JPH0674796B2 - Multi-channel vacuum pump - Google Patents

Multi-channel vacuum pump

Info

Publication number
JPH0674796B2
JPH0674796B2 JP19646487A JP19646487A JPH0674796B2 JP H0674796 B2 JPH0674796 B2 JP H0674796B2 JP 19646487 A JP19646487 A JP 19646487A JP 19646487 A JP19646487 A JP 19646487A JP H0674796 B2 JPH0674796 B2 JP H0674796B2
Authority
JP
Japan
Prior art keywords
gas
pump
rotary
turbo molecular
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19646487A
Other languages
Japanese (ja)
Other versions
JPS6441698A (en
Inventor
哲也 阿部
義夫 村上
和雄 引田
晴繁 大澤
祐治 大谷
聰 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19646487A priority Critical patent/JPH0674796B2/en
Priority to DE3826710A priority patent/DE3826710A1/en
Publication of JPS6441698A publication Critical patent/JPS6441698A/en
Publication of JPH0674796B2 publication Critical patent/JPH0674796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核融合装置等に適用するマルチチヤンネル型
真空ポンプに関するものである。
TECHNICAL FIELD The present invention relates to a multi-channel vacuum pump applied to a nuclear fusion device or the like.

(従来の技術) 従来の核融合装置用真空ポンプを第5図に示した。(0
1)がターボ分子ポンプ,(02)が回転ポンプ,(014
a)がターボ分子ポンプ(01)の上部ケーシング,(014
b)が回転ポンプ(02)の上部ケーシング,(014c)が
ターボ分子ポンプ(01)及び回転ポンプ(02)に共通の
下部ケーシングである。
(Prior Art) A conventional vacuum pump for a nuclear fusion device is shown in FIG. (0
1) is a turbo molecular pump, (02) is a rotary pump, (014
a) is the upper casing of the turbo molecular pump (01), (014
b) is an upper casing of the rotary pump (02), and (014c) is a lower casing common to the turbo molecular pump (01) and the rotary pump (02).

まずターボ分子ポンプ(01)について説明すると,(01
a)が回転体,(01b)が同回転体(01a)の上部に設け
た多段の動翼,(01c)が上記多段の動翼(01b)に対向
して上記上部ケーシング(014a)の内壁面に固定した多
段の静翼,(03)が上記回転体(01a)を取り囲んで上
記上部ケーシング(014a)と上記下部ケーシング(014
c)とに仕切る非接触シール,(04)が上記下部ケーシ
ング(014c)の内壁面に取付けた上部ラジアル気体軸
受,(06)が同上部ラジアル気体軸受(04)よりも下方
の上記下部ケーシング(014c)の内壁面に取付けた下部
ラジアル気体軸受,(05)が上記回転体(01a)の下端
部に固定した気体タービン,(05a)が上記下部ケーシ
ング(014c)の下部壁を貫通して同気体タービン(05)
に開口した駆動用気体供給口,(07)(07)が同気体タ
ービン(05)に対向して上記下部ケーシング(014c)の
下部内壁面に取付けた最下部のスラスト気体軸受で,回
転体(01a)が上部ラジアル気体軸受(04)と下部ラジ
アル気体軸受(06)と最下部のスラスト気体軸受(07)
(07)とにより回転可能に支持されている。また(08)
が上記下部ケーシング(014c)の最下部壁に設けた支承
用気体供給口で,上記各部分のうち,回転部分がセラミ
ツクスにより構成されている。
First, the turbo molecular pump (01) will be explained.
a) is a rotating body, (01b) is a multi-stage moving blade provided on the upper side of the rotating body (01a), (01c) is facing the multi-stage moving blade (01b), and inside the upper casing (014a) A multi-stage vane fixed to a wall surface (03) surrounds the rotating body (01a), and the upper casing (014a) and the lower casing (014).
c) a non-contact seal for partitioning with, an upper radial gas bearing (04) mounted on the inner wall surface of the lower casing (014c), and a lower casing (06) below the upper radial gas bearing (04). 014c) a lower radial gas bearing mounted on the inner wall surface, (05) a gas turbine fixed to the lower end of the rotating body (01a), and (05a) penetrating the lower wall of the lower casing (014c). Gas turbine (05)
The drive gas supply port opened at (07) (07) faces the gas turbine (05) and is the lowest thrust gas bearing attached to the lower inner wall surface of the lower casing (014c). 01a) is the upper radial gas bearing (04), the lower radial gas bearing (06) and the lowermost thrust gas bearing (07)
(07) is rotatably supported by and. See also (08)
Is a support gas supply port provided in the lowermost wall of the lower casing (014c), and the rotating part of each of the above parts is made of ceramics.

次に回転ポンプ(02)について説明すると,(02a)が
回転体,(02b)(02c)が内周面にねじ溝を設けた静止
中空体で,同静止中空体(02b)(02c)が上記上部ケー
シング(014b)の内壁面に固定され,上記回転体(02
a)が同静止中空体(02b)(02c)内に回転可能に嵌挿
されている。また(09)が上記下部ケーシング(014c)
の内壁面に取付けた上部ラジアル気体軸受,(011)が
同上部ラジアル気体軸受(09)よりも下方の上記下部ケ
ーシング(014c)の内壁面に取付けた下部ラジアル気体
軸受,(010)が上記回転体(02a)の下端部に固定した
気体タービン,(012)(012)が同気体タービン(01
0)に対向して上記下部ケーシング(014c)の下部内壁
面に取付けた最下部のスラスト気体軸受で,回転体(02
a)が上部ラジアル気体軸受(09)と下部ラジアル気体
軸受(011)と最下部のスラスト気体軸受(012)(01
2)とにより回転可能に支持されている。また(010a)
が上記気体タービン(05)と上記気体タービン(010)
とを連絡する送気通路,(015)が上記上部ラジアル気
体軸受(04)の直上の回転体(01a)の周りと上記静止
中空体(02c)の直上の回転体(02a)の周りとを連絡す
る送気通路で、上記各部分のうち,回転部分がセラミツ
クスにより構成されている。
Next, the rotary pump (02) will be described. (02a) is a rotating body, (02b) (02c) is a stationary hollow body having a thread groove on the inner peripheral surface, and the stationary hollow body (02b) (02c) is It is fixed to the inner wall surface of the upper casing (014b) and
a) is rotatably fitted in the stationary hollow body (02b) (02c). Also, (09) is the lower casing (014c).
The upper radial gas bearing mounted on the inner wall surface of the, the lower radial gas bearing (011) mounted on the inner wall of the lower casing (014c) below the upper radial gas bearing (09), and the (010) rotating The gas turbine fixed to the lower end of the body (02a), (012) (012) is the same gas turbine (01
0), which is the lowermost thrust gas bearing mounted on the inner wall surface of the lower part of the lower casing (014c).
a) is the upper radial gas bearing (09), the lower radial gas bearing (011) and the lowermost thrust gas bearing (012) (01
2) It is rotatably supported by and. Also (010a)
Is the gas turbine (05) and the gas turbine (010)
An air supply passage (015) for communicating between the rotary body (01a) directly above the upper radial gas bearing (04) and the rotary body (02a) directly above the stationary hollow body (02c). In the air supply passage communicating with each other, among the above-mentioned parts, the rotating part is made of ceramics.

