JP4006919B2 - Permeability measuring device and permeability measuring method - Google Patents

Permeability measuring device and permeability measuring method Download PDF

Info

Publication number
JP4006919B2
JP4006919B2 JP2000057918A JP2000057918A JP4006919B2 JP 4006919 B2 JP4006919 B2 JP 4006919B2 JP 2000057918 A JP2000057918 A JP 2000057918A JP 2000057918 A JP2000057918 A JP 2000057918A JP 4006919 B2 JP4006919 B2 JP 4006919B2
Authority
JP
Japan
Prior art keywords
magnetic core
measured
output
circuit
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000057918A
Other languages
Japanese (ja)
Other versions
JP2000346920A (en
Inventor
和正 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000057918A priority Critical patent/JP4006919B2/en
Publication of JP2000346920A publication Critical patent/JP2000346920A/en
Application granted granted Critical
Publication of JP4006919B2 publication Critical patent/JP4006919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は透磁率測定装置および透磁率測定方法に関する。
【0002】
【従来の技術】
ビデオテープレコーダのマイクロシャフトのような小型部品の透磁率を精度良く測定するものとして例えば特開平3−255380号公報に記載のものが知られている。これは図12に示すように、両端面を球面に成形した強磁性材よりなる棒状磁気コア91の外周に励磁コイル92を巻回して、これを交流電源93に接続するとともに、励磁コイル93を挟んで上下位置に、差動コイルを構成する一対の検出コイル94A,94Bを巻回したものである。磁気コア91の端面を図12に示すように被測定材3に接触させ、この時の検出コイル94A,94Bの出力信号を基準ベクトルの回転により位相解析して、これにより得られる透磁率に対応する電気信号を表示する。このような透磁率測定装置は、磁気コア91の外径を小さくすることによって小型部品の局所的な透磁率を非破壊的に測定することが可能であり、材料欠陥等を容易に知ることができる。
【0003】
【発明が解決しようとする課題】
ところで、上記従来装置の磁気回路は磁気コア91、被測定材3、および空気層で構成され、磁気回路の磁気抵抗Rmは下式(1)で表わされる。
【0004】
Rm=L1/(μ1・S)+L2/(μ2・S)+L3/(μ3・S)…(1)
【0005】
ここで、L1,L2,L3はそれぞれ磁気コア91、被測定材3、空気層の磁路の長さであり、μ1,μ2,μ3はそれぞれ磁気コア、被測定材、空気層の透磁率、Sは磁路の断面積である。
【0006】
ここで、空気層の透磁率μ3は磁気コア91や被測定材3の透磁率μ1,μ2よりも二桁以上小さいため、被測定材3の透磁率が大きい領域では磁気回路の磁気抵抗が空気層の磁気抵抗にほぼ等しくなって特性が飽和する。このため、測定可能な範囲が透磁率の小さい範囲に限られるという問題点があった。
【0007】
本発明はこのような課題を解決するもので、空気層等の透磁率の影響を排することによって小型部品等の透磁率を小さい値から大きい値まで広い範囲で簡易かつ正確に測定することができる透磁率測定装置および透磁率測定方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本第1発明の透磁率測定装置は、被測定材(3)に端面を接触させた棒状の第1磁気コア(1A)と、第1磁気コアの外周に巻回された第1励磁コイル(2A)と、被測定材に比して十分に透磁率が大きい基準材(4)に端面を接触させた上記第1磁気コアと同形の第2磁気コア(1B)と、第2磁気コアの外周に巻回された第2励磁コイル(2B)と、第1励磁コイル(2A)へ定電圧で交流通電する通電回路(5A)と、第2励磁コイル(2B)へ定電圧で交流通電する第2通電回路(5B)と、第1励磁コイル(2A)への通電電流に応じた出力と第2励磁コイル(2B)への通電電流に応じた出力の差の逆数に基づいて被測定材の透磁率を算出する演算回路(81,83)とを具備している。
【0009】
本発明において、第1通電回路と第2通電回路の通電電流に応じた出力の差をとると、この差出力中では空気層と磁気コアの透磁率がキャンセルされるから、空気層の小さな透磁率の影響を受けて被測定材の透磁率の測定範囲が制限されるという問題は生じない。そして、基準材の透磁率を被測定材の透磁率に比して十分大きくしたから、被測定材の透磁率は上記差電流の逆数に比例した値として一義的に定められる。さらに、磁気コアの外径を小さくすることによって小型部品の局所的な透磁率を測定することが可能であるとともに、磁気コアに励磁コイルだけを巻回すれば良いから、磁気コアを含む測定部全体の構造が簡易となる。
【0010】
なお、本第1発明は以下の構成を有する測定方法としても実現することができる。すなわち、本発明の透磁率測定方法は、外周に励磁コイル(2A)を巻回した棒状の磁気コア(1A)の端面を被測定材(3)に接触させるとともに、外周に励磁コイル(2B)を巻回した上記磁気コア(1A)と同形の他の棒状の磁気コア(1B)の端面を上記被測定材(3)に比して十分に透磁率が大きい基準材(4)に接触させ、両励磁コイル(2A,2B)にそれぞれ定電圧で交流通電して、この時の通電電流の差の逆数より被測定材(3)の透磁率を算出するものである。
【0011】
本第2発明の透磁率測定装置は、棒状の第1磁気コア(1A)と、当該第1磁気コア(1A)の外周に巻回された第1励磁コイル(2A)と、第1励磁コイル(2A)へ定電圧で交流通電する第1通電回路(5A)と、第1磁気コア(1A)の端面を被測定材(3)に比して十分に透磁率が大きい基準材(4)に接触させて第1励磁コイル(2A)に第1通電回路(5A)により交流通電した際の通電電流に相当する出力を生じる疑似出力発生回路(85)と、第1磁気コア(1A)の端面を被測定材(3)に接触させた状態で第1通電回路(5A)により第1励磁コイル(2A)へ通電した際の通電電流に応じた出力と疑似出力発生回路(85)の出力との差の逆数に基づいて被測定材(3)の透磁率を算出する演算回路(81,83)とを具備している。
