JPH0674486B2 - High hardness sintered high speed steel ingot with excellent hot workability - Google Patents

High hardness sintered high speed steel ingot with excellent hot workability

Info

Publication number
JPH0674486B2
JPH0674486B2 JP20489687A JP20489687A JPH0674486B2 JP H0674486 B2 JPH0674486 B2 JP H0674486B2 JP 20489687 A JP20489687 A JP 20489687A JP 20489687 A JP20489687 A JP 20489687A JP H0674486 B2 JPH0674486 B2 JP H0674486B2
Authority
JP
Japan
Prior art keywords
steel
hot workability
hardness
speed steel
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20489687A
Other languages
Japanese (ja)
Other versions
JPS6447836A (en
Inventor
稔 平野
幸仁 今池
達実 川間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20489687A priority Critical patent/JPH0674486B2/en
Publication of JPS6447836A publication Critical patent/JPS6447836A/en
Publication of JPH0674486B2 publication Critical patent/JPH0674486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は焼結高速度鋼に係り、特に切削性能及び熱間加
工性に優れ且つ高硬度の焼結高速度鋼鋼塊に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a sintered high-speed steel, and more particularly to a sintered high-speed steel ingot having excellent hardness and excellent cutting performance and hot workability. .

(従来の技術) 高速度鋼は、W、Vなどの合金元素を多量に添加するこ
とにより鋼組織に微細な炭化物、窒化物等を均一に分散
し、耐摩耗性を付与することを狙ったものであるが、合
金元素が多量に添加するものであるが、溶解により得た
鋼塊を研削加工して製品化することは極めて困難であ
る。
(Prior Art) In high-speed steel, by adding a large amount of alloying elements such as W and V, fine carbides, nitrides, and the like are uniformly dispersed in the steel structure, aiming at imparting wear resistance. Although a large amount of alloying elements are added, it is extremely difficult to grind a steel ingot obtained by melting into a product.

そこで、従来より、粉末冶金法の適用によって鋼粉末を
成形焼結する焼結高速鋼が開発され、特に精密歯切工具
等の切削工具などの製造に多用されている。
Therefore, conventionally, a sintered high-speed steel for forming and sintering steel powder by the application of the powder metallurgy has been developed, and is frequently used for manufacturing cutting tools such as precision gear cutting tools.

(発明が解決しようとする問題点) しかし乍ら、種々の素材の加工に際して、近年、益々高
精度化並びに低コスト化が要求され、被加工材の高硬度
化、切削速度の高速度化等の切削工具に対する要請が一
層過酷なものになってきたため、高硬度で耐摩耗性に優
れた鋼種の開発が進められてきている。例えば、特開昭
47−42319号、特開昭50−139006号、特開昭52−65114号
などが提案された。しかし、これらの提案では、高硬度
化のために合金元素が多量に添加されているため、必然
的に高合金化による加工性の低下、特に熱間加工性が著
しく低下し、特に需要の多い細径(例、20φm)の圧延
及び鍛造加工が困難である。
(Problems to be solved by the invention) However, in recent years, in processing various materials, higher precision and lower cost have been required, and higher hardness of the work material, higher cutting speed, etc. Since the demand for cutting tools has become more severe, the development of steel grades with high hardness and excellent wear resistance has been promoted. For example,
47-42319, JP-A-50-139006, JP-A-52-65114 and the like have been proposed. However, in these proposals, a large amount of alloying elements are added in order to increase the hardness, so that inevitably the workability decreases due to the high alloying, particularly the hot workability decreases remarkably, and there is particularly high demand. It is difficult to roll and forge small diameters (eg, 20φm).

この点、本出願人は先に特公昭59−37740号にて高耐摩
耗性の焼結高速度鋼を提案した。これは、W当量として
規定されるW及びMo含有量と他の合金元素の割合を規制
したもので、C:1.5〜2.0%、Cr:3.8〜4.5%、W:1.5〜1
3.5%、Mo:2.6〜5.8%(但し、W+2Mo:18〜23.5%)、
V:4.2〜5.2%及びCo:4.2〜5.2%を含み、残部がFe及び
不可避的不純物からなる組成に調整し、高耐摩耗性並び
に優れた切削性能、特に連続切削性能を付与した焼結高
速度鋼を実用化したものである。
In this respect, the applicant previously proposed a high wear-resistant sintered high speed steel in Japanese Patent Publication No. 59-37740. This regulates the W and Mo contents, which are defined as the W equivalent, and the ratio of other alloying elements, C: 1.5 to 2.0%, Cr: 3.8 to 4.5%, W: 1.5 to 1
3.5%, Mo: 2.6-5.8% (however, W + 2Mo: 18-23.5%),
V: 4.2 to 5.2% and Co: 4.2 to 5.2%, the balance is adjusted to a composition consisting of Fe and unavoidable impurities, high wear resistance and excellent cutting performance, especially high sintering This is a practical application of speed steel.