次に前記第5図に示す核融合装置用真空ポンプの作用を
説明する。支承用気体(B1)を支承用気体供給口(08)
からターボ分子ポンプ(01)のラジアル気体軸受(04)
(06)及びスラスト気体軸受(07)(07)と,回転ポン
プ(02)のラジアル気体軸受(09)(011)及びスラス
ト気体軸受(012)(012)とに送って,ターボ分子ポン
プ(01)の回転体(01a)と回転ポンプ(02)の回転体
(02a)とを回転可能に支承する。また駆動用気体
(C1)を駆動用気体供給口(05a)から気体タービン(0
5)へ送って,高真空域で排気能力を有するターボ分子
ポンプ(01)の回転体(01a)と多段の動翼(01b)とを
高速回転させる一方,駆動用気体(C1)を気体タービン
(05)部から送気通路(010a)を経て気体タービン(01
0)へ送って,低真空域で排気能力を有する回転ポンプ
(02)の回転体(02a)を高速回転させ,ターボ分子ポ
ンプ(01)の吸気口側の気体を矢印(A1)→(A2)→
(A3)方向に排気して,ターボ分子ポンプ(01)の吸気
口側を高真空にする。このとき,回転ポンプ(02)の排
気口側では,大気圧近傍の圧力で排気している。
Next, the operation of the vacuum pump for a nuclear fusion device shown in FIG. 5 will be described. Supporting gas (B 1 ) is supplied by supporting gas supply port (08)
From turbo molecular pump (01) radial gas bearing (04)
(06) and thrust gas bearings (07) (07), and the radial gas bearings (09) (011) and thrust gas bearings (012) (012) of the rotary pump (02), and the turbo molecular pump (01 ), The rotating body (01a) and the rotating body (02a) of the rotary pump (02) are rotatably supported. Further, the driving gas (C 1 ) is supplied from the driving gas supply port (05a) to the gas turbine (0
5) to rotate the rotating body (01a) of the turbo molecular pump (01) and the multi-stage rotor blades (01b), which have an exhausting capacity in a high vacuum region, at high speed, while the driving gas (C 1 ) is gas. Gas turbine (01) through the air supply passage (010a) from the turbine (05)
(0) to rotate the rotary body (02a) of the rotary pump (02) which has the exhaust capacity in the low vacuum region at high speed, and moves the gas on the intake side of the turbo molecular pump (01) to the arrow (A 1 ) → ( A 2 ) →
Evacuate in the (A 3 ) direction to create a high vacuum on the inlet side of the turbo molecular pump (01). At this time, the exhaust side of the rotary pump (02) is exhausted at a pressure near atmospheric pressure.

(発明が解決しようとする問題点) 前記第5図に示す従来の核融合装置用真空ポンプでは,
(1)ターボ分子ポンプ(01)の回転部分をセラミツク
ス(耐磁場性,耐熱性,耐食性に優れているが,脆性材
料のセラミツクス)により構成しており,回転強度上,
及び部材の成形,焼成上から多段の動翼(01b)を大型
化するのが困難で,高真空域において排気能力を増大さ
せるのに限界があった。(II)支承用気体供給口(08)
からターボ分子ポンプ(01)のラジアル気体軸受(04)
(06)及びスラスト気体軸受(07)(07)と,回転ポン
プ(02)のラジアル気体軸受(09)(011)及びスライ
ト気体軸受(012)(012)とに送られた支承用気体
(B1)が下部ケーシング(014c)外へ排出されるので、
真空ポンプ内にある放射性気体も支承用気体(B1)とと
もに外部へ排出される可能性があった。(III)ターボ
分子ポンプ(01)及び回転ポンプ(02)の回転部分を脆
性材料のセラミツクスにより構成しており,回転部分を
金属材料により構成した真空ポンプに比べると,破壊さ
れる確率が高く,回転部分が破壊されると,ケーシング
(014a)(014b)も破壊されて,真空ポンプ内の放射性
気体が外部へ放出されてしまう危険性があった。
(Problems to be Solved by the Invention) In the conventional vacuum pump for a fusion device shown in FIG.
(1) The rotating part of the turbo molecular pump (01) is composed of ceramics (ceramics of brittle material, which is excellent in magnetic field resistance, heat resistance, and corrosion resistance).
Also, it was difficult to increase the size of the multi-stage rotor blade (01b) from the viewpoint of molding and firing of the member, and there was a limit to increase the exhaust capacity in the high vacuum region. (II) Support gas supply port (08)
From turbo molecular pump (01) radial gas bearing (04)
(06) and thrust gas bearings (07) (07) and bearing gas (B) sent to the radial gas bearings (09) (011) and slite gas bearings (012) (012) of the rotary pump (02). 1 ) is discharged out of the lower casing (014c),
The radioactive gas in the vacuum pump could also be discharged outside together with the supporting gas (B 1 ). (III) The rotating parts of the turbo molecular pump (01) and the rotary pump (02) are made of ceramics of brittle material, and the rotating parts are more likely to be broken than the vacuum pump made of a metal material. When the rotating part is destroyed, the casings (014a) and (014b) are also destroyed, and there is a risk that the radioactive gas in the vacuum pump is released to the outside.

(問題点を解決するための手段) 本発明は前記の問題点に対処するもので、上部に吸気口
を設けた外部ケーシングの内部に複数の真空ポンプユニ
ツトを並べて配設し、同各真空ポンプユニツトのそれぞ
れを,上下2段のユニツト用内部ケーシングと,同ユニ
ツト用内部ケーシング内に設置したポンプ要素とにより
構成し,同ポンプ要素を,回転体と同回転体を回転可能
に支持する気体軸受と同回転体に設けた多段の動翼と同
回転体に設けた回転体駆動用気体タービンと同各部分を
取り囲む円筒体とを有するターボ分子ポンプと,回転体
と内周面にねじ溝を設けた静止中空体と同回転体を同静
止中空体内に回転可能に支持する気体軸受と同回転体に
設けた回転体駆動用気体タービンと同各部分を取り囲む
円筒体とを有する回転ポンプと,上記ターボ分子ポンプ
及び上記回転ポンプの気体タービンへ駆動用気体を供給
する駆動用気体供給管路と,上記ターボ分子ポンプ及び
上記回転ポンプの気体軸受へ回転体支承用気体を供給す
る支承用気体供給管路と,上記ターボ分子ポンプからの
排気を上記回転ポンプの吸気口へ導く送気管路と,上記
回転ポンプからの排気を外部管路へ導く一方の排気管路
と,上記ターボ分子ポンプ及び上記回転ポンプの気体タ
ービン及び気体軸受からの排気を外部管路へ導く他方の
排気管路とにより構成したことを特徴としている。
(Means for Solving the Problems) The present invention addresses the above problems, and a plurality of vacuum pump units are arranged side by side inside an external casing having an intake port at the top thereof, and the respective vacuum pumps are provided. Each unit is composed of upper and lower two-stage unit inner casing and a pump element installed in the unit inner casing, and the pump element rotatably supports the rotor and the rotor. And a turbo molecular pump having multi-stage rotor blades provided on the same rotating body, a gas turbine for driving the rotating body provided on the same rotating body, and a cylindrical body surrounding each part, and a thread groove on the rotating body and the inner peripheral surface. A rotary pump having a stationary hollow body provided and a gas bearing for rotatably supporting the stationary body in the stationary hollow body, and a gas turbine for driving the rotating body provided in the stationary body and a cylindrical body surrounding the respective parts; The above Drive gas supply pipe for supplying drive gas to the turbo molecular pump and the gas turbine of the rotary pump, and support gas supply for supplying rotary body support gas to the gas bearings of the turbo molecular pump and rotary pump A pipe line, an air supply pipe line that guides exhaust gas from the turbo molecular pump to an intake port of the rotary pump, one exhaust pipe line that guides exhaust gas from the rotary pump to an external pipe line, the turbo molecular pump, and It is characterized in that it is configured by the gas turbine of the rotary pump and the other exhaust pipe line that guides the exhaust gas from the gas bearing to the external pipe line.