【0012】
本第2発明においては、上記第1発明の効果に加えて、擬似出力発生回路を備えたことにより、基準材を測定装置内に設ける必要がなくなり、装置構成が簡略化される。
【0013】
本第3発明では、本第2発明における上記擬似出力発生回路(85)の入力側に、上記第1磁気コア(1A)と同形の棒状の第2磁気コア(1B)の外周に巻回した第2励磁コイル(2B)に定電圧で通電する第2通電回路(5B)を接続する。
【0014】
本第3発明においては、擬似出力発生回路の入力側に、第1磁気コアの側と同様の回路を設けることによって、その後の差出力を取った際に、温度変化に伴なう第1励磁コイルのインピーダンス変動や第1通電回路のドリフト変動等を相殺して補償することができる。
【0015】
なお、本第2発明は以下の構成を有する測定方法としても実現することができる。すなわち、本発明の透磁率測定方法は、外周に励磁コイル(2A)を巻回した棒状の磁気コア(1A)の端面を、被測定材(3)に比して十分に透磁率が大きい基準材(4)に接触させて励磁コイル(2A)に定電圧で交流通電した際の通電電流に相当する出力を疑似出力発生回路(85)に発生させるとともに、磁気コア(1A)を被測定材(3)に接触させて励磁コイル(2A)に定電圧で交流通電して、この際の通電電流に応じた出力と擬似出力発生回路(85)の出力の差の逆数より被測定材(3)の透磁率を算出する。また、鉛直方向からの磁気コア(1A)の傾きを検出して励磁コイル(2A)の出力電流を補正する手段(9,86,87)を設けることができる。
【0016】
上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0017】
【発明の実施の形態】
(第1実施形態)
図1には、本発明の透磁率測定装置の全体構成を示す。図において、上下の端面を球面とした丸棒状のパーマロイ等よりなる磁気コア1Aが設けられ、その下端部11は、透磁率を測定すべき被測定材3の表面に接触している。この被測定材3の一例としては例えば炭素鋼材がある。磁気コア1Aの外周には励磁コイル2Aが例えば160回巻回してあり、この励磁コイル2Aは通電回路5Aによって定電圧の交流電源(例えば1KHz)6に接続されている。また、通電回路5Aには、これに流れる通電電流に応じた電圧を生じる電流−電圧変換器7Aが設けられている。一方、予想される上記被測定材3の透磁率に比して十分に透磁率が大きい基準材4が設けられており、これの表面に、既述したものと同一構造の、励磁コイル2Bを巻回した磁気コア1Bの下端11が接触させてある。基準材4の一例としては例えばフェライト、パーマロイがある。励磁コイル2Bは通電回路5Bによって上記交流電源6に接続されており、通電回路5Bには電流−電圧変換器7Bが設けられている。
【0018】
磁気コア1A,1Bは実際には図2に示すように、下端部11のみを露出させて、下方へ開放する円筒状のセンサケース12内に収納され、このセンサケース12は、下方へ開放する円筒状の保持具13内に収納されている。センサケース12の頂壁と保持具13の頂壁との間にはコイルバネ14が配設されて、保持具13から突出する方向へセンサケース12を付勢している。このような構造により、図2に示すように、保持具13の開口端面131を被測定材3ないし基準材4の表面に当てると、磁気コア1A,1Bは被測定材3ないし基準材4の表面に対して垂直姿勢を保持し、かつその下端面はバネ力によって一定の力で被測定材3ないし基準材4の表面に接触させられる。この結果、透磁率の測定中に、被測定材3等に対する磁気コア1A,1Bの姿勢変化や接触圧の変動を生じず、安定した測定が可能になる。
【0019】
図1において、電流−電圧変換器7A,7Bの出力は差動アンプ81に入力し、て、両通電回路5A,5Bに流れる通電電流Ia,Ibの差ΔIがとられる。電流差信号は次段の交流−直流変換器82に入力して直流電圧信号に変換され、続いて逆数演算器83に入力して電流差の逆数(1/ΔI)に応じた信号が出力される。この電流差の逆数(1/ΔI)に応じた信号は後述のように被測定材3の透磁率μ2に比例したものとなっており、所定の係数を乗じることによって表示器84上に被測定材3の透磁率μ2が表示される。
【0020】
上記構成の透磁率測定装置において、磁気コア1Aと被測定材3とで形成される磁気回路は空気層Rを含んで図3に示すようなモデルで表わすことができ、この磁気回路の磁気抵抗Rmは従来技術で説明したのと同様に上式(1)で表わされる。また、巻数Nの励磁コイル2Aに周波数fの通電電流Iaを流すと、励磁コイル2Aの両端電圧V(すなわち交流電源6の電圧)は下式(2)で表わされる。
【0021】
V=2π・f・N2・Ia/Rm…(2)
【0022】
したがって、式(1)、式(2)より、通電電流Iaは式(3)で表わされる。
【0023】
Ia=(V/2π・f・N2){(L1/(μ1・S)+L2/(μ2・S)+L3/(μ3・S)}…(3)
【0024】
一方、透磁率μ4の基準材4に接触させられた磁気コア1Bの励磁コイル2B(巻数N)への通電電流Ibは、上記と同様の関係により、式(4)で表わされる。
【0025】
Ib=(V/2π・f・N2){(L1/(μ1・S)+L2/(μ4・S)+L3/(μ3・S)}…(4)
【0026】
差動アンプ81で通電電流の差ΔIを求めると式(5)のようになり、既述のようにμ2<<μ4であるから、逆数演算器83でΔIの逆数(1/ΔI)を算出すると、これは式(6)に示すように、被測定材3の透磁率μ2に比例したものとなる。したがって、差電流の逆数(1/ΔI)に適当な係数を乗じることによって被測定材3の透磁率μ2を得ることができる。
【0027】
ΔI=Ia−Ib=(V・L2)(1/μ2−1/μ4)/(2π・f・N2・S)…(5)
【0028】
μ2={(V・L2)/(2π・f・N2・S)}・(1/ΔI)…(6)
【0029】
図4には、被測定材3の比透磁率と逆数演算器83の出力との関係を示す。図から明らかなように、本実施形態の測定装置では、空気層Rと磁気コア1A,1Bの透磁率の影響を排除しているから、逆数演算器83の出力は透磁率が大きくなるにつれてある程度は飽和の傾向を示しているが、従来装置と比較すると小さな透磁率から大きな透磁率まで広い範囲で出力に飽和を生じることなく、被測定材の透磁率を正確に測定することができる。また、本実施形態の測定装置では磁気コア1A,1Bの外径を小さくすることによって小型部品の局所的な透磁率を測定することができるとともに、従来のように検出コイルを磁気コアに巻回する必要がなく、励磁コイルだけを巻回すれば良いから、磁気コアを含む測定部全体の構造が簡易となる。
【0030】
(第2実施形態)