しかし、本発明者のその後の研究により、かゝる焼結高
速度鋼では、切削工具の中でも、主として金型の加工等
に用いられる多種多様のエンドミル(底フライス)用工
具に適用した場合に切削性能に問題があることが判明し
た。
However, as a result of subsequent research by the present inventor, such a sintered high-speed steel shows that when applied to a wide variety of end mill (bottom milling) tools mainly used for machining of molds among cutting tools. It turned out that there was a problem with cutting performance.

本発明は、上記本出願人の提案に係る焼結高速度鋼の問
題点を解決するためになされたものであって、切削性
能、特にエンドミル切削性能に優れ、且つ熱間加工性に
優れた高硬度焼結高速度鋼鋼塊を提供することを目的と
するものである。
The present invention has been made to solve the problems of the sintered high-speed steel according to the applicant's proposal, and has excellent cutting performance, particularly end mill cutting performance, and excellent hot workability. It is intended to provide a high hardness sintered high speed steel ingot.

(問題点を解決するための手段) 上記目的を達成するため、本発明者は、先に提案した焼
結高速度鋼の組成をベースとし、これとエンドミル切削
性能との関連を究明すると共にその改善策を見い出すべ
く鋭意研究を重ねた結果、W当量のほか、新たにW、Mo
及びVで規定される炭素当量CeqとC及びNの関係を規
制すると共にCo添加量を増加し、且つプロセス的条件並
びに一次炭化物の大きさを併せて規制することにより、
高硬度で熱間加工性を損なうことなく優れたエンドミル
切削性能を実現し得ることが判明し、ここに本発明をな
されたものである。
(Means for Solving Problems) In order to achieve the above object, the inventor of the present invention has a composition based on the previously proposed sintered high-speed steel as a base, and investigates the relationship between the composition and end mill cutting performance. As a result of earnest research to find improvement measures, in addition to W equivalent, W and Mo are newly added.
By controlling the relationship between the carbon equivalent Ceq and C and N defined by V and V, increasing the Co addition amount, and also controlling the process conditions and the size of primary carbide,
It has been found that a high hardness and an excellent end mill cutting performance can be realized without impairing the hot workability, and the present invention has been made here.

すなわち、本発明は、C:1.49〜1.90%、Cr:3〜5%、W:
11.5〜13.0%、Mo:3〜5%(但し、W+2Mo:19〜21
%)、V:4〜5%及びCo:7〜12%を含み、更に前記C及
びNが Ceq+0.10≦C+12/14N≦Ceq+0.25 (但し、Ceq=0.19+0.017(W+2Mo)+0.22V) を満足するべく量に規制され、残部がFe及び不可避的不
純物からなるう組成を有し、かつ、ガスアトマイズ−熱
間静水圧プレス法により一次炭化物の平均サイズを3μ
m以下にしたことを特徴とする特にエンドミル切削性能
に優れ且つ熱間加工性に優れた高硬度焼結高速度鋼鋼塊
を要旨とするものである。
That is, in the present invention, C: 1.49 to 1.90%, Cr: 3 to 5%, W:
11.5 ~ 13.0%, Mo: 3 ~ 5% (however, W + 2 Mo: 19 ~ 21
%), V: 4 to 5% and Co: 7 to 12%, and C and N are Ceq + 0.10 ≦ C + 12 / 14N ≦ Ceq + 0.25 (however, Ceq = 0.19 + 0.017 (W + 2Mo) +0. 22V), the composition is such that the balance is Fe and inevitable impurities, and the average size of the primary carbides is 3 μm by the gas atomizing-hot isostatic pressing method.
The gist of the present invention is a high-hardness sintered high-speed steel ingot, which is particularly excellent in end mill cutting performance and hot workability, characterized by having m or less.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be described in detail below based on examples.

まず、本発明における化学成分の限定理由を説明する。First, the reasons for limiting the chemical components in the present invention will be described.