本発明の目的とする処は,核融合装置等で必要としてい
る大排気速度が得られて,高真空域から吸気した気体を
大気圧近傍まで昇圧できる。また回転部分の破壊及び放
射性気体の外部への排出を防止できて,安全性を向上で
きる。さらに大排気速度から小排気速度まで任意の排気
速度で運転できて,負荷の変化に対応できるマルチチヤ
ンネル型真空ポンプを供する点にある。
The object of the present invention is to obtain a large exhaust velocity required for a nuclear fusion device or the like, and to increase the pressure of the gas sucked from the high vacuum region to near atmospheric pressure. In addition, it is possible to prevent damage to the rotating parts and discharge of radioactive gas to the outside, thus improving safety. Furthermore, the point is to provide a multi-channel vacuum pump that can operate at any pumping speed from large to small pumping speeds and can respond to load changes.

(作用) 本発明のマルチチヤンネル型真空ポンプは前記のように
構成されており、支承用気体供給管路からターボ分子ポ
ンプ及び回転ポンプの気体軸受へ回転体支承用気体を供
給して,ターボ分子ポンプの回転体と多段の動翼,及び
回転ポンプの回転体を回転可能に支承し,また駆動用気
体供給管路からターボ分子ポンプ及び回転ポンプの気体
タービンへ駆動用気体を供給して,高真空域で排気能力
を有するターボ分子ポンプの回転と多段の動翼とを高速
回転させる一方,低真空域で排気能力を有する回転ポン
プの回転体を高速回転させ,ターボ分子ポンプの吸気口
側の気体をターボ分子ポンプ→送気管路→回転ポンプ→
一方の排気管路→外部管路へ排気して,ターボ分子ポン
プの吸気口側を高真空にするとともに,回転ポンプの排
気口側を大気圧近傍の圧力にする。このとき,ターボ分
子ポンプ及び回転ポンプの気体タービン及び気体軸受か
らの排気を他方の排気管路を経て外部管路へ排気する。
以上の作用は,外部ケーシング内に設置された1つの真
空ポンプユニツトについてであるが、外部ケーシング内
に設置された他の各真空ポンプユニツトでも同様の作用
が行われる。
(Operation) The multi-channel vacuum pump of the present invention is configured as described above, and supplies the rotor support gas to the turbo molecular pump and the gas bearings of the rotary pump from the support gas supply pipe to generate the turbo molecule. The rotary body of the pump and the multi-stage rotor blades, and the rotary body of the rotary pump are rotatably supported, and the drive gas is supplied from the drive gas supply pipeline to the turbo-molecular pump and the gas turbine of the rotary pump. While rotating the turbo molecular pump that has the exhaust capacity in the vacuum region and the multi-stage rotor blades at high speed, rotate the rotating body of the rotary pump that has the exhaust capacity in the low vacuum region at high speed, Turbo molecular pump for gas → air supply line → rotary pump →
One of the exhaust lines is evacuated to the external line to bring the intake side of the turbo molecular pump to a high vacuum and the exhaust side of the rotary pump to a pressure near atmospheric pressure. At this time, the exhaust gas from the gas turbines and gas bearings of the turbo molecular pump and the rotary pump is exhausted to the external conduit via the other exhaust conduit.
The above operation is for one vacuum pump unit installed in the outer casing, but the same operation is performed in each of the other vacuum pump units installed in the outer casing.

(実施例) 次に本発明のマルチチヤンネル型真空ポンプを核融合装
置に適用した第1図乃至第4図に示す一実施例により説
明する。まずその全体を第1図乃至第3図により説明す
ると,(1)がターボ分子ポンプ,(14a1)(14a2)が
同ターボ分子ポンプ(1)の上下円筒体,(19)が同タ
ーボ分子ポンプ(1)の上下円筒体(14a1)(14a2)を
取り囲むユニツト用内部ケーシング(上下2段のユニツ
ト用内部ケーシングの上部),(19a)が同ユニツト用
内部ケーシング(19)の頂部に設けた吸気口,(2)が
回転ポンプ,(14b1)(14b2)が同回転ポンプ(2)の
上下円筒体,(20)が同回転ポンプ(2)の上下円筒体
(14b1)(14b2)を取り囲むユニツト用内部ケーシング
(上下2段のユニツト用内部ケーシングの下部)で,上
記上下2段のユニツト用内部ケーシング(19)(20)が
組み付けられて,真空ポンプユニツト(26)が構成され
ている。また(27)が外部ケーシング,(27a)が同外
部ケーシング(27)の頂部に設けた吸気口で,複数個
(本実施例では8個)の真空ポンプユニツト(26)が同
外部ケーシング(27)内に並べて配設されている。
(Embodiment) Next, an explanation will be given of an embodiment shown in FIGS. 1 to 4 in which the multi-channel vacuum pump of the present invention is applied to a nuclear fusion device. First, the whole will be described with reference to FIGS. 1 to 3. (1) is a turbo molecular pump, (14a 1 ) and (14a 2 ) are upper and lower cylindrical bodies of the turbo molecular pump (1), and (19) is the same turbo molecular pump. The inner casing for the unit surrounding the upper and lower cylindrical bodies (14a 1 ) (14a 2 ) of the molecular pump (1) (the upper part of the upper and lower two-stage unit inner casing), (19a) is the top of the inner casing (19) for the unit. An intake port provided in the rotary pump, (2) a rotary pump, (14b 1 ) and (14b 2 ) upper and lower cylinders of the same rotary pump (2), and (20) upper and lower cylinders (14b 1 ) of the same rotary pump (2). ) (14b 2 ) surrounding the unit inner casing (lower part of the upper and lower two-stage unit inner casing) and the above-mentioned upper and lower two-stage unit inner casings (19) (20) are assembled, and the vacuum pump unit (26 ) Is configured. Further, (27) is an outer casing, (27a) is an intake port provided at the top of the outer casing (27), and a plurality of vacuum pump units (26 in this embodiment) (26) are provided in the outer casing (27). ) Are arranged side by side.