本実施形態では第1実施形態におけるような基準材4を装置内に設ける必要がない透磁率測定装置の構成について説明する。すなわち、図5において、第1実施形態と異なり、磁気コア1Bはその下端部11が基準材4の表面に接触させられることなく全体が空中に配設されている。そして、磁気コア1Bに通電する通電回路5Bに設けた電流−電圧変換器7Bの後段に疑似出力発生回路85が設けられてその出力が差動アンプ81に入力し、ここで、通電回路5Aに設けた電流−電圧変換器7Aの出力との差が算出される。なお、疑似出力発生回路85はこれに入力する交流信号の振幅と位相を任意に変更することができるものであり、他の装置構成は第1実施形態と同一である。
【0031】
このような構成の透磁率測定装置において、被測定材3の透磁率を測定するのに先立って、図6に示すように磁気コア1Aの下端部11を基準材4に接触させ、この状態で差動アンプ81の出力が零になるように疑似出力発生回路85の出力の振幅と位相を調整しておく。この場合に通電回路5Aに流れる電流は、第1実施形態において通電回路5Bに流れる電流に等しいIbであり、電流−電圧変換器7Aの出力は電流Ibに応じたものとなる。したがって、疑似出力発生回路85の出力は、あたかも磁気コア1Bの下端部11を基準材4に接触させた際に通電回路5Bに流れる電流Ibに応じた電圧出力と等しい値になる。
【0032】
このように疑似出力発生回路85の出力を設定した後に、図5に示すように磁気コア1Aの下端部11を被測定材3の表面に接触させて、この時、通電回路5Aに流れる電流Iaに応じた電流−電圧変換器7Aの出力を、疑似出力発生回路85の出力と上記差動アンプ81で比較することにより、第1実施形態と同様に、被測定材3に接触させた磁気コア1Aの励磁コイル2Aに流れる電流Iaと、仮想的に基準材4に接触させた磁気コア1Bの励磁コイル2Bに流れる電流Ibとの電流差信号ΔIが得られ、以下、第1実施形態と同様にして電流差の逆数(1/ΔI)より被測定材3の透磁率μ2を得ることができる。本実施形態では、疑似出力発生回路を設けてその出力を上述のように基準材接触相当の出力に設定してあるから、測定装置内に基準材3を設ける必要がなく、装置構成が簡素化される。
【0033】
(第3実施形態)
上記第2実施形態で、基準材4にも被測定材3にも実際には接触することがない磁気コア1Bとその通電回路2Bおよび電流−電圧変換器7Bを設けた理由は、磁気コア1Aの側と同様の回路を設けることによって、温度変化に伴なう励磁コイル2Aのインピーダンス変動や電流−電圧変換器7Aのドリフト変動等を差動アンプ81で相殺して補償するためである。
【0034】
したがって、上記インピーダンス変動やドリフト変動等がそれほど問題とならない場合には、図7に示すように疑似出力発生回路85を電源6に直接接続して、第2実施形態における磁気コア1Bや通電回路5B、および電流−電圧変換器7Bを省略することができる。これにより、装置構成をさらに大幅に簡素化することができる。
【0035】
(第4実施形態)
磁気コア1Aの下端部11を被測定材3の表面に対して垂直姿勢で接触させるように第1実施形態では保持具12とセンサケース13を使用したが、磁気コア1Aの姿勢が垂直から傾いた場合に逆数演算器83の出力を補正して誤差の発生を最小限に抑えるようにした構成を図8に示す。
【0036】
図8において、被測定材3に下端部11を接触させた磁気コア1Aには傾きセンサ9が設けてあり、その出力が傾き測定回路86に入力している。傾き測定回路86の出力は、逆数演算器83の後段に設けられた感度補正回路87に入力し、ここで、磁気コア1Aの傾きの程度に応じて逆数演算器83の出力が後述するように補正される。他の構成は既に説明した第1実施形態と同一である。
【0037】
傾きセンサ9は図9に示すように磁気コア1Aの外周の4箇所に周方向等間隔でホール素子91を設けたもので、これらホール素子91によって磁気コア1Aの外周を径方向へ通過する磁束密度が測定される。傾き測定回路86は図10に示すように、対向する位置に設けたホール素子91の磁束密度出力B1〜B4の差(B1−B2)(B3−B4)を算出して、これらよりx方向の磁束密度差Bxと、x方向に直交するy方向の磁束密度差Byを得、さらにこれら磁束密度差Bx,Byの2乗平均値を算出する。この2乗平均値θvは磁気コア1Aの鉛直線からの傾き角に比例しているから、これを感度補正回路87へ入力させることにより逆数演算器83の出力を補正する。その一例を図11に示す。磁気コア1Aが垂直姿勢に保持されている場合の、被測定材3の比透磁率に対する逆数演算器83の出力特性は線xで示すものであるのに対して、磁気コア1Aの傾き角が10°になると、上記出力特性は線yのように全体として小さな値になってしまう。そこで、磁気コア1Aの傾き角に応じてこの時の逆数演算器83の出力に所定の定数を乗じることにより、線yで示す逆数演算器83の出力特性が、線zで示すようにほぼ線xで示す出力特性に沿った特性に補正される。
【0038】
なお、上記第2実施形態および第3実施形態においては、基準材4を実際に磁気コア2Aに接触させて、この状態で差動アンプ81の出力が零になるように疑似出力発生回路85の出力を調整したが、基準材4を磁気コア2Aに接触させた時の電流−電圧変換器7Aの出力を予想できる場合には、基準材4を全く使用することなく上記予想値を直接疑似出力発生回路85に設定すれば良い。なお、本発明の趣旨を逸脱しない範囲での種々の変形実施が可能である。
【0039】
【発明の効果】
以上のように、本発明の透磁率測定装置および透磁率測定方法によれば、空気層等の透磁率の影響を排することによって小型部品等の透磁率を小さい値から大きい値まで広い範囲で簡易かつ正確に測定することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における、透磁率測定装置の全体構成を示すブロック図である。
【図2】磁気コアの保持具の断面図である。
【図3】磁気コアの磁気回路を示すモデル図である。
【図4】被測定材の比透磁率と逆数演算器の出力の関係を示すグラフである。
【図5】本発明の第2実施形態における、透磁率測定装置の全体構成を示すブロック図である。
【図6】磁気コアを基準材に接触させた状態の部分断面側面図である。
【図7】本発明の第3実施形態における、透磁率測定装置の全体構成を示すブロック図である。
【図8】本発明の第4実施形態における、透磁率測定装置の要部構成を示すブロック図である。
【図9】磁気コアの部分断面側面図である。
【図10】傾き測定回路における演算手順を示すブロック図である。
【図11】比透磁率に対する出力特性図である。
【図12】従来の透磁率測定装置に使用する磁気コアの概略側面図である。
【符号の説明】
1A,1B…磁気コア、2A,2B…励磁コイル、3…被測定材、4…基準材、5A,5B…通電回路、81…差動アンプ、83…逆数演算器、85…擬似出力発生回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic permeability measuring apparatus and a magnetic permeability measuring method.
