPH022544B2 (en)
JP2532324Y2 (en) DC current sensor
JPH02692Y2 (en)
SU935837A1 (en) Ferroprobe
Silventoinen et al. Review on the current measurement systems in power electronics