次に前記真空ポンプユニツト(26)の詳細を第4図によ
り説明する。
Next, details of the vacuum pump unit (26) will be described with reference to FIG.

まずターボ分子ポンプ(1)について説明すると(1a)
がターボ分子ポンプ(1)の回転体,(1b)が同回転体
(1a)の上部に固定した多段の動翼,(1c)が同多段の
動翼(1b)に対向して上部円筒体(14a1)の内壁面に固
定した多段の静翼,(1d)が上記回転体(1a)の下端部
に固定した円板部,(3)が上記回転体(1a)を取り囲
んで上部円筒体(14a1)と下部円筒体(14a2)とに仕切
る非接触シール,(4)が上記下部円筒体(14a2)の内
壁面に取付けた上部ラジアル気体軸受(8b1)が上記下
部円筒体(14a2)壁を貫通して同上部ラジアル気体軸受
(4)に開口した支承用気体供給口(6)が同上部ラジ
アル気体軸受(4)よりも下方の上記下部円筒体(14
a2)の内壁面に取付けた下部ラジアル気体軸受,(8
b2)が上記下部円筒体(14a2)壁を貫通して同下部ラジ
アル気体軸受(6)に開口した支承用気体供給口,
(5)(5)が上記回転体(1a)の中間部に固定した気
体タービン,(5b1)(5b1)が上記下部円筒体(14a2
壁を貫通して同各気体タービン(5)に開口した駆動用
気体供給口,(5b2)(5b2)が上記下部円筒体(14a2
壁を貫通して同下部円筒体(14a2)外に開口した排気
口,(7)(7)が上記円板部(1d)に対向して上記下
部円筒体(14a2)の下部内壁面に取付けた最下部のスラ
スト気体軸受,(8b3)が上記下部円筒体(14a2)壁を
貫通して同最下部のスラスト気体軸受(7)に開口した
支承用気体供給口で,回転体(1a)が上部ラジアル気体
軸受(4)と下部ラジアル気体軸受(6)と最下部のス
ラスト気体軸受(7)(7)とにより回転可能に支持さ
れている。また上記各部分がユニツト用内部ケーシング
(19)により取り囲まれて,上記各部分のうち,回転部
分がセラミツクスにより構成されている。
First, the turbo molecular pump (1) will be explained (1a)
Is a rotor of the turbo molecular pump (1), (1b) is a multistage rotor fixed to the upper part of the rotor (1a), and (1c) is an upper cylinder facing the multistage rotor (1b). (14a 1 ) Multi-stage stator vanes fixed to the inner wall surface, (1d) a disk part fixed to the lower end of the rotating body (1a), (3) an upper cylinder surrounding the rotating body (1a) A non-contact seal for partitioning the body (14a 1 ) and the lower cylinder (14a 2 ), (4) is the upper radial gas bearing (8b 1 ) mounted on the inner wall surface of the lower cylinder (14a 2 ) The lower cylindrical body (14) has a bearing gas supply port (6) penetrating through the wall of the body (14a 2 ) and opening to the upper radial gas bearing (4) below the upper radial gas bearing (4).
a 2 ) lower radial gas bearing mounted on the inner wall of (a 2 ), (8
b 2 ) penetrates the wall of the lower cylindrical body (14a 2 ) and opens into the lower radial gas bearing (6), and a supporting gas supply port,
(5) (5) is a gas turbine fixed to the middle part of the rotating body (1a), (5b 1 ) (5b 1 ) is the lower cylindrical body (14a 2 )
The driving gas supply ports (5b 2 ) (5b 2 ) penetrating the wall and opening to the respective gas turbines (5) are the lower cylindrical bodies (14a 2 )
Exhaust ports that penetrate through the wall and open to the outside of the lower cylindrical body (14a 2 ), (7) and (7) face the disk portion (1d), and the lower inner wall surface of the lower cylindrical body (14a 2 ). the bottom of the thrust gas bearing attached to, (8b 3) is in the lower cylindrical body (14a 2) through the wall opening in the thrust gas bearing of the bottom part (7) bearing gas supply port, the rotary body (1a) is rotatably supported by an upper radial gas bearing (4), a lower radial gas bearing (6) and a lowermost thrust gas bearing (7) (7). Further, each of the above-mentioned parts is surrounded by the unit inner casing (19), and among the above-mentioned each part, the rotating part is constituted by ceramics.

次に回転ポンプ(2)について説明すると,(2a)が回
転体,(2b)が内周面にねじ溝を設けた静止中空体,
(2d)が上記回転体(2a)の下端部に固定した円板部
で,同静止中空体(2b)が上記上部円筒体(14b1)の内
壁面に固定され,上記回転体(2a)が同静止中空体(2
b)内に回転可能に嵌挿されている。また(9)が上記
下部円筒体(14b2)の内壁面に取付けた上部ラジアル気
体軸受,(8a1)が上記下部円筒体(14b2)壁を貫通し
て同上部ラジアル気体軸受(9)に開口した支承用気体
供給口,(11)が同上部ラジアル気体軸受(9)よりも
下方の上記下部円筒体(14b2)の内壁面に取付けた下部
ラジアル気体軸受,(8a2)が上記下部円筒体(14b2
壁を貫通して同下部ラジアル気体軸受(11)に開口した
支承用気体供給口,(10)(10)が上記回転体(2a)の
中間部に固定した気体タービン,(5a1)(5a1)が上記
下部円筒体(14b2)壁を貫通して同各気体タービン(1
0)に開口した駆動用気体供給口,(5a2)(5a2)が上
記下部円筒体(14b2)壁を貫通して同下部円筒体(14
b2)外に開口した排気口,(12)(12)が上記円板部
(2d)に対向して上記下部ケーシング(14b2)の下部内
壁面に取付けた最下部のスラスト気体軸受,(8a3)が
上記下部円筒体(14b2)壁を貫通して同最下部のスラス
ト気体軸受(12)(12)に開口した支承用気体供給口
で,回転体(2a)が上部ラジアル気体軸受(9)と下部
ラジアル気体軸受(11)と最下部のスラスト気体軸受
(12)(12)とにより回転可能に支持されている。また
上記各部分がユニツト用内部ケーシング(20)により取
り囲まれ,上記各部分のうち,回転部分がセラミツクス
により構成されている。
Next, the rotary pump (2) will be described. (2a) is a rotating body, (2b) is a stationary hollow body having a thread groove on its inner peripheral surface
(2d) is a disk portion fixed to the lower end of the rotating body (2a), and the stationary hollow body (2b) is fixed to the inner wall surface of the upper cylindrical body (14b 1 ), and the rotating body (2a) Is the same stationary hollow body (2
It is rotatably fitted in b). Further, (9) is an upper radial gas bearing mounted on the inner wall surface of the lower cylindrical body (14b 2 ), and (8a 1 ) is an upper radial gas bearing (9) penetrating the lower cylindrical body (14b 2 ) wall. The support gas supply port opened at the bottom, (11) is the lower radial gas bearing (8a 2 ) mounted on the inner wall surface of the lower cylindrical body (14b 2 ) below the upper radial gas bearing (9). Lower cylinder (14b 2 )
A supporting gas supply port that penetrates through the wall and opens to the lower radial gas bearing (11), a gas turbine in which (10) and (10) are fixed to the intermediate part of the rotating body (2a), (5a 1 ) (5a) 1 ) penetrates the wall of the lower cylindrical body (14b 2 ) and the respective gas turbines (1
Driving gas supply port (5a 2 ) (5a 2 ) opened in (0) penetrates the wall of the lower cylinder (14b 2 ) and
b 2 ) Exhaust port opened to the outside, (12) (12) is the lowest thrust gas bearing mounted on the inner wall surface of the lower part of the lower casing (14b 2 ) facing the disk part (2d), ( 8a 3 ) is a supporting gas supply port that penetrates through the wall of the lower cylindrical body (14b 2 ) and opens to the thrust gas bearings (12) (12) at the bottom, and the rotating body (2a) is the upper radial gas bearing. (9), the lower radial gas bearing (11) and the lowermost thrust gas bearings (12, 12) are rotatably supported. Each of the above parts is surrounded by the unit inner casing (20), and among the above parts, the rotating part is made of ceramics.