[0002]
[Prior art]
For example, Japanese Patent Application Laid-Open No. 3-255380 discloses a device that accurately measures the magnetic permeability of a small component such as a micro shaft of a video tape recorder. As shown in FIG. 12, an exciting coil 92 is wound around the outer periphery of a rod-shaped magnetic core 91 made of a ferromagnetic material having both end surfaces formed into spherical surfaces, and this is connected to an AC power source 93. A pair of detection coils 94A and 94B that constitute a differential coil are wound around the upper and lower positions. As shown in FIG. 12, the end surface of the magnetic core 91 is brought into contact with the material 3 to be measured, and the output signals of the detection coils 94A and 94B at this time are subjected to phase analysis based on the rotation of the reference vector to correspond to the magnetic permeability obtained thereby. The electrical signal to be displayed is displayed. Such a magnetic permeability measuring device can measure the local magnetic permeability of small parts non-destructively by reducing the outer diameter of the magnetic core 91, and can easily know material defects and the like. it can.
[0003]
[Problems to be solved by the invention]
By the way, the magnetic circuit of the conventional apparatus is composed of the magnetic core 91, the material to be measured 3, and the air layer, and the magnetic resistance Rm of the magnetic circuit is expressed by the following equation (1).
[0004]
Rm = L1 / (μ1 · S) + L2 / (μ2 · S) + L3 / (μ3 · S) (1)
[0005]
Here, L1, L2, and L3 are the lengths of the magnetic paths of the magnetic core 91, the material to be measured 3, and the air layer, and μ1, μ2, and μ3 are the magnetic permeability of the magnetic core, the material to be measured, and the air layer, respectively. S is the cross-sectional area of the magnetic path.
[0006]
Here, since the permeability μ3 of the air layer is two orders of magnitude or more smaller than the permeability μ1 and μ2 of the magnetic core 91 and the measured material 3, the magnetic resistance of the magnetic circuit is air in the region where the measured material 3 has a large permeability. The characteristics are saturated by being almost equal to the magnetoresistance of the layer. For this reason, there existed a problem that the measurable range was restricted to the range with a small magnetic permeability.
[0007]
The present invention solves such a problem, and it is possible to easily and accurately measure the magnetic permeability of a small component or the like in a wide range from a small value to a large value by eliminating the influence of the magnetic permeability of an air layer or the like. An object of the present invention is to provide a magnetic permeability measuring device and a magnetic permeability measuring method.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the magnetic permeability measuring apparatus according to the first aspect of the present invention includes a rod-shaped first magnetic core (1A) whose end face is in contact with the material to be measured (3), and a winding around the outer periphery of the first magnetic core. A second magnetic core (1B) having the same shape as the first magnetic core having its end face brought into contact with the rotated first exciting coil (2A) and a reference material (4) having a sufficiently high permeability as compared with the material to be measured ), A second excitation coil (2B) wound around the outer periphery of the second magnetic core, an energization circuit (5A) for energizing the first excitation coil (2A) with a constant voltage, and a second excitation coil (2B) The difference between the second energization circuit (5B) energizing with a constant voltage to the first excitation coil (2A) and the output according to the energization current to the second excitation coil (2B). And an arithmetic circuit (81, 83) for calculating the magnetic permeability of the material to be measured based on the reciprocal of.
[0009]
In the present invention, if the difference in output according to the energization current of the first energization circuit and the second energization circuit is taken, the permeability of the air layer and the magnetic core is canceled in this difference output, so that the air layer has a small permeability. There is no problem that the measurement range of the magnetic permeability of the material to be measured is limited by the influence of the magnetic permeability. Since the magnetic permeability of the reference material is sufficiently larger than the magnetic permeability of the material to be measured, the magnetic permeability of the material to be measured is uniquely determined as a value proportional to the reciprocal of the difference current. Furthermore, it is possible to measure the local permeability of small parts by reducing the outer diameter of the magnetic core, and only the exciting coil needs to be wound around the magnetic core. The overall structure is simplified.
[0010]
The first invention can also be realized as a measurement method having the following configuration. That is, in the magnetic permeability measuring method of the present invention, the end surface of the rod-shaped magnetic core (1A) wound with the exciting coil (2A) is contacted with the material to be measured (3) and the exciting coil (2B) is disposed on the outer periphery. The end face of another rod-shaped magnetic core (1B) of the same shape as that of the magnetic core (1A) wound around is brought into contact with a reference material (4) having a sufficiently high permeability as compared with the measured material (3). Then, AC excitation is performed on each of the exciting coils (2A, 2B) at a constant voltage, and the permeability of the material to be measured (3) is calculated from the reciprocal of the difference between the energization currents at this time.