W、Mo: Wは高速度鋼としての性能を得るために基本的に重要な
合金元素であり、C、N及びFeと結合してMC、M6C型炭
化物やMX、M6X型炭窒化物を形成すると共に残部は基質
に溶込み、耐摩耗性を高めると同時に焼戻硬化及び高温
硬さを向上させ、切削性能の改善に大きく寄与する元素
である。W量が11.5%未満ではそのような効果が得られ
ず、しかし13.0%を超えて添加してもその割には効果が
増加せず、却ってコスト高をもたらすので好ましくな
い。したがって、W量は11.5〜13.0%の範囲とする。
W, Mo: W is an alloying element that is basically important for obtaining the performance as a high speed steel, and is combined with C, N and Fe to form MC, M 6 C type carbides, MX, M 6 X type coals. The balance is an element that forms a nitride and dissolves into the matrix to improve wear resistance and at the same time improve tempering hardening and high temperature hardness, and contribute greatly to improvement of cutting performance. If the W content is less than 11.5%, such an effect cannot be obtained, but even if it is added in excess of 13.0%, the effect does not increase, but rather the cost is increased, which is not preferable. Therefore, the amount of W is set in the range of 11.5 to 13.0%.

Moは、前記Wと同様の挙動及び特性を示し、Mo1%の添
加はW2%の添加とほゞ同様の添加効果があるが、更には
焼入温度を低める効果もあり、結晶粒や炭化物の粗大化
を抑制するのに有効な元素である。Mo量が3%未満では
それらの効果が得られず、しかし5%を超えてもそれほ
ど効果が増さないので、Mo量は3〜5%の範囲とする。
Mo exhibits the same behavior and characteristics as W described above, and the addition of Mo1% has almost the same effect as the addition of W2%, but it also has the effect of lowering the quenching temperature. It is an effective element for suppressing coarsening. If the amount of Mo is less than 3%, these effects are not obtained, but if it exceeds 5%, the effect is not increased so much, so the amount of Mo is made 3 to 5%.

但し、これらのW及びMoについては、通常の切削性能向
上のほか、熱間加工性、熱処理硬さ等の向上のために、
W+2Mo(以下、W当量という)として規制する必要が
ある。すなわち、先に本出願人が提案したと同様に、切
削性能のうち、特に工具の連続切削性能及び断続切削性
能はW当量の増加と共に向上し、そのためにはW当量と
して18%以上が必要であり、一方、23.5%を超えるとM6
Cを主体とする炭化物が過剰に析出して靭性が劣化する
と共にチッピングによる工具損傷が支配的となり、切削
性能が低下する。したがって、このような切削性能の向
上のためにはW当量を18〜23.5%の範囲とすればよい。
しかし、この範囲のW当量の場合、19%未満では熱処理
硬さ不充分となり、一方、21%を超えると絞り(熱間加
工性)が低下するので好ましくない。したがって、本発
明においては、W当量は19〜21%の範囲とするものであ
る。
However, for these W and Mo, in addition to improving the normal cutting performance, in order to improve hot workability, heat treatment hardness, etc.,
It is necessary to regulate as W + 2Mo (hereinafter referred to as W equivalent). That is, as previously proposed by the present applicant, among the cutting performances, especially the continuous cutting performance and the interrupted cutting performance of the tool improve with the increase of the W equivalent, and for that purpose, 18% or more of the W equivalent is required. There, on the other hand, when it exceeds 23.5% M 6
Carbide mainly containing C is excessively precipitated to deteriorate toughness, and tool damage due to chipping becomes dominant, resulting in deterioration of cutting performance. Therefore, in order to improve such cutting performance, the W equivalent may be set in the range of 18 to 23.5%.
However, in the case of the W equivalent in this range, if it is less than 19%, the heat treatment hardness becomes insufficient, while if it exceeds 21%, the drawing (hot workability) is deteriorated, which is not preferable. Therefore, in the present invention, the W equivalent is in the range of 19 to 21%.

Cr: Crは基質及び炭窒化物中に存在させることにより焼入性
を改善できると共に、焼戻硬化、高温硬さ、更には熱処
理時の耐酸化性を高めることができる。それらのために
は3%以上のCr量が必要であるが、5%を超えて添加し
てもそのような効果がそれほど増加しない。したがっ
て、Cr量は3〜5%の範囲とする。
Cr: Cr can improve the hardenability by being present in the substrate and carbonitride, and at the same time, can enhance the temper hardening, the high temperature hardness and the oxidation resistance during the heat treatment. For them, a Cr content of 3% or more is necessary, but even if added in excess of 5%, such effect does not increase so much. Therefore, the Cr amount is set to the range of 3 to 5%.