また第4図の(5a)(5b)が上記ターボ分子ポンプ
(1)及び上記回転ポンプ(2)の気体タービン(5)
(10)へ駆動用気体を供給する駆動用気体供給管路,
(25a)が同駆動用気体供給管路(5a)に設けた自動弁
で,同駆動用気体供給管路(5a)が上記各駆動用気体供
給口(5a1)に連通し,同駆動用気体供給管路(5b)が
上記各駆動用気体供給口(5b1)に連通している。また
(8a)(8b)が上記ターボ分子ポンプ(1)及び上記回
転ポンプ(2)の気体軸受へ回転体支承用気体を供給す
る支承用気体供給管路,(25b)が同支承用気体供給管
路(8a)に設けた自動弁で,同支承用気体供給管路(8
a)が上記支承用気体供給口(8a1)(8a2)(8a3)に連
通し,同支承用気体供給管路(8b)が上記支承用気体供
給口(8b1)(8b2)(8b3)に連通している。また(2
1)が上記ターボ分子ポンプ(1)からの排気を上記回
転ポンプ(2)の吸気口へ導く送気管路,(22)が非接
触シール(3)とラジアル気体軸受(4)との間の気体
を上記回転ポンプ(2)へ導く送気管路,(23)が上記
回転ポンプ(2)からの排気を外部管路へ導く一方の排
気管路,(25c)が同排気管路(23)に設けた自動弁,
(24)が上記ターボ分子ポンプ(1)の気体タービン
(5)及び気体軸受(4)(6)(7)と上記回転ポン
プ(2)の気体タービン(10)及び気体軸受(9)(1
1)(12)からの排気を外部管路へ導く他方の排気管
路,(25d)が同排気管路(24)に設けた自動弁であ
る。
Further, (5a) and (5b) in FIG. 4 are gas turbines (5) of the turbo molecular pump (1) and the rotary pump (2).
A driving gas supply line for supplying a driving gas to (10),
(25a) is an automatic valve provided in the drive gas supply pipe (5a), and the drive gas supply pipe (5a) communicates with each of the drive gas supply ports (5a 1 ) to drive the same. the gas supply line (5b) is communicated with the above-described drive gas supply port (5b 1). Further, (8a) and (8b) are gas supply lines for bearings that supply gas for supporting the rotor to the gas bearings of the turbo molecular pump (1) and the rotary pump (2), and (25b) is gas supply for the bearings. With the automatic valve installed in the pipe (8a), the gas supply pipe (8
a) communicates with the bearing gas supply ports (8a 1 ) (8a 2 ) (8a 3 ), and the bearing gas supply line (8b) communicates with the bearing gas supply ports (8b 1 ) (8b 2 ) It communicates with (8b 3 ). Also (2
1) is an air supply line for guiding the exhaust gas from the turbo molecular pump (1) to the intake port of the rotary pump (2), and (22) is between the non-contact seal (3) and the radial gas bearing (4). An air supply conduit for guiding gas to the rotary pump (2), (23) one exhaust conduit for guiding exhaust gas from the rotary pump (2) to an external conduit, and (25c) for the exhaust conduit (23) Automatic valve installed in
(24) is a gas turbine (5) and gas bearings (4), (6) and (7) of the turbo molecular pump (1), and a gas turbine (10) and gas bearings (9) and (1) of the rotary pump (2).
1) The other exhaust pipe line that guides the exhaust gas from (12) to the external pipe line, and (25d) is an automatic valve provided in the exhaust pipe line (24).

また第1,3図の(28)が上記外部ケーシング(27)の下
部に設けた給気及び排気ユニツトで,同給気及び排気ユ
ニツト(28)は,多層平板(28a)〜(28e)と,仕切り
板(29a)〜(29c)と,上記駆動用気体供給管路(5a)
(5b)に連通した駆動用気体供給管路(30)と,上記支
承用気体供給管路(8a)(8b)に連通した支承用気体供
給管路(31)と,上記一方の排気管路(23)に連通した
一方の排気管路(32)と,上記他方の排気管路(24)に
連通した他方の排気管路(33)とにより構成されてい
る。
Further, (28) in FIGS. 1 and 3 is an air supply / exhaust unit provided under the outer casing (27), and the air supply / exhaust unit (28) is a multilayer flat plate (28a) to (28e). , Partition plates (29a) to (29c) and the drive gas supply pipe (5a)
A driving gas supply pipe (30) communicating with (5b), a supporting gas supply pipe (31) communicating with the supporting gas supply pipes (8a), (8b), and the one exhaust pipe One exhaust pipe line (32) communicating with (23) and the other exhaust pipe line (33) communicating with the other exhaust pipe line (24).

次に前記第1図乃至第4図に示すマルチチヤンネル型真
空ポンプの作用を具体的に説明する。支承用気体(B1
を給気及び排気ユニツト(28)の支承用気体供給管路
(31)から支承用気体供給管路(8a)→支承用気体供給
口(8a1)(8a2)(8a3)→回転ポンプ(2)のラジア
ル気体軸受(9)(11)及びスラスト気体軸受(12)
(12)へ送る(矢印(B1)→(B2)→(B3)参照)とと
もに、上記支承用気体供給管路(8a)から支承用気体供
給管路(8b)→支承用気体供給口(8b1)(8b2)(8
b3)→ターボ分子ポンプ(1)のラジアル気体軸受
(4)(6)及びスラスト気体軸受(7)(7)へ送っ
て(矢印(B1)→(B2)→(B4)参照),ターボ分子ポ
ンプ(1)の回転体(1a)と回転ポンプ(2)の回転体
(2a)とを回転可能に支承する。また駆動用気体(C1
を給気及び排気ユニツト(28)の駆動用気体供給管路
(30)から駆動用気体供給管路(5a)→駆動用気体供給
口(5a1)(5a1)→回転ポンプ(2)の気体タービン
(10)へ送る(矢印(C1)→(C2)→(C3)参照)とと
もに,上記駆動用気体供給管路(5a)から駆動用気体供
給管路(5b)→駆動用気体供給口(5b1)(5b1)→ター
ボ分子ポンプ(1)の気体タービン(5)へ送って(矢
印(C1)→(C2)→(C4)参照),高真空域で排気能力
を有するターボ分子ポンプ(1)の回転体(1a)と多段
の動翼(1b)とを高速回転させるとともに,低真空域で
排気能力を有する回転ポンプ(2)の回転体(2a)を高
速回転させる。このとき、外部ケーシング(27)の吸気
口(27a)側の気体をターボ分子ポンプ(1)→送気管
路(21)→回転ポンプ(2)→一方の排気管路(23)→
給気及び排気ユニツト(28)の一方の排気管路(32)へ
排気する(矢印(A1)→(A2)→(A3)→(A4)→
(A5)→(A6参照)とともに,非接触シール(3)とラ
ジアル気体軸受(4)との間の気体を送気管路(22)を
経て回転ポンプ(2)へ送り(矢印(A7)→(A8)参
照),上記排気とともに一方の排気管路(23)→給気及
び排気ユニツト(28)の一方の排気管路(32)へ排気し
て,真空ポンプユニツト(26)の吸気口(19a)側を高
真空にする。このとき,回転ポンプ(2)の排気口側で
は,大気圧近傍の圧力で排気している。また回転ポンプ
(2)の気体軸受(9)(11)(12)(12)へ送った支
承用気体,及び同回転ポンプ(2)の気体タービン(1
0)へ送った駆動用気体を排気口(5a2)(5a2)から他
方の排気管路(24)→給気及び排気ユニツト(28)の他
方の排気管路(33)へ排気する(矢印(D1)→(D3)→
(D4)参照)。またターボ分子ポンプ(1)の気体軸受
(4)(6)(7)(7)へ送った支承用気体,及び同
ターボ分子ポンプ(1)の気体タービン(5)へ送った
駆動用気体を排気口(5b2)(5b2)から他方の排気管路
(24)→給気及び排気ユニツト(28)の他方の排気管路
(33)へ排気する(矢印(D2)→(D3)→(D4)参
照)。以上の作用は,外部ケーシング(27)内に設置さ
れた1つの真空ポンプユニツト(26)についてである
が、外部ケーシング(27)内に設置された他の各真空ポ
ンプユニツト(26)においても同様の作用が行われる。
Next, the operation of the multi-channel vacuum pump shown in FIGS. 1 to 4 will be specifically described. Supporting gas (B 1 )
From the gas supply pipe for support (31) of the air supply and exhaust unit (28) to the gas supply pipe for support (8a) → gas supply port for support (8a 1 ) (8a 2 ) (8a 3 ) → rotary pump (2) Radial gas bearings (9) (11) and thrust gas bearings (12)
Send to (12) (see arrow (B 1 ) → (B 2 ) → (B 3 )), and from the above-mentioned bearing gas supply pipe (8a) to the bearing gas supply pipe (8b) → bearing gas supply Mouth (8b 1 ) (8b 2 ) (8
b 3 ) → Send it to the radial gas bearings (4) (6) and thrust gas bearings (7) (7) of the turbo molecular pump (1) (see arrow (B 1 ) → (B 2 ) → (B 4 ). ), The rotor (1a) of the turbo molecular pump (1) and the rotor (2a) of the rotary pump (2) are rotatably supported. Driving gas (C 1 )
From the driving gas supply pipeline (30) of the air supply and exhaust unit (28) to the driving gas supply pipeline (5a) → the driving gas supply port (5a 1 ) (5a 1 ) → the rotary pump (2) Send to gas turbine (10) (see arrow (C 1 ) → (C 2 ) → (C 3 )), and also from above drive gas supply pipeline (5a) to drive gas supply pipeline (5b) → drive Gas supply port (5b 1 ) (5b 1 ) → Send to gas turbine (5) of turbo molecular pump (1) (see arrow (C 1 ) → (C 2 ) → (C 4 )) Rotating body (1a) of turbo molecular pump (1) having exhaust capacity and multi-stage rotor blade (1b) rotate at high speed, and rotating body (2a) of rotary pump (2) having exhaust capacity in low vacuum region Rotate at high speed. At this time, the gas on the intake port (27a) side of the outer casing (27) is changed into a turbo molecular pump (1) → an air supply conduit (21) → a rotary pump (2) → one exhaust conduit (23) →
Exhaust to one of the air supply and exhaust unit (28) exhaust pipe (32) (arrow (A 1 ) → (A 2 ) → (A 3 ) → (A 4 ) →
The gas between the non-contact seal (3) and the radial gas bearing (4) is sent to the rotary pump (2) along with (A 5 ) → (A 6 ) (arrow (A 7 ) → (A 8 )), and together with the above exhaust, exhaust to one exhaust pipe line (23) → to one exhaust pipe line (32) of the air supply and exhaust unit (28), and then to the vacuum pump unit (26). Make a high vacuum on the intake port (19a) side of. At this time, the rotary pump (2) exhausts air at a pressure near atmospheric pressure. The bearing gas sent to the gas bearings (9) (11) (12) (12) of the rotary pump (2) and the gas turbine (1) of the rotary pump (2).
The driving gas sent to (0) is exhausted from the exhaust ports (5a 2 ) (5a 2 ) to the other exhaust pipe line (24) → the other exhaust pipe line (33) of the air supply and exhaust unit (28) ( Arrow (D 1 ) → (D 3 ) →
(See D 4 ). The bearing gas sent to the gas bearings (4) (6) (7) (7) of the turbo molecular pump (1) and the driving gas sent to the gas turbine (5) of the turbo molecular pump (1) From the exhaust ports (5b 2 ) (5b 2 ) to the other exhaust pipe line (24) → to the other exhaust pipe line (33) of the air supply and exhaust unit (28) (arrow (D 2 ) → (D 3 ) → (D 4 )). The above operation is for one vacuum pump unit (26) installed in the outer casing (27), but the same applies to each of the other vacuum pump units (26) installed in the outer casing (27). Is performed.

(発明の効果) 本発明のマルチチヤンネル型真空ポンプは前記のように
上部に吸気口を設けた外部ケーシングの内部に複数の真
空ポンプユニツトを並べて配設し,同各真空ポンプユニ
ツトのそれぞれを、上下2段のユニツト用内部ケーシン
グと,同ユニツト用内部ケーシング内に設置したポンプ
要素とにより構成し、同ポンプ要素を,回転体と同回転
体を回転可能に支持する気体軸受と同回転体に設けた多
段の動翼と同回転体に設けた回転体駆動用気体タービン
と同各部分を取り囲む円筒体とを有するターボ分子ポン
プと,回転体と内周面にねじ溝を設けた静止中空体と同
回転体を同静止中空体内に回転可能に支持する気体軸受
と同回転体に設けた回転体駆動用気体タービンと同各部
分を取り囲む円筒体とを有する回転ポンプと、上記ター
ボ分子ポンプ及び上記回転ポンプの気体タービンへ駆動
用気体を供給する駆動用気体供給管路と,上記ターボ分
子ポンプ及び上記回転ポンプの気体軸受へ回転体支承用
気体を供給する支承用気体供給管路と,上記ターボ分子
ポンプからの排気を上記回転ポンプの吸気口へ導く送気
管路と、上記回転ポンプからの排気を外部管路へ導く一
方の排気管路と,上記ターボ分子ポンプ及び上記回転ポ
ンプの気体タービン及び気体軸受からの排気を外部管路
へ導く他方の排気管路とにより構成しており,ターボ分
子ポンプの脆性材料製動翼を小径化しても,真空ポンプ
の全体としては、核融合装置等で必要としている大排気
速度を得られて,高真空域から吸気した気体を大気圧近
傍まで昇圧できる。また上記のようにターボ分子ポンプ
の脆性材料製動翼を小径化できるので,同動翼の破壊を
防止できて,マルチチヤンネル型真空ポンプの安全性を
向上できる。また動翼が万一破壊しても,その周りにユ
ニツト用内部ケーシングがあって,動翼の破片を隣接す
る真空ポンプユニツトへ飛散させない。しかも各真空ポ
ンプユニツトを外部ケーシングにより取り囲んでいるの
で,放射性気体の外部への放出を防止できて,この点で
もマルチチヤンネル型真空ポンプの安全性を向上でき
る。
(Effects of the Invention) The multi-channel vacuum pump of the present invention has a plurality of vacuum pump units arranged side by side inside an outer casing having an intake port as described above, and each of the vacuum pump units is It is composed of upper and lower two-stage unit inner casing and a pump element installed in the unit inner casing. The pump element is a gas bearing and a rotor which rotatably support the rotor and the rotor. A turbo molecular pump having a multi-stage rotor blade provided, a gas turbine for driving a rotating body provided in the same rotating body, and a cylindrical body surrounding each portion, and a stationary hollow body having a rotating body and a thread groove on the inner peripheral surface. And a rotary pump having a gas bearing that rotatably supports the rotating body in the stationary hollow body, a gas turbine for driving the rotating body provided in the rotating body, and a cylindrical body that surrounds each portion, and the turbo. Driving gas supply line for supplying driving gas to the gas turbine of the molecular pump and the rotary pump, and supporting gas supply line for supplying rotary body supporting gas to the gas bearings of the turbo molecular pump and the rotary pump An air supply conduit for guiding exhaust gas from the turbo molecular pump to an intake port of the rotary pump, one exhaust conduit for guiding exhaust gas from the rotary pump to an external conduit, the turbo molecular pump and the rotary pump Of the exhaust gas from the gas turbine and the gas bearing to the external pipe, and the other exhaust pipe that guides the exhaust to the external pipe. The large exhaust speed required by the fusion device can be obtained, and the gas sucked from the high vacuum region can be boosted to near atmospheric pressure. Further, since the diameter of the brittle material rotor blade of the turbo molecular pump can be reduced as described above, it is possible to prevent the rotor blade from being broken and improve the safety of the multi-channel vacuum pump. In addition, even if the moving blade should break, there is an inner casing for the unit around it, so that the fragments of the moving blade do not scatter to the adjacent vacuum pump unit. Moreover, since each vacuum pump unit is surrounded by the outer casing, it is possible to prevent the release of radioactive gas to the outside, and also in this respect, the safety of the multi-channel vacuum pump can be improved.

また本発明のマルチチヤンネル型真空ポンプでは,外部
ケーシング内に排気速度の異なる各真空ポンプユニツト
を設置する一方,同各真空ポンプユニツトを選択的に使
用することが可能であり,マルチチヤンネル型真空ポン
プを大排気速度から小排気速度まで任意の排気速度で運
転できて,負荷の変化に対応できる効果がある。
Further, in the multi-channel vacuum pump of the present invention, it is possible to install the respective vacuum pump units having different evacuation speeds in the outer casing and selectively use the respective vacuum pump units. Can be operated at any pumping speed from a large pumping speed to a small pumping speed, and is effective in responding to changes in load.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わるマルチチヤンネル型真空ポンプ
の真空ポンプユニツトの一実施例を示す縦断側面図,第
2図はマルチチヤンネル型真空ポンプの全体を示す横断
平面図,第3図はその縦断側面図、第4図は真空ポンプ
ユニツトの詳細を示す拡大縦断側面図,第5図は従来の
真空ポンプを示す縦断側面図である。 (1)……ターボ分子ポンプ,(1a)……回転体,(1
b)……多段の動翼,(4)(6)(7)……回転体(1
a)の気体軸受,(5)……回転体(1a)の回転体駆動
用気体タービン,(14a1)(14a2)……ターボ分子ポン
プ(1)の円筒体,(2)……回転ポンプ,(2a)……
回転体,(2b)……静止中空体,(9)(11)(12)…
…回転体(2a)の気体軸受,(10)……回転体(2a)の
回転体駆動用気体タービン,(14b1)(14b2)……回転
ポンプ(2)の円筒体,(5a)(5b)……駆動用気体供
給管路,(8a)(8b)……支承用気体供給管路,(19)
(20)……上下2段のユニツト用内部ケーシング,(2
1)(22)……送気管路,(23)……一方の排気管路,
(24)……他方の排気管路,(26)……真空ポンプユニ
ツト,(27)……外部ケーシング。
FIG. 1 is a vertical sectional side view showing an embodiment of a vacuum pump unit of a multi-channel vacuum pump according to the present invention, FIG. 2 is a cross-sectional plan view showing the whole multi-channel vacuum pump, and FIG. A side view, FIG. 4 is an enlarged vertical side view showing details of the vacuum pump unit, and FIG. 5 is a vertical side view showing a conventional vacuum pump. (1) …… Turbo molecular pump, (1a) …… Rotating body, (1
b) ... Multi-stage rotor blades, (4) (6) (7) ... Rotating body (1
gas bearing of a), (5) the rotary body drive gas turbine ... rotating body (1a), a cylindrical body (14a 1) (14a 2) ...... turbomolecular pump (1), (2) ... Rotation Pump, (2a) ……
Rotating body, (2b) ... Stationary hollow body, (9) (11) (12) ...
... gas bearing of the rotary body (2a), (10) the rotary body drive gas turbine ...... rotating body (2a), cylindrical body (14b 1) (14b 2) ...... rotary pump (2), (5a) (5b) …… Drive gas supply pipeline, (8a) (8b) …… Supporting gas supply pipeline, (19)
(20) …… Internal casing for upper and lower two stages, (2
1) (22) …… Air supply line, (23) …… One exhaust line,
(24) ... other exhaust line, (26) ... vacuum pump unit, (27) ... external casing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大澤 晴繁 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島製作所内 (72)発明者 大谷 祐治 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島製作所内 (72)発明者 秦 聰 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島製作所内 (56)参考文献 実開 昭60−34594(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Harushi Osawa Inventor Harushige Osawa 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Works (72) Inventor Yuji Otani 4 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture 6-22 No. Mitsubishi Heavy Industries, Ltd. Hiroshima Works (72) Inventor Satoshi Hata 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Hiroshima Prefecture (56) Mitsubishi Heavy Industries Ltd. (56) Bibliography Sho 60-34594 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上部に吸気口を設けた外部ケーシングの内
部に複数の真空ポンプユニツトを並べて配設し,同各真
空ポンプユニツトのそれぞれを,上下2段のユニツト用
内部ケーシングと,同ユニツト用内部ケーシング内に設
置したポンプ要素とにより構成し,同ポンプ要素を,回
転体と同回転体を回転可能に支持する気体軸受と同回転
体に設けた多段の動翼と同回転体に設けた回転体駆動用
気体タービンと同各部分を取り囲む円筒体とを有するタ
ーボ分子ポンプと,回転体と内周面にねじ溝を設けた静
止中空体と同回転体を同静止中空体内に回転可能に支持
する気体軸受と同回転体に設けた回転体駆動用気体ター
ビンと同各部分を取り囲む円筒体とを有する回転ポンプ
と,上記ターボ分子ポンプ及び上記回転ポンプの気体タ
ービンへ駆動用気体を供給する駆動用気体供給管路と、
上記ターボ分子ポンプ及び上記回転ポンプの気体軸受へ
回転体支承用気体を供給する支承用気体供給管路と,上
記ターボ分子ポンプからの排気を上記回転ポンプの吸気
口へ導く送気管路と,上記回転ポンプからの排気を外部
管路へ導く一方の排気管路と,上記ターボ分子ポンプ及
び上記回転ポンプの気体タービン及び気体軸受からの排
気を外部管路へ導く他方の排気管路とにより構成したこ
とを特徴とするマルチチヤンネル型真空ポンプ。
1. A plurality of vacuum pump units are arranged side by side inside an outer casing having an intake port at the top, and each of the vacuum pump units is provided with an upper and lower two-stage unit inner casing and a unit inner casing. It is composed of a pump element installed in the inner casing, and the pump element is provided in the rotor and a gas bearing that rotatably supports the rotor and the multistage rotor blades provided in the rotor. A turbo molecular pump having a gas turbine for driving a rotating body and a cylindrical body surrounding each part, a stationary hollow body having a thread groove on the inner peripheral surface of the rotating body, and a rotating body capable of rotating the rotating body in the stationary hollow body. A rotary pump having a supporting gas bearing, a rotary body driving gas turbine provided in the rotary body, and a cylindrical body surrounding the same, and a driving gas for the turbo molecular pump and the rotary turbine gas turbine. And a gas supply line for driving supplies,
A bearing gas supply conduit for supplying a rotor bearing gas to the turbo molecular pump and gas bearings of the rotary pump; an air supply conduit for guiding exhaust gas from the turbo molecular pump to an intake port of the rotary pump; One of the exhaust pipes that guides the exhaust gas from the rotary pump to the external pipe line and the other exhaust pipe line that guides the exhaust gas from the gas turbine and gas bearing of the turbo molecular pump and the rotary pump to the external pipe line A multi-channel vacuum pump characterized by the following.
JP19646487A 1987-08-07 1987-08-07 Multi-channel vacuum pump Expired - Lifetime JPH0674796B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19646487A JPH0674796B2 (en) 1987-08-07 1987-08-07 Multi-channel vacuum pump
DE3826710A DE3826710A1 (en) 1987-08-07 1988-08-05 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19646487A JPH0674796B2 (en) 1987-08-07 1987-08-07 Multi-channel vacuum pump

Publications (2)

Publication Number Publication Date
JPS6441698A JPS6441698A (en) 1989-02-13
JPH0674796B2 true JPH0674796B2 (en) 1994-09-21

Family

ID=16358241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19646487A Expired - Lifetime JPH0674796B2 (en) 1987-08-07 1987-08-07 Multi-channel vacuum pump

Country Status (1)

Country Link
JP (1) JPH0674796B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472933B2 (en) * 1990-08-01 2003-12-03 Matsushita Electric Industrial Co., Ltd. Fluid rotating apparatus
JP3264553B2 (en) * 1993-05-20 2002-03-11 東プレ株式会社 Blower
US6332752B2 (en) 1997-06-27 2001-12-25 Ebara Corporation Turbo-molecular pump
CN1391037A (en) * 2002-06-13 2003-01-15 吴南生 Ultrahigh-vacuum pump and its hydraulic method by 3D compressed air in water
GB201715151D0 (en) * 2017-09-20 2017-11-01 Edwards Ltd A drag pump and a set of vacuum pumps including a drag pump

Also Published As

Publication number Publication date
JPS6441698A (en) 1989-02-13

Similar Documents

Publication Publication Date Title
US4668160A (en) Vacuum pump
JP5738869B2 (en) Turbo molecular pump
JP4173637B2 (en) Friction vacuum pump with stator and rotor
JP6331491B2 (en) Vacuum pump
GB2538962B (en) Vacuum pump
TWI335959B (en) Vacuum pumping arrangement
JP2005505697A (en) Multi-chamber apparatus for processing an object under vacuum, method for evacuating such multi-chamber apparatus, and evacuation system therefor
JPH0674796B2 (en) Multi-channel vacuum pump
JPS60125795A (en) Composite vacuum pump
JPH06101689A (en) Turbo vacuum pump
JPH0819917B2 (en) Multi-channel vacuum pump
JPS60204997A (en) Composite vacuum pump
JP6390098B2 (en) Vacuum pump
JPH0538389U (en) Vacuum pump
USRE33129E (en) Vacuum pump
JP2002168192A (en) Vacuum pump
EP1573206B1 (en) Vacuum pumping arrangement and method of operating same
CN111094752A (en) Drag pump and vacuum pump set comprising same
JP4249946B2 (en) Improved vacuum pump
JPH0311193A (en) Vacuum pump
JPS6345597Y2 (en)
JPH02264196A (en) Turbine vacuum pump
JPH0759956B2 (en) Vacuum pump
JPS63192987A (en) Centrifugal high vacuum pump
JPH04276197A (en) Multiturbo type vacuum pump