[0011]
The magnetic permeability measuring apparatus according to the second aspect of the present invention includes a rod-shaped first magnetic core (1A), a first excitation coil (2A) wound around the outer periphery of the first magnetic core (1A), and a first excitation coil. A first energizing circuit (5A) for energizing AC at a constant voltage to (2A), and a reference material (4) having a sufficiently large permeability at the end face of the first magnetic core (1A) compared to the material to be measured (3) A pseudo output generating circuit (85) for generating an output corresponding to an energization current when the first energizing coil (2A) is AC-energized by the first energizing circuit (5A) and the first magnetic core (1A) The output corresponding to the energization current and the output of the pseudo output generation circuit (85) when the first energization circuit (5A) is energized to the first excitation coil (2A) with the end face in contact with the material to be measured (3) An arithmetic circuit (81, 83) for calculating the magnetic permeability of the material to be measured (3) based on the reciprocal of the difference between It is provided.
[0012]
In the second aspect of the invention, in addition to the effect of the first aspect of the invention, the provision of the pseudo output generation circuit eliminates the need to provide the reference material in the measuring apparatus, thereby simplifying the apparatus configuration.
[0013]
In the third aspect of the invention, the pseudo output generating circuit (85) in the second aspect of the invention is wound around the outer periphery of the rod-shaped second magnetic core (1B) having the same shape as the first magnetic core (1A). A second energization circuit (5B) for energizing with a constant voltage is connected to the second excitation coil (2B).
[0014]
In the third invention, by providing a circuit similar to the first magnetic core side on the input side of the pseudo output generation circuit, the first excitation accompanying the temperature change when the subsequent differential output is taken. Coil impedance fluctuations, drift fluctuations in the first energization circuit, etc. can be offset and compensated.
[0015]
In addition, this 2nd invention is realizable also as a measuring method which has the following structures. That is, in the magnetic permeability measurement method of the present invention, the end surface of the rod-shaped magnetic core (1A) in which the excitation coil (2A) is wound around the outer periphery is a reference having a sufficiently large magnetic permeability as compared with the measured material (3). The pseudo output generation circuit (85) generates an output corresponding to an energization current when the material is in contact with the material (4) and AC current is applied to the excitation coil (2A) at a constant voltage, and the magnetic core (1A) is connected to the material to be measured. The excitation coil (2A) is contacted with AC at a constant voltage in contact with (3), and the material to be measured (3) is obtained from the reciprocal of the difference between the output corresponding to the energized current and the output of the pseudo output generation circuit (85). ) Is calculated. Also, means (9, 86, 87) for detecting the inclination of the magnetic core (1A) from the vertical direction and correcting the output current of the exciting coil (2A) can be provided.
[0016]
The reference numerals in the parentheses indicate the correspondence with specific means described in the embodiments described later.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In FIG. 1, the whole structure of the magnetic permeability measuring apparatus of this invention is shown. In the figure, a magnetic core 1A made of a round bar-shaped permalloy or the like whose upper and lower end surfaces are spherical surfaces is provided, and its lower end portion 11 is in contact with the surface of the material 3 to be measured whose magnetic permeability is to be measured. An example of the material to be measured 3 is a carbon steel material. An excitation coil 2A is wound around the outer periphery of the magnetic core 1A, for example, 160 times, and this excitation coil 2A is connected to a constant voltage AC power source (for example, 1 KHz) 6 by an energization circuit 5A. The energization circuit 5A is provided with a current-voltage converter 7A that generates a voltage corresponding to the energization current flowing therethrough. On the other hand, a reference material 4 having a sufficiently large permeability compared to the expected permeability of the material 3 to be measured is provided, and an excitation coil 2B having the same structure as described above is provided on the surface thereof. The lower end 11 of the wound magnetic core 1B is in contact. Examples of the reference material 4 include ferrite and permalloy. The exciting coil 2B is connected to the AC power source 6 by an energizing circuit 5B, and the energizing circuit 5B is provided with a current-voltage converter 7B.
[0018]
As shown in FIG. 2, the magnetic cores 1A and 1B are actually housed in a cylindrical sensor case 12 that exposes only the lower end portion 11 and opens downward, and the sensor case 12 opens downward. It is stored in a cylindrical holder 13. A coil spring 14 is disposed between the top wall of the sensor case 12 and the top wall of the holder 13, and urges the sensor case 12 in a direction protruding from the holder 13. With this structure, as shown in FIG. 2, when the opening end surface 131 of the holder 13 is brought into contact with the surface of the material to be measured 3 or the reference material 4, the magnetic cores 1 </ b> A and 1 </ b> B The vertical posture is maintained with respect to the surface, and the lower end surface thereof is brought into contact with the surface of the material to be measured 3 or the reference material 4 with a constant force by a spring force. As a result, during the measurement of the magnetic permeability, stable measurement can be performed without causing a change in the posture of the magnetic cores 1A and 1B with respect to the measured material 3 and the like and a change in contact pressure.
[0019]
In FIG. 1, the outputs of the current-voltage converters 7A and 7B are input to a differential amplifier 81, and a difference ΔI between energization currents Ia and Ib flowing in both energization circuits 5A and 5B is obtained. The current difference signal is input to the next stage AC-DC converter 82 to be converted into a DC voltage signal, and then input to the reciprocal calculator 83 to output a signal corresponding to the reciprocal of the current difference (1 / ΔI). The A signal corresponding to the reciprocal of the current difference (1 / ΔI) is proportional to the magnetic permeability μ 2 of the material 3 to be measured as will be described later, and is measured on the display 84 by multiplying by a predetermined coefficient. The magnetic permeability μ2 of the material 3 is displayed.
[0020]
In the magnetic permeability measuring apparatus having the above-described configuration, the magnetic circuit formed by the magnetic core 1A and the material to be measured 3 can be expressed by a model as shown in FIG. Rm is represented by the above equation (1) as described in the prior art. When an energizing current Ia having a frequency f is passed through the exciting coil 2A having N turns, the voltage V across the exciting coil 2A (that is, the voltage of the AC power supply 6) is expressed by the following equation (2).
[0021]
V = 2π · f · N 2 · Ia / Rm (2)
[0022]
Therefore, the conduction current Ia is expressed by the equation (3) from the equations (1) and (2).
[0023]
Ia = (V / 2π · f · N 2 ) {(L1 / (μ1 · S) + L2 / (μ2 · S) + L3 / (μ3 · S)}} (3)
[0024]
On the other hand, the energization current Ib to the exciting coil 2B (the number of turns N) of the magnetic core 1B brought into contact with the reference material 4 having a magnetic permeability μ4 is expressed by the following equation (4) by the same relationship as described above.
[0025]
Ib = (V / 2π · f · N 2 ) {(L1 / (μ1 · S) + L2 / (μ4 · S) + L3 / (μ3 · S)}} (4)
[0026]
When the difference ΔI of the energizing current is obtained by the differential amplifier 81, it is as shown in Equation (5), and since μ2 << μ4 as described above, the reciprocal calculator 83 calculates the reciprocal of ΔI (1 / ΔI). Then, this becomes proportional to the magnetic permeability μ 2 of the material 3 to be measured, as shown in Expression (6). Therefore, the permeability μ 2 of the material to be measured 3 can be obtained by multiplying the reciprocal of the difference current (1 / ΔI) by an appropriate coefficient.
[0027]
ΔI = Ia−Ib = (V · L 2) (1 / μ 2 −1 / μ 4) / (2π · f · N 2 · S) (5)
[0028]
μ 2 = {(V · L 2) / (2π · f · N 2 · S)} · (1 / ΔI) (6)
[0029]
FIG. 4 shows the relationship between the relative permeability of the material 3 to be measured and the output of the reciprocal calculator 83. As is apparent from the figure, since the measurement apparatus of the present embodiment eliminates the influence of the permeability of the air layer R and the magnetic cores 1A and 1B, the output of the reciprocal calculator 83 is to some extent as the permeability increases. Shows a tendency of saturation, but the magnetic permeability of the material to be measured can be accurately measured without causing saturation in the output in a wide range from a small magnetic permeability to a large magnetic permeability as compared with the conventional apparatus. In the measuring apparatus of the present embodiment, the local permeability of a small component can be measured by reducing the outer diameter of the magnetic cores 1A and 1B, and the detection coil is wound around the magnetic core as in the past. There is no need to do this, and only the exciting coil needs to be wound, so that the structure of the entire measuring unit including the magnetic core is simplified.
[0030]
(Second Embodiment)
In the present embodiment, the configuration of a magnetic permeability measuring apparatus that does not require the reference material 4 in the apparatus as in the first embodiment will be described. That is, in FIG. 5, unlike the first embodiment, the magnetic core 1 </ b> B is entirely disposed in the air without the lower end portion 11 being brought into contact with the surface of the reference material 4. Then, a pseudo output generation circuit 85 is provided after the current-voltage converter 7B provided in the energization circuit 5B for energizing the magnetic core 1B, and its output is input to the differential amplifier 81, where the energization circuit 5A The difference from the output of the provided current-voltage converter 7A is calculated. The pseudo output generation circuit 85 can arbitrarily change the amplitude and phase of the AC signal input thereto, and the other device configuration is the same as that of the first embodiment.
[0031]
In the magnetic permeability measuring apparatus having such a configuration, prior to measuring the magnetic permeability of the material 3 to be measured, the lower end 11 of the magnetic core 1A is brought into contact with the reference material 4 as shown in FIG. The amplitude and phase of the output of the pseudo output generation circuit 85 are adjusted so that the output of the differential amplifier 81 becomes zero. In this case, the current flowing through the energizing circuit 5A is Ib equal to the current flowing through the energizing circuit 5B in the first embodiment, and the output of the current-voltage converter 7A corresponds to the current Ib. Therefore, the output of the pseudo output generation circuit 85 is equal to the voltage output corresponding to the current Ib flowing through the energization circuit 5B when the lower end portion 11 of the magnetic core 1B is brought into contact with the reference material 4.
[0032]
After setting the output of the pseudo output generating circuit 85 as described above, the lower end 11 of the magnetic core 1A is brought into contact with the surface of the material 3 to be measured as shown in FIG. By comparing the output of the current-voltage converter 7A corresponding to the output of the pseudo output generation circuit 85 with the differential amplifier 81, the magnetic core brought into contact with the material to be measured 3 as in the first embodiment. A current difference signal ΔI between the current Ia flowing through the exciting coil 2A of 1A and the current Ib flowing through the exciting coil 2B of the magnetic core 1B virtually brought into contact with the reference material 4 is obtained. Hereinafter, the same as in the first embodiment Thus, the magnetic permeability μ 2 of the measured material 3 can be obtained from the reciprocal of the current difference (1 / ΔI). In the present embodiment, since the pseudo output generation circuit is provided and the output is set to the output corresponding to the reference material contact as described above, it is not necessary to provide the reference material 3 in the measuring device, and the device configuration is simplified. Is done.
[0033]
(Third embodiment)
In the second embodiment, the reason for providing the magnetic core 1B that does not actually contact the reference material 4 and the material 3 to be measured, the energizing circuit 2B, and the current-voltage converter 7B is as follows. This is because the differential amplifier 81 cancels and compensates for the impedance fluctuation of the exciting coil 2A and the drift fluctuation of the current-voltage converter 7A due to the temperature change by providing a circuit similar to the above-mentioned side.
[0034]
Therefore, when the impedance fluctuation or drift fluctuation is not so much of a problem, the pseudo output generation circuit 85 is directly connected to the power source 6 as shown in FIG. 7, and the magnetic core 1B and the energization circuit 5B in the second embodiment are connected. And the current-voltage converter 7B can be omitted. Thereby, the apparatus configuration can be further greatly simplified.
[0035]
(Fourth embodiment)
In the first embodiment, the holder 12 and the sensor case 13 are used so that the lower end 11 of the magnetic core 1A is brought into contact with the surface of the material 3 to be measured in a vertical posture, but the posture of the magnetic core 1A is inclined from the vertical. FIG. 8 shows a configuration in which the output of the reciprocal calculator 83 is corrected to minimize the occurrence of errors in the case where the error occurs.
[0036]
In FIG. 8, a tilt sensor 9 is provided in the magnetic core 1 </ b> A in which the lower end portion 11 is brought into contact with the material to be measured 3, and the output thereof is input to the tilt measuring circuit 86. The output of the inclination measuring circuit 86 is input to a sensitivity correction circuit 87 provided at the subsequent stage of the reciprocal calculator 83, where the output of the reciprocal calculator 83 is described later according to the degree of inclination of the magnetic core 1A. It is corrected. Other configurations are the same as those of the first embodiment already described.
[0037]
As shown in FIG. 9, the tilt sensor 9 is provided with Hall elements 91 at four circumferential positions at equal intervals in the outer periphery of the magnetic core 1 </ b> A. The magnetic flux that passes through the outer periphery of the magnetic core 1 </ b> A in the radial direction by these Hall elements 91. Density is measured. As shown in FIG. 10, the inclination measuring circuit 86 calculates the difference (B1−B2) (B3−B4) between the magnetic flux density outputs B1 to B4 of the Hall elements 91 provided at the opposing positions, and based on these, The magnetic flux density difference Bx and the magnetic flux density difference By in the y direction perpendicular to the x direction are obtained, and the mean square value of the magnetic flux density differences Bx and By is calculated. Since the mean square value θv is proportional to the inclination angle of the magnetic core 1A from the vertical line, the output of the reciprocal calculator 83 is corrected by inputting this to the sensitivity correction circuit 87. An example is shown in FIG. When the magnetic core 1A is held in a vertical posture, the output characteristic of the reciprocal calculator 83 with respect to the relative permeability of the material 3 to be measured is indicated by a line x, whereas the inclination angle of the magnetic core 1A is At 10 °, the output characteristic becomes a small value as a whole as shown by the line y. Therefore, by multiplying the output of the reciprocal computing unit 83 at this time by a predetermined constant according to the tilt angle of the magnetic core 1A, the output characteristic of the reciprocal computing unit 83 shown by the line y is substantially linear as shown by the line z. It is corrected to a characteristic along the output characteristic indicated by x.
[0038]
In the second embodiment and the third embodiment, the reference material 4 is actually brought into contact with the magnetic core 2A, and in this state, the output of the pseudo output generation circuit 85 is set so that the output of the differential amplifier 81 becomes zero. If the output is adjusted, but the output of the current-voltage converter 7A when the reference material 4 is brought into contact with the magnetic core 2A can be predicted, the predicted value is directly output directly without using the reference material 4 at all. The generation circuit 85 may be set. Various modifications can be made without departing from the spirit of the present invention.
[0039]
【The invention's effect】
As described above, according to the magnetic permeability measuring apparatus and the magnetic permeability measuring method of the present invention, the magnetic permeability of small parts and the like can be reduced over a wide range from a small value to a large value by eliminating the influence of the magnetic permeability of the air layer or the like. Simple and accurate measurement is possible.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of a magnetic permeability measuring apparatus according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a magnetic core holder.
FIG. 3 is a model diagram showing a magnetic circuit of a magnetic core.
FIG. 4 is a graph showing the relationship between the relative permeability of the material to be measured and the output of the reciprocal calculator.
FIG. 5 is a block diagram showing an overall configuration of a magnetic permeability measuring device in a second embodiment of the present invention.
FIG. 6 is a partial cross-sectional side view of a state in which a magnetic core is in contact with a reference material.
FIG. 7 is a block diagram showing an overall configuration of a magnetic permeability measuring device in a third embodiment of the present invention.
FIG. 8 is a block diagram showing a main configuration of a magnetic permeability measuring device according to a fourth embodiment of the present invention.
FIG. 9 is a partial cross-sectional side view of a magnetic core.
FIG. 10 is a block diagram showing a calculation procedure in the inclination measuring circuit.
FIG. 11 is an output characteristic diagram with respect to relative permeability.
FIG. 12 is a schematic side view of a magnetic core used in a conventional magnetic permeability measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1A, 1B ... Magnetic core, 2A, 2B ... Excitation coil, 3 ... Material to be measured, 4 ... Reference material, 5A, 5B ... Current supply circuit, 81 ... Differential amplifier, 83 ... Reciprocal calculator, 85 ... Pseudo output generation circuit .

Claims (5)

被測定材に端面を接触させた棒状の第1磁気コアと、当該第1磁気コアの外周に巻回された第1励磁コイルと、前記被測定材に比して十分に透磁率が大きい基準材に端面を接触させた前記第1磁気コアと同形の第2磁気コアと、当該第2磁気コアの外周に巻回された第2励磁コイルと、前記第1励磁コイルへ定電圧で交流通電する第1通電回路と、前記第2励磁コイルへ定電圧で交流通電する第2通電回路と、前記第1励磁コイルへの通電電流に応じた出力と前記第2励磁コイルへの通電電流に応じた出力の差の逆数に基づいて前記被測定材の透磁率を算出する演算回路とを具備する透磁率測定装置。A rod-shaped first magnetic core whose end face is in contact with the material to be measured, a first excitation coil wound around the outer periphery of the first magnetic core, and a reference having a sufficiently high permeability as compared with the material to be measured A second magnetic core having the same shape as the first magnetic core with the end face in contact with the material, a second excitation coil wound around the outer periphery of the second magnetic core, and alternating current energization with a constant voltage to the first excitation coil A first energizing circuit, a second energizing circuit for energizing the second exciting coil with a constant voltage at a constant voltage, an output according to the energizing current to the first exciting coil, and an energizing current to the second exciting coil A magnetic permeability measuring apparatus comprising: an arithmetic circuit that calculates the magnetic permeability of the material to be measured based on the reciprocal of the difference in output. 外周に励磁コイルを巻回した棒状の磁気コアの端面を被測定材に接触させるとともに、外周に励磁コイルを巻回した前記磁気コアと同形の他の棒状の磁気コアの端面を前記被測定材に比して十分に透磁率が大きい基準材に接触させ、両励磁コイルにそれぞれ定電圧で交流通電して、この時の通電電流に応じた出力の差の逆数より前記被測定材の透磁率を算出することを特徴とする透磁率測定方法。The end surface of a rod-shaped magnetic core having an excitation coil wound around its outer periphery is brought into contact with the material to be measured, and the end surface of another rod-shaped magnetic core having the same shape as the magnetic core having the excitation coil wound around its outer periphery The magnetic permeability of the material to be measured is determined from the reciprocal of the difference in output according to the current applied at this time, by contacting a reference material having a sufficiently high permeability compared to A magnetic permeability measuring method, characterized by: 棒状の第1磁気コアと、当該第1磁気コアの外周に巻回された第1励磁コイルと、前記第1励磁コイルへ定電圧で交流通電する第1通電回路と、前記第1磁気コアの端面を被測定材に比して十分に透磁率が大きい基準材に接触させて前記第1励磁コイルに前記第1通電回路により交流通電した際の通電電流に相当する出力を生じる疑似出力発生回路と、前記第1磁気コアの端面を前記被測定材に接触させた状態で前記第1通電回路により前記第1励磁コイルへ通電した際の通電電流に応じた出力と前記疑似出力発生回路の出力との差の逆数に基づいて前記被測定材の透磁率を算出する演算回路とを具備する透磁率測定装置。A rod-shaped first magnetic core; a first excitation coil wound around the outer periphery of the first magnetic core; a first energization circuit for energizing the first excitation coil with a constant voltage; and A pseudo output generation circuit that generates an output corresponding to an energization current when the end surface is brought into contact with a reference material having a sufficiently large permeability as compared with the material to be measured and the first energization coil is energized by the first energization circuit. And an output corresponding to the energized current when the first energizing circuit energizes the first exciting coil with the end face of the first magnetic core in contact with the material to be measured, and the output of the pseudo output generating circuit And an arithmetic circuit for calculating the magnetic permeability of the material to be measured based on the reciprocal of the difference. 前記擬似出力発生回路の入力側に、前記第1磁気コアと同形の棒状の第2磁気コアの外周に巻回した第2励磁コイルに定電圧で通電する第2通電回路を接続した請求項3に記載の透磁率測定装置。A second energization circuit for energizing at a constant voltage to a second excitation coil wound around the outer periphery of a rod-shaped second magnetic core having the same shape as the first magnetic core is connected to the input side of the pseudo output generation circuit. The magnetic permeability measuring apparatus according to 1. 外周に励磁コイルを巻回した棒状の磁気コアの端面を、被測定材に比して十分に透磁率が大きい基準材に接触させて前記励磁コイルに定電圧で交流通電した際の通電電流に相当する出力を疑似出力発生回路に発生させるとともに、前記磁気コアを被測定材に接触させて前記励磁コイルに定電圧で交流通電して、この際の通電電流に応じた出力と前記擬似出力発生回路の出力の差の逆数より前記被測定材の透磁率を算出することを特徴とする透磁率測定方法。The end face of a rod-shaped magnetic core with an excitation coil wound around its outer periphery is brought into contact with a reference material having a sufficiently high permeability compared to the material to be measured, and the current applied when AC current is supplied to the excitation coil at a constant voltage. A corresponding output is generated in the pseudo output generating circuit, and the magnetic core is brought into contact with the material to be measured, and the exciting coil is energized with a constant voltage, and the output corresponding to the energizing current and the pseudo output are generated. A magnetic permeability measuring method, wherein the magnetic permeability of the material to be measured is calculated from the reciprocal of the difference in output of the circuit.
JP2000057918A 1999-03-26 2000-02-29 Permeability measuring device and permeability measuring method Expired - Fee Related JP4006919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057918A JP4006919B2 (en) 1999-03-26 2000-02-29 Permeability measuring device and permeability measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-83141 1999-03-26
JP8314199 1999-03-26
JP2000057918A JP4006919B2 (en) 1999-03-26 2000-02-29 Permeability measuring device and permeability measuring method

Publications (2)

Publication Number Publication Date
JP2000346920A JP2000346920A (en) 2000-12-15
JP4006919B2 true JP4006919B2 (en) 2007-11-14

Family

ID=26424199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057918A Expired - Fee Related JP4006919B2 (en) 1999-03-26 2000-02-29 Permeability measuring device and permeability measuring method

Country Status (1)

Country Link
JP (1) JP4006919B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226629B2 (en) * 2013-08-09 2017-11-08 株式会社東芝 Magnetic detection device and paper sheet processing device
JP7529226B1 (en) 2024-02-02 2024-08-06 マグネデザイン株式会社 Magnetic wire with microcoil and method for producing same
JP7529227B1 (en) 2024-02-21 2024-08-06 マグネデザイン株式会社 Long magnetic wire with microcoil and method for producing same
JP7529228B1 (en) 2024-03-08 2024-08-06 マグネデザイン株式会社 A magnetic wire having a magnetic sensor element with a coil and a magnetic sensor element with a coil.

Also Published As

Publication number Publication date
JP2000346920A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP3445362B2 (en) AC current sensor
JP2002318250A (en) Current detector and overload current protective device using the same
EP0380562B1 (en) Magnetometer employing a saturable core inductor
JPH03218475A (en) Method and device for measuring current
JPH08273952A (en) Plane current detector
JP4006919B2 (en) Permeability measuring device and permeability measuring method
JP2002277522A (en) Magnetic field sensor
JP4716030B2 (en) Current sensor
WO1996019819A1 (en) Magnetic correction circuit and picture display using it
JP2003075475A (en) Ac current sensor
JP2000055998A (en) Magnetic sensor device and current sensor device
JPH11281678A (en) Current sensor
JPH0815229A (en) High resolution eddy current flaw detector
JP2000028695A (en) Method and apparatus for measurement of magnetism
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JPH08304481A (en) Wattmeter
JP2617570B2 (en) Magnetic measuring device
KR20210109068A (en) Direct current measuring method and apparatus
JP2606043Y2 (en) Eddy current flaw detector
JP2001337146A (en) Sensitivity calibration device for magnetic sensor
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JPS5979860A (en) Apparatus for measuring current
JP2759303B2 (en) Stress detector
JP2000266786A (en) Current sensor
JPH0674977A (en) Non-contact type ammeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees