JP2024000752A - Current measurement device - Google Patents

Current measurement device Download PDF

Info

Publication number
JP2024000752A
JP2024000752A JP2022099635A JP2022099635A JP2024000752A JP 2024000752 A JP2024000752 A JP 2024000752A JP 2022099635 A JP2022099635 A JP 2022099635A JP 2022099635 A JP2022099635 A JP 2022099635A JP 2024000752 A JP2024000752 A JP 2024000752A
Authority
JP
Japan
Prior art keywords
current
air
magnetic field
magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022099635A
Other languages
Japanese (ja)
Inventor
高裕 工藤
Takahiro Kudo
芳准 山内
Yoshinori Yamauchi
広脩 石橋
Kosuke Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2022099635A priority Critical patent/JP2024000752A/en
Priority to KR1020230025917A priority patent/KR20230174695A/en
Priority to CN202310179248.8A priority patent/CN117269589A/en
Priority to TW112107287A priority patent/TW202401018A/en
Publication of JP2024000752A publication Critical patent/JP2024000752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

To provide a current measurement device that enables a current measurement of a wide range from a small current to a large current.SOLUTION: A current measurement device comprises: a magnetism collecting core 3 that is arranged so as to surround a periphery of a conductor 2 through which a measurement current flows to collect a magnetic field generated in the periphery of the conductor 2 to induce the collected magnetic field, and has at least one gap G provided in a part through which the induced magnetic field passes; an air coil 4 that is provided in the gap G, and detects an induction voltage by the induced magnetic field; a coil bobbin that has the air coil 4 wound it and fixes the air coil 4 to the gap G; and an integration circuit 5 that computes the measurement current on the basis of the induction voltage detected by the air coil 4.SELECTED DRAWING: Figure 1

Description

本発明は、小電流から大電流までの広い範囲の電流測定が可能な電流測定装置に関する。 The present invention relates to a current measuring device capable of measuring a wide range of currents from small currents to large currents.

従来、電流測定装置としては、例えば、ロゴスキーコイルを用いて広い電流範囲を測定するものがある(特許文献1参照)。ロゴスキーコイルは、環状の空芯コイルであり、空芯コイルを貫く電流線に流れる電流によって生じる磁束に起因する誘導電圧を検出する。この誘導電圧は、電流の周渡数が高くなるほど高くなるので、この周波数特性を補正するため、周波数が高くなるほど損失が大きくなる積分回路を用いて補正を行い、検出した誘導電圧全体の周波数特性をフラットにしている。 BACKGROUND ART Conventionally, as a current measuring device, for example, there is one that measures a wide current range using a Rogowski coil (see Patent Document 1). The Rogowski coil is an annular air-core coil that detects induced voltage caused by magnetic flux generated by a current flowing in a current line passing through the air-core coil. This induced voltage increases as the number of cycles of the current increases, so in order to correct this frequency characteristic, we use an integrating circuit whose loss increases as the frequency increases. is flat.

また、被測定電流が流れる導線を囲む磁気コアに電気的に絶縁して磁気的に結合するように巻回したコイルにより被測定電流を計測するカレントトランスタイプの電流測定装置が広く知られている。この電流測定装置は、測定電流に対する感度が高いため、小電流の測定に適している。一方、ロゴスキーコイルを用いた電流測定装置は、測定電流に対する感度が低いため大電流の測定に適しており、広い範囲の電流測定を行うことができる。 In addition, a current transformer type current measuring device is widely known that measures the current to be measured using a coil wound so as to be electrically insulated and magnetically coupled to a magnetic core surrounding a conductor through which the current to be measured flows. . This current measuring device has high sensitivity to measurement current, and is therefore suitable for measuring small currents. On the other hand, a current measuring device using a Rogowski coil is suitable for measuring large currents because of its low sensitivity to measurement currents, and can measure currents over a wide range.

なお、特許文献2には、測定電流に対する感度が高い磁気センサを用いた電流測定装置が開示されている。 Note that Patent Document 2 discloses a current measuring device using a magnetic sensor that is highly sensitive to measured current.

特開2000-310654号公報Japanese Patent Application Publication No. 2000-310654 特開2020-85906号公報JP2020-85906A

ところで、ロゴスキーコイルを用いた電流測定装置は、測定電流に対する感度が低いため、大電流までの広い範囲の電流を測定することができるが、小電流の測定を精度良く測定することができない。一方、上記のように、カレントトランスタイプの電流測定装置や磁気センサを電流測定装置は、測定電流に対する感度が高いため、小電流の電流測定を測定することができるが、大電流までの広い範囲の電流測定を行うことができない。 By the way, current measuring devices using Rogowski coils have low sensitivity to measurement currents, so although they can measure currents in a wide range up to large currents, they cannot accurately measure small currents. On the other hand, as mentioned above, current transformer type current measuring devices and magnetic sensor current measuring devices have high sensitivity to the measured current, so they can measure small currents, but they can also measure a wide range of currents up to large currents. current measurement cannot be performed.

本発明は、上記に鑑みてなされたものであって、小電流から大電流までの広い範囲の電流測定が可能な電流測定装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a current measuring device capable of measuring a wide range of currents from small currents to large currents.

上述した課題を解決し、目的を達成するために、本発明は、測定電流が流れる導体の周囲を囲むように配置して前記導体の周囲に生じる磁場を集磁して誘導するとともに、誘導された磁場が通る部分に少なくとも1つの間隙を設けた集磁コアと、前記間隙に設けられ、誘導された磁場による誘導電圧を検出する空芯コイルと、前記空芯コイルが巻回され、前記空芯コイルを前記間隙に固定するコイルボビンと、前記空芯コイルによって検出された誘導電圧をもとに前記測定電流を演算する積分回路と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the objects, the present invention is arranged to surround a conductor through which a measurement current flows, to concentrate and induce the magnetic field generated around the conductor, and to a magnetism collecting core provided with at least one gap in a portion through which the magnetic field passes; an air core coil provided in the gap to detect the induced voltage due to the induced magnetic field; It is characterized by comprising a coil bobbin that fixes a core coil in the gap, and an integrating circuit that calculates the measurement current based on the induced voltage detected by the air-core coil.

また、本発明は、測定電流が流れる導体の周囲を囲むように配置して前記導体の周囲に生じる磁場を集磁して誘導するとともに、誘導された磁場が通る部分に少なくとも1つの間隙を設けた集磁コアと、前記間隙に設けられ、誘導された磁場による誘導電圧を検出する空芯コイルと、前記空芯コイルが巻回され、前記空芯コイルを前記間隙に固定するコイルボビンと、前記空芯コイルによって検出された誘導電圧をもとに前記測定電流を演算する積分回路と、前記コイルボビンの内部に配置され、誘導された磁場による誘導電圧を検出する磁気センサと、前記磁気センサによって検出された誘導電圧をもとに前記測定電流を演算する増幅回路と、を備えることを特徴とする。 Moreover, the present invention is arranged so as to surround a conductor through which a measurement current flows, to concentrate and induce a magnetic field generated around the conductor, and at least one gap is provided in a portion through which the induced magnetic field passes. an air-core coil that is provided in the gap and detects an induced voltage due to the induced magnetic field; a coil bobbin around which the air-core coil is wound and that fixes the air-core coil in the gap; an integrating circuit that calculates the measured current based on the induced voltage detected by the air-core coil; a magnetic sensor that is arranged inside the coil bobbin and detects the induced voltage due to the induced magnetic field; and a magnetic sensor that detects the induced voltage due to the induced magnetic field. and an amplifier circuit that calculates the measured current based on the induced voltage.

また、本発明は、上記の発明において、小電流領域の測定電流を前記磁気センサにより測定し、前記小電流領域を超える大電流領域の測定電流を前記空芯コイルにより測定することを特徴とする。 Further, in the above invention, the present invention is characterized in that a measured current in a small current region is measured by the magnetic sensor, and a measured current in a large current region exceeding the small current region is measured by the air core coil. .

また、本発明は、上記の発明において、前記磁気センサは、トンネル磁気抵抗効果を応用した磁気センサであることを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the magnetic sensor is a magnetic sensor to which a tunnel magnetoresistive effect is applied.

また、本発明は、上記の発明において、前記集磁コアは、コの字型であることを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the magnetic flux collecting core is U-shaped.

本発明によれば、小さいサイズで、小電流から大電流までの広い範囲の電流測定が可能となる。 According to the present invention, it is possible to measure a wide range of currents from small currents to large currents with a small size.

図1は、本発明の実施の形態1である電流測定装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a current measuring device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1である電流測定装置の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of a current measuring device according to Embodiment 1 of the present invention. 図3は、測定電流に対する積分回路の出力電圧の関係を示した図である。FIG. 3 is a diagram showing the relationship between the output voltage of the integrating circuit and the measured current. 図4は、本発明の実施の形態2である電流測定装置の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of a current measuring device according to Embodiment 2 of the present invention. 図5は、図4に示したコイルボビンの構成を示す斜視図である。FIG. 5 is a perspective view showing the structure of the coil bobbin shown in FIG. 4. 図6は、図4に示した磁気センサをコイルボビン内に配置した状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which the magnetic sensor shown in FIG. 4 is placed inside a coil bobbin. 図7は、測定電流に対する積分回路及び増幅回路の出力電圧の関係を示した図である。FIG. 7 is a diagram showing the relationship between the output voltages of the integrating circuit and the amplifier circuit with respect to the measured current. 図8は、温度変化に対するTMR磁気センサとホール素子との出力電圧の変化を示す図である。FIG. 8 is a diagram showing changes in the output voltages of the TMR magnetic sensor and the Hall element with respect to temperature changes.

以下、添付図面を参照してこの発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

[実施の形態1]
図1は、本発明の実施の形態1である電流測定装置1の構成を示す模式図である。また、図2は、本発明の実施の形態1である電流測定装置1の構成を示す斜視図である。図1及び図2に示すように、電流測定装置1は、集磁コア3、空芯コイル4、コイルボビン8、積分回路5、及び、回路基板9を有する。集磁コア3は、測定電流が流れる導体2の周囲を囲むように配置して導体2の周囲に生じる磁場を集磁して誘導するとともに、誘導された磁場が通る部分に少なくとも1つの間隙Gが設けられる。集磁コア3は、例えば、軟質磁性材料で形成されてコの字形状である。集磁コア3の形状は、コの字形状に限らず、例えば、間隙Gを有する円形形状や楕円形形状であってもよい。集磁コア3は、積層または一体で形成される。集磁コア3は、間隙Gを介して、集磁した磁場に対する磁束7のループを形成する。
[Embodiment 1]
FIG. 1 is a schematic diagram showing the configuration of a current measuring device 1 according to Embodiment 1 of the present invention. Further, FIG. 2 is a perspective view showing the configuration of the current measuring device 1 according to the first embodiment of the present invention. As shown in FIGS. 1 and 2, the current measuring device 1 includes a magnetic collecting core 3, an air-core coil 4, a coil bobbin 8, an integrating circuit 5, and a circuit board 9. The magnetic collecting core 3 is arranged so as to surround the conductor 2 through which the measurement current flows, and collects and induces the magnetic field generated around the conductor 2, and has at least one gap G in the part through which the induced magnetic field passes. will be provided. The magnetic flux collecting core 3 is made of, for example, a soft magnetic material and has a U-shape. The shape of the magnetic flux collecting core 3 is not limited to the U-shape, and may be, for example, a circular shape with a gap G or an elliptical shape. The magnetic flux collecting core 3 is formed by laminating or integrally. The magnetic flux collecting core 3 forms a loop of magnetic flux 7 for the collected magnetic field via the gap G.

空芯コイル4は、間隙Gに設けられ、誘導された磁場(磁束)による誘導電圧を検出する。空芯コイル4は、環状に配置されたロゴスキーコイルの一部ともいえる。コイルボビン8は、空芯コイル4が巻回され、空芯コイル4を間隙Gに位置決めして集磁コア3に固定される。なお、間隙Gは、コの字形状の集磁コア3の開放端側(-Z方向側)の端部であって、磁束7が通過する部分である。図1に示した間隙Gは、±Y方向に直線的であり、空芯コイル4も直線的なコイルとなる。 The air-core coil 4 is provided in the gap G and detects an induced voltage due to an induced magnetic field (magnetic flux). The air-core coil 4 can also be said to be a part of a Rogowski coil arranged in a ring. The air-core coil 4 is wound around the coil bobbin 8, and the air-core coil 4 is positioned in the gap G and fixed to the magnetic collecting core 3. Note that the gap G is the open end side (-Z direction side) of the U-shaped magnetic flux collecting core 3, and is a portion through which the magnetic flux 7 passes. The gap G shown in FIG. 1 is linear in the ±Y direction, and the air-core coil 4 is also a linear coil.

積分回路5は、空芯コイル4に接続され、空芯コイル4によって検出された誘導電圧をもとに導体2に流れる測定電流を演算し、測定電流に対応した出力電圧として出力端子T1から出力する。ここで、積分回路5は、検出した誘導電圧の周波数特性をフラットに変換し、測定電流に対応する出力電圧として出力する。回路基板9は、コイルボビン8と積分回路5とが接続されて実装される基板である。 The integrating circuit 5 is connected to the air-core coil 4, calculates the measurement current flowing through the conductor 2 based on the induced voltage detected by the air-core coil 4, and outputs it from the output terminal T1 as an output voltage corresponding to the measurement current. do. Here, the integrating circuit 5 flattens the frequency characteristics of the detected induced voltage and outputs it as an output voltage corresponding to the measured current. The circuit board 9 is a board on which the coil bobbin 8 and the integrating circuit 5 are connected and mounted.

図3は、測定電流に対する積分回路5の出力電圧の関係を示した図である。図3において、特性曲線L1は、本実施の形態1による測定電流Iに対する出力電圧Voutの関係を示している。また、特性曲線L100は、集磁コア3を設けない空芯コイル4のみによる測定電流Iに対する出力電圧Voutの関係を示している。なお、出力電圧Voutは、積分回路5の電源電圧Vmax以下の値となる。図3に示すように、本実施の形態1の電流測定装置1では、集磁コア3を設けない空芯コイル4のみの電流測定装置に比して測定電流Iに対する出力電圧Voutの感度が高くなり、これに伴い、測定可能な電流範囲が小電流領域側に広がり、広い範囲の電流測定が可能になっている。これは、集磁コア3内の磁束7が、集磁コア3を構成する磁性材料の透磁率の大きさに比例して増加するため、集磁コア3を設けない空芯コイル4のみの場合に比して測定電流に対する感度が向上するからである。 FIG. 3 is a diagram showing the relationship between the output voltage of the integrating circuit 5 and the measured current. In FIG. 3, a characteristic curve L1 shows the relationship between the output voltage Vout and the measured current I according to the first embodiment. Further, a characteristic curve L100 shows the relationship between the output voltage Vout and the measured current I by only the air-core coil 4 without the magnetic flux collecting core 3. Note that the output voltage Vout has a value less than or equal to the power supply voltage Vmax of the integrating circuit 5. As shown in FIG. 3, in the current measuring device 1 of the first embodiment, the sensitivity of the output voltage Vout to the measured current I is higher than that of the current measuring device using only the air-core coil 4 without the magnetic collecting core 3. As a result, the measurable current range has expanded to the small current region, making it possible to measure current over a wide range. This is because the magnetic flux 7 in the magnetic collecting core 3 increases in proportion to the magnetic permeability of the magnetic material that constitutes the magnetic collecting core 3, so when only the air core coil 4 is used without the magnetic collecting core 3. This is because the sensitivity to the measurement current is improved compared to the above.

本実施の形態1では、測定電流が流れる導体2の周囲に生じる磁場を誘導するために、導体2を囲むように配置した間隙Gを有する集磁コア3を設け、この間隙Gに生じる磁場を空芯コイル4により誘導電圧を検出するようにしているので、小さいサイズの空芯コイルで広い範囲の電流測定が可能になる。 In the first embodiment, in order to induce the magnetic field generated around the conductor 2 through which the measurement current flows, a magnetic flux collecting core 3 having a gap G arranged so as to surround the conductor 2 is provided, and the magnetic field generated in the gap G is Since the induced voltage is detected by the air-core coil 4, it is possible to measure current over a wide range with a small-sized air-core coil.

[実施の形態2]
本実施の形態2では、実施の形態1の構成に対し、空芯コイル4内に磁気センサ11を設け、空芯コイル4と磁気センサ11とを併用し、磁気センサ11によりさらに小電流領域側の電流測定範囲を広げるようにしている。図4は、本発明の実施の形態2である電流測定装置10の構成を示す模式図である。また、図5は、図4に示したコイルボビン8の構成を示す斜視図である。さらに、図6は、図4に示した磁気センサ11をコイルボビン8内に配置した状態を示す断面図である。
[Embodiment 2]
In the second embodiment, in contrast to the configuration of the first embodiment, a magnetic sensor 11 is provided in the air-core coil 4, and the air-core coil 4 and the magnetic sensor 11 are used in combination, and the magnetic sensor 11 is used to further reduce the current in the small current region. We are trying to expand the current measurement range. FIG. 4 is a schematic diagram showing the configuration of a current measuring device 10 according to Embodiment 2 of the present invention. Moreover, FIG. 5 is a perspective view showing the structure of the coil bobbin 8 shown in FIG. 4. Furthermore, FIG. 6 is a cross-sectional view showing a state in which the magnetic sensor 11 shown in FIG. 4 is arranged inside the coil bobbin 8. As shown in FIG.

図4~図6に示すように、電流測定装置10は、電流測定装置1の構成に対し、さらに磁気センサ11及び増幅回路12を有する。磁気センサ11は、コイルボビン8の中心付近の空芯コイル4が巻回される中空円筒20内に配置され、集磁コア3により集磁された磁束による誘導電圧を検出する。磁気センサ11は、中空円筒20内に固定配置された回路基板13上に実装される。増幅回路12は、回路基板9上に設けられ、回路基板13を介して磁気センサ11に接続され、磁気センサ11が検出した誘導電圧を増幅し、測定電流に対応した出力電圧として出力端子T2から出力する。 As shown in FIGS. 4 to 6, the current measuring device 10 further includes a magnetic sensor 11 and an amplifier circuit 12 in addition to the configuration of the current measuring device 1. The magnetic sensor 11 is arranged in a hollow cylinder 20 around which the air-core coil 4 is wound near the center of the coil bobbin 8, and detects an induced voltage due to the magnetic flux collected by the magnetic flux collecting core 3. The magnetic sensor 11 is mounted on a circuit board 13 fixedly placed inside the hollow cylinder 20 . The amplifier circuit 12 is provided on the circuit board 9, is connected to the magnetic sensor 11 via the circuit board 13, amplifies the induced voltage detected by the magnetic sensor 11, and outputs it from the output terminal T2 as an output voltage corresponding to the measured current. Output.

図7は、測定電流に対する積分回路5及び増幅回路12の出力電圧の関係を示した図である。図7において、特性曲線L1は、本実施の形態2の空芯コイル4による測定電流Iに対する出力電圧Voutの関係を示している。また、特性曲線L10は、磁気センサ11による測定電流Iに対する出力電圧Voutの関係を示している。 FIG. 7 is a diagram showing the relationship between the output voltages of the integrating circuit 5 and the amplifier circuit 12 with respect to the measured current. In FIG. 7, a characteristic curve L1 shows the relationship between the output voltage Vout and the measured current I by the air-core coil 4 of the second embodiment. Further, a characteristic curve L10 shows the relationship between the output voltage Vout and the measured current I by the magnetic sensor 11.

特性曲線L10に示すように、磁気センサ11は、空芯コイル4に比べて磁界に対する感度が高いため、測定電流が0を含む測定電流が小さい小電流領域EAにおいて大きな出力電圧を得ることができるが、小電流領域EAを超えた大電流領域EBでは出力電圧Voutが飽和する。一方、特性曲線L1に示すように、空芯コイル4による出力電圧は、小電流領域EAの途中から大電流領域EBまで飽和せずにリニアな出力となる。したがって、磁気センサ11と空芯コイル4とを組み合わせた電流計測を行うことにより、小さなサイズで、広い範囲の測定電流の電流計測を行うことができる。なお、磁気センサ11による電流計測は、少なくとも出力電圧が飽和する飽和電流I1までとする。すなわち、飽和電流I1までは磁気センサ11による電流計測結果を用い、飽和電流I1を超えた場合、空芯コイル4による電流計測結果を用いるようにするとよい。 As shown in the characteristic curve L10, the magnetic sensor 11 has higher sensitivity to magnetic fields than the air-core coil 4, and therefore can obtain a large output voltage in the small current region EA where the measured current is small, including 0. However, in the large current region EB exceeding the small current region EA, the output voltage Vout is saturated. On the other hand, as shown in the characteristic curve L1, the output voltage from the air-core coil 4 becomes a linear output without being saturated from the middle of the small current area EA to the large current area EB. Therefore, by performing current measurement using a combination of the magnetic sensor 11 and the air-core coil 4, it is possible to perform current measurement over a wide range of measurement currents with a small size. Note that current measurement by the magnetic sensor 11 is limited to at least a saturation current I1 at which the output voltage is saturated. That is, it is preferable to use the current measurement result by the magnetic sensor 11 up to the saturation current I1, and use the current measurement result by the air-core coil 4 when the saturation current I1 is exceeded.

図8は、温度変化に対するTMR磁気センサ(磁気センサ11)とホール素子(磁気センサ11´)との出力電圧の変化を示す図である。磁気センサ11としては、ホール効果を利用したもの(ホール素子)や,磁気インピーダンス効果(MI効果)を利用したものなどがある。本実施の形態2では、磁気センサ11としてトンネル磁気抵抗効果(TMR効果)を応用したTMR磁気センサを用いている。TMR磁気センサは、数ナノメートルレベルの極めて薄い非磁性の絶縁膜を2枚の磁性膜でサンドイッチした構造となっており、一般的な磁気センサに比べて小型で磁界に対する感度が高い。 FIG. 8 is a diagram showing changes in the output voltages of the TMR magnetic sensor (magnetic sensor 11) and the Hall element (magnetic sensor 11') with respect to temperature changes. Examples of the magnetic sensor 11 include those that utilize the Hall effect (Hall element) and those that utilize the magnetic impedance effect (MI effect). In the second embodiment, a TMR magnetic sensor to which the tunnel magnetoresistive effect (TMR effect) is applied is used as the magnetic sensor 11. A TMR magnetic sensor has a structure in which an extremely thin non-magnetic insulating film of several nanometers is sandwiched between two magnetic films, and is smaller and more sensitive to magnetic fields than general magnetic sensors.

図8に示すように、TMR磁気センサは、ホール素子に比べて温度変化による影響を受けにくく、温度変化に対する出力電圧の変化が小さいため、高精度な電流測定が可能になる。 As shown in FIG. 8, the TMR magnetic sensor is less affected by temperature changes than the Hall element, and changes in output voltage with respect to temperature changes are small, making it possible to measure current with high precision.

なお、上記の実施の形態で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置及び構成要素の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。 It should be noted that each configuration illustrated in the above embodiments is functionally schematic and does not necessarily have to be physically configured as illustrated. In other words, the form of dispersion/integration of each device and component is not limited to the one shown in the diagram, but all or part of it may be functionally or physically dispersed/integrated in arbitrary units depending on various usage conditions. It can be configured as follows.

1,10 電流測定装置
2 導体
3 集磁コア
4 空芯コイル
5 積分回路
7 磁束
8 コイルボビン
9,13 回路基板
11,11´ 磁気センサ
12 増幅回路
20 中空円筒
EA 小電流領域
EB 大電流領域
G 間隙
I 測定電流
I1 飽和電流
L1,L10,L100 特性曲線
T1,T2 出力端子
Vmax 電源電圧
Vout 出力電圧
1, 10 Current measuring device 2 Conductor 3 Magnetic collecting core 4 Air core coil 5 Integrating circuit 7 Magnetic flux 8 Coil bobbin 9, 13 Circuit board 11, 11' Magnetic sensor 12 Amplifying circuit 20 Hollow cylinder EA Small current area EB Large current area G Gap I Measurement current I1 Saturation current L1, L10, L100 Characteristic curve T1, T2 Output terminal Vmax Power supply voltage Vout Output voltage

Claims (5)

測定電流が流れる導体の周囲を囲むように配置して前記導体の周囲に生じる磁場を集磁して誘導するとともに、誘導された磁場が通る部分に少なくとも1つの間隙を設けた集磁コアと、
前記間隙に設けられ、誘導された磁場による誘導電圧を検出する空芯コイルと、
前記空芯コイルが巻回され、前記空芯コイルを前記間隙に固定するコイルボビンと、
前記空芯コイルによって検出された誘導電圧をもとに前記測定電流を演算する積分回路と、
を備えることを特徴とする電流測定装置。
a magnetic collecting core arranged to surround a conductor through which a measurement current flows to collect and induce a magnetic field generated around the conductor, and with at least one gap provided in a portion through which the induced magnetic field passes;
an air-core coil that is provided in the gap and detects an induced voltage due to the induced magnetic field;
a coil bobbin around which the air-core coil is wound and which fixes the air-core coil in the gap;
an integrating circuit that calculates the measured current based on the induced voltage detected by the air-core coil;
A current measuring device comprising:
測定電流が流れる導体の周囲を囲むように配置して前記導体の周囲に生じる磁場を集磁して誘導するとともに、誘導された磁場が通る部分に少なくとも1つの間隙を設けた集磁コアと、
前記間隙に設けられ、誘導された磁場による誘導電圧を検出する空芯コイルと、
前記空芯コイルが巻回され、前記空芯コイルを前記間隙に固定するコイルボビンと、
前記空芯コイルによって検出された誘導電圧をもとに前記測定電流を演算する積分回路と、
前記コイルボビンの内部に配置され、誘導された磁場による誘導電圧を検出する磁気センサと、
前記磁気センサによって検出された誘導電圧をもとに前記測定電流を演算する増幅回路と、
を備えることを特徴とする電流測定装置。
a magnetic collecting core arranged to surround a conductor through which a measurement current flows to collect and induce a magnetic field generated around the conductor, and with at least one gap provided in a portion through which the induced magnetic field passes;
an air-core coil that is provided in the gap and detects an induced voltage due to the induced magnetic field;
a coil bobbin around which the air-core coil is wound and which fixes the air-core coil in the gap;
an integrating circuit that calculates the measured current based on the induced voltage detected by the air-core coil;
a magnetic sensor that is placed inside the coil bobbin and detects an induced voltage due to the induced magnetic field;
an amplifier circuit that calculates the measured current based on the induced voltage detected by the magnetic sensor;
A current measuring device comprising:
小電流領域の測定電流を前記磁気センサにより測定し、前記小電流領域を超える大電流領域の測定電流を前記空芯コイルにより測定することを特徴とする請求項2に記載の電流測定装置。 3. The current measuring device according to claim 2, wherein a measured current in a small current region is measured by the magnetic sensor, and a measured current in a large current region exceeding the small current region is measured by the air core coil. 前記磁気センサは、トンネル磁気抵抗効果を応用した磁気センサであることを特徴とする請求項2又は3に記載の電流測定装置。 4. The current measuring device according to claim 2, wherein the magnetic sensor is a magnetic sensor that applies a tunnel magnetoresistive effect. 前記集磁コアは、コの字型であることを特徴とする請求項1~3のいずれか一つに記載の電流測定装置。 The current measuring device according to any one of claims 1 to 3, wherein the magnetic flux collecting core is U-shaped.
JP2022099635A 2022-06-21 2022-06-21 Current measurement device Pending JP2024000752A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022099635A JP2024000752A (en) 2022-06-21 2022-06-21 Current measurement device
KR1020230025917A KR20230174695A (en) 2022-06-21 2023-02-27 Current measuring apparatus
CN202310179248.8A CN117269589A (en) 2022-06-21 2023-02-27 Current measuring device
TW112107287A TW202401018A (en) 2022-06-21 2023-03-01 Current measuring device capable of measuring current in a wide range from a small current to a large current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022099635A JP2024000752A (en) 2022-06-21 2022-06-21 Current measurement device

Publications (1)

Publication Number Publication Date
JP2024000752A true JP2024000752A (en) 2024-01-09

Family

ID=89207003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022099635A Pending JP2024000752A (en) 2022-06-21 2022-06-21 Current measurement device

Country Status (4)

Country Link
JP (1) JP2024000752A (en)
KR (1) KR20230174695A (en)
CN (1) CN117269589A (en)
TW (1) TW202401018A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410043B2 (en) 1999-04-28 2003-05-26 三菱電機株式会社 Current detection system
FR3089013B1 (en) 2018-11-22 2021-01-29 Valeo Siemens Eautomotive France Sas MAGNETIC CORE FOR CURRENT MEASURING SENSOR

Also Published As

Publication number Publication date
KR20230174695A (en) 2023-12-28
TW202401018A (en) 2024-01-01
CN117269589A (en) 2023-12-22

Similar Documents

Publication Publication Date Title
US6885183B2 (en) Current probe
US7365535B2 (en) Closed-loop magnetic sensor system
JP6249206B2 (en) Current transducer for measuring current
US8519704B2 (en) Magnetic-balance-system current sensor
US6411078B1 (en) Current sensor apparatus
JP5411285B2 (en) Magnetic balanced current sensor
JP2005517937A (en) Magnetic field sensor
JP2008002876A (en) Current sensor and electronic watthour meter
JP2004523909A (en) Transformer for current detector
JP2004317166A (en) Current sensor and current detection unit using the same
WO2015190155A1 (en) Current sensor
WO2021208135A1 (en) Closed-loop current transformer
JP5121679B2 (en) Fluxgate magnetic sensor
JP3764834B2 (en) Current sensor and current detection device
JP2004257904A (en) Electric current probe
CN114019220B (en) Current detector and circuit
JP2024000752A (en) Current measurement device
JP2009204415A (en) Current sensor and watt-hour meter
CN116106610A (en) TMR current sensor and design method
JP2012058150A (en) Current sensor
US5831424A (en) Isolated current sensor
CN219811394U (en) Magnetic core and coil assembly based on TMR weak current sensor
CN116580942A (en) Magnetic core and coil assembly based on TMR weak current sensor
CN116539942A (en) Magnetic flux detection system and current sensor
JPH0674977A (en) Non-contact type ammeter