V: Vは靭性を改善すると共にその炭窒化物の形成によって
硬度を高め、耐摩耗性を付与することができる元素であ
る。そのためには4%以上のV量が必要であるが、5%
を超えて添加してもその効果はそれほど増加しない。し
たがって、V量は4〜5%の範囲とする。
V: V is an element that can improve toughness, increase hardness by forming carbonitrides, and impart wear resistance. For that purpose, V amount of 4% or more is required, but 5%
The effect does not increase so much even if added over. Therefore, the amount of V is set in the range of 4 to 5%.

Co: Coは前述のW、Mo、V等と共に添加することによって基
質の耐熱性を高めると共に高温硬さを改善するのに効果
的な元素であり、そのためには4.2%以上が必要である
が、5.5%ぐらいからそのような効果は飽和する傾向に
ある。しかし、本発明者の研究によれば、Coをより多量
に添加することにより熱処理硬さを高めることができ、
特にエンドミル切削性能を向上できることが判明した。
そのためには7%以上のCo量が必要であり、一方、12%
を超えて過剰に添加すると熱間加工性を著しく低下させ
る。したがって、本発明では、耐熱性及び高温硬さを充
分確保すると共に更にはエンドミル切削性能を向上させ
るため、Co量は7〜12%の範囲とするものである。
Co: Co is an element effective in increasing the heat resistance of the substrate and improving the high temperature hardness by adding it together with W, Mo, V, etc. mentioned above, and for this purpose 4.2% or more is required. From 5.5%, such effect tends to be saturated. However, according to the study of the present inventor, the heat treatment hardness can be increased by adding Co in a larger amount,
In particular, it has been found that the end mill cutting performance can be improved.
For that purpose, Co amount of 7% or more is necessary, while 12%
If added in excess, the hot workability will be significantly reduced. Therefore, in the present invention, the amount of Co is in the range of 7 to 12% in order to sufficiently secure the heat resistance and the high temperature hardness and further improve the end mill cutting performance.

C、N: Cは基質に溶込んで強化に寄与すると共に、特に前記
W、Mo、Cr等と結合して炭化物或いは炭窒化物を形成す
るのに必要な元素である。その添加量は炭化物、炭窒化
物形成元素の量に依存し、本発明では前記W、Mo、Cr等
の各量に鑑みて、C量は1.49〜1.90%の範囲とする。
C, N: C is an element necessary for forming a carbide or carbonitride by combining with W, Mo, Cr, etc., while being dissolved in the substrate to contribute to strengthening. The added amount depends on the amounts of carbide and carbonitride forming elements, and in the present invention, the C amount is set to a range of 1.49 to 1.90% in view of the amounts of W, Mo, Cr and the like.

一方、Cと類似した性能を有するNは、前述のCと同様
にいずれも侵入型固溶原子であり且つ安定な化合物を形
成し易くし、また熱処理特性に関してほぼ同じ働きをす
るので、C量の規制に関連してN量も規制するのが好ま
しい。
On the other hand, N, which has performance similar to that of C, is an interstitial solid solution atom and facilitates the formation of stable compounds, as in the case of C described above. It is preferable to regulate the amount of N in relation to the regulation of.

但し、本発明者の実験の研究によれば、その際、前述の
W、Mo及びV量によって特別に規定される次式の炭素当
量Ceq Ceq=0.19+0.017(W+2Mo)+0.22V を加味し、 Ceq+0.10≦C+12/14N≦Ceq+0.25 を満足するようにN量をC量と共に規制すると、高い硬
さと優れた熱間加工性を確保できることが判明した。
However, according to the research conducted by the inventor of the present invention, at that time, the carbon equivalent Ceq Ceq = 0.19 + 0.017 (W + 2Mo) + 0.22V of the following formula, which is specially defined by the W, Mo and V amounts, is added. However, it was found that high hardness and excellent hot workability can be secured by controlling the N content together with the C content so as to satisfy Ceq + 0.10 ≦ C + 12 / 14N ≦ Ceq + 0.25.

すなわち、炭素当量差ΔCeq(C+12/14N−Ceq)が0.10
%未満では炭窒化物の形成が少なく、十分な硬さが得ら
れないので、ΔCeqは0.10%以上が必要であり、0.25%
までであれば優れた熱間加工性が得られる。しかし0.25
%を超えると熱間加工性が劣化する。したがって、ΔCe
qは0.10〜0.25%の範囲とするものである。
That is, the carbon equivalent difference ΔCeq (C + 12 / 14N−Ceq) is 0.10.
%, Carbonitride formation is small and sufficient hardness cannot be obtained. Therefore, ΔCeq must be 0.10% or more, 0.25%
Up to this, excellent hot workability can be obtained. But 0.25
If it exceeds%, the hot workability deteriorates. Therefore, ΔCe
q is in the range of 0.10 to 0.25%.

なお、上記化学成分を有する鋼にはSi、Mn、P、S等々
の不純物が随伴し得るが、それらは本発明の効果を損わ
ない限定で許容される。例えば、Siは約0.4%以下、Mn
は約0.4%以下に規制するのが望ましく、またP、Sは
それぞれ約0.03%以下に規制するのが望ましい。また、
AlはNと結合してAlNとなり、Nの効果を減殺すること
から、0.4%以下に規制するのが望ましい。
The steel having the above chemical composition may be accompanied by impurities such as Si, Mn, P, S, etc., but these are allowed as long as the effects of the present invention are not impaired. For example, Si is about 0.4% or less, Mn
Is preferably controlled to about 0.4% or less, and P and S are preferably controlled to about 0.03% or less, respectively. Also,
Al combines with N to become AlN, and the effect of N is diminished. Therefore, it is desirable to control the content to 0.4% or less.

上記化学成分を有する鋼は、粉末冶金法により焼結高速
度鋼鋼塊とし、鍛造、圧延、押出等の熱間加工により丸
棒、角材等に加工され、焼入れ、焼もどしを施して工具
素材に供されるが、これらの製造プロセスに関し、本発
明では、特に上記鋼をガスアトマイズ(例、N2ガス)に
よって急冷凝固鋼粉とし、これを熱間静水圧プレス(HI
P)により圧縮成形して真密度の鋼塊(焼結品)を製造
する必要があり、その際、鋼塊の一次炭化物の大きさを
平均サイズで3μm以下に規制する必要がある。一次炭
化物の平均サイズが3μmを超える大きさであると、絞
り(靭性)が低下するためである。なお、水アトマイズ
粉は表面が酸化され、還元する必要があり、更に粒形状
がイレギューラーで、充填密度が低いため、HIP時の変
形が不均一になり、健全な鋼塊が得にくい。
Steel having the above chemical components is a high-speed steel ingot that is sintered by powder metallurgy, and is processed into a round bar, square bar, etc. by hot working such as forging, rolling, and extrusion, and is hardened and tempered. With regard to these manufacturing processes, in the present invention, in particular, the above steel is rapidly solidified by gas atomization (eg, N 2 gas) into a rapidly solidified steel powder, which is then subjected to hot isostatic pressing (HI
It is necessary to produce a true-density steel ingot (sintered product) by compression molding with P), and at that time, it is necessary to regulate the size of primary carbide of the steel ingot to an average size of 3 μm or less. This is because if the average size of the primary carbides exceeds 3 μm, the drawing (toughness) decreases. The surface of the water atomized powder needs to be oxidized and needs to be reduced, and since the particle shape is irregular and the packing density is low, the deformation during HIP becomes uneven and it is difficult to obtain a sound steel ingot.

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) 第1表に示す化学成を有する供試鋼を高周波溶解炉で溶
解し、得られた溶湯を高圧N2ガスで噴霧して急冷凝固鋼
粉を製造した。
(Example) A sample steel having the chemical composition shown in Table 1 was melted in a high-frequency melting furnace, and the resulting molten metal was sprayed with high-pressure N 2 gas to produce rapidly solidified steel powder.

次いで、該鋼粉を軟鋼製のカプセルに充填し、真空脱気
密封後、HIPによって真密度に圧縮成形し、焼結高速度
鋼ビレットを得た。
Then, the steel powder was filled in a mild steel capsule, vacuum-deaerated and hermetically sealed, and compression-molded to a true density by HIP to obtain a sintered high-speed steel billet.

その後、これを供試材として、焼入れ(1200℃×3min、
OQ)、焼もどし(560℃×1.5hr、AC、3回)を施して熱
処理硬さを調べると共に高温引張試験を行って絞りを調
べて熱間加工性を評価した。更に焼入、焼もどしを施し
た供試材を用いてエンドミル切削試験を行った。これら
の結果を第1図〜第5図に示す。
After that, using this as a test material, quenching (1200 ℃ × 3min,
OQ) and tempering (560 ° C. × 1.5 hr, AC, 3 times) were performed to examine the heat treatment hardness, and a high temperature tensile test was performed to examine the drawing and evaluate the hot workability. Further, an end mill cutting test was conducted using a test material that was quenched and tempered. These results are shown in FIGS.

なお、高温引張試験は、供試材を加熱速度10℃/sで1150
℃に加熱して3min保持後、5℃/sの冷却速度でT℃(テ
スト温度、850℃〜1150℃)に冷却して2min保持し、高
温引張試験を実施し、絞りを求めた。なお、1200℃につ
いては5min保持後、高温引張試験を実施した。
The high temperature tensile test was conducted at a heating rate of 10 ° C / s
After heating to ℃ and holding for 3 minutes, it was cooled to T ℃ (test temperature, 850 ℃ ~ 1150 ℃) at a cooling rate of 5 ℃ / s and held for 2 minutes, high temperature tensile test was carried out, and the drawing was obtained. In addition, about 1200 degreeC, after hold | maintaining for 5 minutes, the high temperature tensile test was implemented.

また、エンドミル切削試験は、供試材から2枚刃、10mm
φの寸法形状の工具を作成し、 被削材:SKD61(HRC40) 切削速度:35m/min 送り:140mm/min 切削油:なし の条件で、溝高さ1.5mm、厚さ1mmの切削を繰り返し、逃
げ面摩耗VB=0.2mmになるまでの切削長を求めて工具寿
命を評価した。
In addition, the end mill cutting test was carried out from the test material with 2 blades and 10 mm
Create a tool with a φ shape and shape, and work material: SKD61 (HRC40) Cutting speed: 35 m / min Feed: 140 mm / min Cutting fluid: None, repeated cutting with a groove height of 1.5 mm and a thickness of 1 mm The tool life was evaluated by obtaining the cutting length until the flank wear V B = 0.2 mm.

最高熱処理硬さ 第1図から明らかなとおり、ΔCeqが0.1%よりも低いと
きは炭窒化物の形成が少ないために十分な熱処理硬さが
得られないのに対し、ΔCeqが0.1〜0.4%の範囲で高い
硬さが得られている。一方、ΔCeqが0.4%以上となると
(比較鋼No.A6)、焼入時に残留オーステナイトが増加
し、焼もどし回数が増加すると共に硬さも低下する。
Maximum heat treatment hardness As is clear from Fig. 1, when ΔCeq is lower than 0.1%, sufficient heat treatment hardness cannot be obtained due to less carbonitride formation, whereas ΔCeq is 0.1 to 0.4%. High hardness is obtained in the range. On the other hand, when ΔCeq is 0.4% or more (Comparative Steel No. A6), retained austenite increases during quenching, the number of tempering increases and the hardness decreases.

また、第2図より、W+2Mo(%)が19%以上であると
(本発明鋼No.A4、No.A8)、HRC68以上の硬さが得られ
るが、Wが18%と少なくすぎるときは(比較鋼No.A
7)、本発明鋼No.4に比べてHRC1ポイント低いことがわ
かる。またW+2Mo(%)が22%以上であると(比較鋼N
o.A9)硬さの増加がそれほど増加しない。
Further, from FIG. 2, when W + 2Mo (%) is 19% or more (invention steel Nos. A4 and No. A8), hardness of HRC68 or more is obtained, but when W is too small as 18%, (Comparative Steel No.A
7), it is clear that HRC is 1 point lower than steel No. 4 of the present invention. If W + 2Mo (%) is 22% or more (comparative steel N
o.A9) Hardness does not increase so much.

熱間加工性 第6図は本発明鋼No.A3の高速度焼結鋼の一次炭化物分
布状態を示しており、その平均サイズは1.5μmで微細
な炭化物組織を有している。
Hot workability FIG. 6 shows the primary carbide distribution state of the high speed sintered steel of the invention steel No. A3, which has an average size of 1.5 μm and a fine carbide structure.

この本発明鋼No.A3とNo.A4並びに比較鋼No.A5の熱間加
工性については、第3図に示すように、ΔCeqが0.25%
以下の本発明鋼No.A3及びNo.A4は、熱間加工温度範囲
(950〜1150℃)で絞りが75%以上に示し、優れた熱間
加工性を有していることがわかる。一方、ΔCeqが更に
増加すると(比較鋼No.A5)全体的に絞りが低下すると
共に1200℃での絞りの低下が著しくなる。
Regarding the hot workability of the invention steels No.A3 and No.A4 and the comparative steel No.A5, as shown in FIG. 3, ΔCeq was 0.25%.
In the following invention steels No. A3 and No. A4, the drawing shows 75% or more in the hot working temperature range (950 to 1150 ° C.), and it is understood that they have excellent hot workability. On the other hand, when ΔCeq is further increased (Comparative Steel No. A5), the reduction of the drawing as a whole and the reduction of the drawing at 1200 ° C become remarkable.

また、第4図より、ΔCeqが0.25%以下であっても、W
+2Mo(%)が22%以上であると(比較鋼No.A9)、全体
的に絞りが低下すると共に1200℃での絞りの低下が著し
いことがわかる。
Further, from FIG. 4, even if ΔCeq is 0.25% or less, W
It can be seen that if + 2Mo (%) is 22% or more (Comparative Steel No. A9), the reduction of the drawing as a whole and the reduction of the drawing at 1200 ° C are remarkable.

エンドミル切削性能 第5図から明らかなとおり、ΔCeq及びW+2Mo(%)が
本発明範囲内であっても、Coが少なすぎる比較鋼No.A12
は、エンドミル切削性能が劣り、またCo量は十分であっ
てもVが少なすぎる比較鋼No.A11は、耐摩耗性に劣るた
めに若干の改善がみられるにすぎない。これに対し、本
発明鋼No.A4は上記比較鋼に比べて極めて優れた切削性
能を示している。これは各合金元素をバランスよく調整
したためで、単にCo量又はV量、或いはW+2Mo量又は
ΔCeqを個別に規制しただけでは達成されないことを示
している。
End mill cutting performance As is clear from FIG. 5, even if ΔCeq and W + 2Mo (%) are within the range of the present invention, Co is too small in comparison steel No. A12.
Comparative Steel No. A11, which has poor end mill cutting performance and has a small amount of V even though the Co content is sufficient, shows only a slight improvement due to poor wear resistance. On the other hand, the steel No. A4 of the present invention shows extremely excellent cutting performance as compared with the comparative steel. This is because each alloying element was adjusted in a well-balanced manner, and it was shown that it was not achieved by simply individually controlling the Co amount or V amount, or the W + 2Mo amount or ΔCeq.

(発明の効果) 以上詳述したように、本発明によれば、焼結高速度鋼鋼
塊の化学成分につき、特にC、N量をW、Mo、V量との
関係で規制すると共にCo量を調整し、且つガスアトマイ
ズ−HIP法により一次炭化物の大きさを微細にコントロ
ールしたので、切削性能のうち特にエンドミル切削性能
に優れると共に熱間加工性にも優れ、高硬度の焼結高速
度鋼鋼塊を提供することができる。殊に需要は多いが従
来熱間加工が困難とされていた20mmφ程度の細径の熱間
圧延、鍛造、押出加工等による工具の製造用に好適であ
る。
(Effects of the Invention) As described in detail above, according to the present invention, the chemical composition of the sintered high-speed steel ingot is regulated, in particular, the C and N contents in relation to the W, Mo, and V contents and Co By adjusting the amount and finely controlling the size of the primary carbides by the gas atomization-HIP method, end mill cutting performance is particularly excellent among cutting performance, hot workability is also high, and high hardness sintered high speed steel. A steel ingot can be provided. In particular, it is suitable for manufacturing tools by hot rolling, forging, extrusion and the like having a small diameter of about 20 mmφ, which has been conventionally difficult to perform hot working.

【図面の簡単な説明】[Brief description of drawings]

第1図は炭素当量差ΔCeqと熱処理硬さの関係を示す
図、 第2図はW当量(W+2Mo)と熱処理硬さの関係を示す
図、 第3図及び第4図はそれぞれ高温引張試験におけるテス
ト温度と絞りの関係を示す図、 第5図はエンドミル試験における各種供試材の切削長を
比較して示す図、 第6図は本発明鋼鋼塊の金属組織を示す顕微鏡写真(×
400)である。
FIG. 1 is a diagram showing the relationship between the carbon equivalent difference ΔCeq and the heat treatment hardness, FIG. 2 is a diagram showing the relationship between the W equivalent (W + 2Mo) and the heat treatment hardness, and FIGS. The figure which shows the relationship between a test temperature and a drawing, FIG. 5 is a figure which compares the cutting length of various test materials in an end mill test, and FIG. 6 is a micrograph which shows the metallographic structure of the steel ingot of this invention (x.
400).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で(以下、同じ)、C:1.49〜1.90
%、Cr:3〜5%、W:11.5〜13.0%、Mo:3〜5%(但し、
W+2Mo:19〜21%)、V:4〜5%及びCo:7〜12%を含
み、更に前記C及びNが Ceq+0.10≦C+12/14N≦Ceq+0.25 (但し、Ceq=0.19+0.017(W+2Mo)+0.22V) を満足するべく量に規制され、残部がFe及び不可避的不
純物からなる組成を有し、かつ、ガスアトマイズ−熱間
静水圧プレス法により一次炭化物の平均サイズを3μm
以下にしたことを特徴とする特にエンドミル切削性能に
優れ且つ熱間加工性に優れた高硬度焼結高速度鋼鋼塊。
1. In weight% (hereinafter the same), C: 1.49 to 1.90
%, Cr: 3-5%, W: 11.5-13.0%, Mo: 3-5% (however,
W + 2Mo: 19 to 21%), V: 4 to 5% and Co: 7 to 12%, and C and N are Ceq + 0.10 ≤ C + 12/14 N ≤ Ceq + 0.25 (however, Ceq = 0.19 + 0.017). (W + 2Mo) + 0.22V), and the composition is composed of Fe and unavoidable impurities in the balance, and the average size of the primary carbides is 3 μm by the gas atomizing-hot isostatic pressing method.
A high-hardness sintered high-speed steel ingot, which is particularly excellent in end mill cutting performance and hot workability, characterized by:
JP20489687A 1987-08-18 1987-08-18 High hardness sintered high speed steel ingot with excellent hot workability Expired - Fee Related JPH0674486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20489687A JPH0674486B2 (en) 1987-08-18 1987-08-18 High hardness sintered high speed steel ingot with excellent hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20489687A JPH0674486B2 (en) 1987-08-18 1987-08-18 High hardness sintered high speed steel ingot with excellent hot workability

Publications (2)

Publication Number Publication Date
JPS6447836A JPS6447836A (en) 1989-02-22
JPH0674486B2 true JPH0674486B2 (en) 1994-09-21

Family

ID=16498194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20489687A Expired - Fee Related JPH0674486B2 (en) 1987-08-18 1987-08-18 High hardness sintered high speed steel ingot with excellent hot workability

Country Status (1)

Country Link
JP (1) JPH0674486B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625773B2 (en) * 1987-10-30 1997-07-02 大同特殊鋼株式会社 Powder high speed steel
JP2725333B2 (en) * 1988-12-27 1998-03-11 大同特殊鋼株式会社 Powder high speed tool steel
JPH02182867A (en) * 1989-01-06 1990-07-17 Daido Steel Co Ltd Powdered tool steel
KR950005269B1 (en) * 1992-07-29 1995-05-22 삼성전자주식회사 Semiconductor package structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6447836A (en) 1989-02-22

Similar Documents

Publication Publication Date Title
US4249945A (en) Powder-metallurgy steel article with high vanadium-carbide content
WO2010044740A1 (en) Steel material and a method for its manufacture
JPH06322482A (en) High toughness high-speed steel member and its production
US4121930A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
KR100909922B1 (en) Cold work steel
GB1583878A (en) Nitrogen-containing powder metallurgical tool steel
JP4361686B2 (en) Steel material and manufacturing method thereof
JP4703005B2 (en) Steel, use of the steel, product made of the steel and method for producing the steel
JP5323679B2 (en) Cold work steel
JP2004501276A (en) Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel
JPH02175846A (en) Powder high-speed tool steel
JPH0512424B2 (en)
JP3616204B2 (en) Cold tool steel suitable for surface treatment, its mold and tool
JPH0674486B2 (en) High hardness sintered high speed steel ingot with excellent hot workability
JP2002543290A (en) Steel cold working tools, their uses and manufacturing
JP2019116688A (en) Powder high speed tool steel
JPH02182867A (en) Powdered tool steel
JPS5844734B2 (en) Hard alloy and its manufacturing method
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
JP2999655B2 (en) High toughness powder HSS
JPH0143017B2 (en)
KR100299463B1 (en) A method of manufacturing cold work tool steel with superior toughness and wear resistance
JPH03126844A (en) Steel for hot roll having excellent wear resistance
JPH0569911B2 (en)
JPH01139741A (en) Warm forging mold

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees