JPH01139741A - Warm forging mold - Google Patents

Warm forging mold

Info

Publication number
JPH01139741A
JPH01139741A JP29725487A JP29725487A JPH01139741A JP H01139741 A JPH01139741 A JP H01139741A JP 29725487 A JP29725487 A JP 29725487A JP 29725487 A JP29725487 A JP 29725487A JP H01139741 A JPH01139741 A JP H01139741A
Authority
JP
Japan
Prior art keywords
mold
hardness
tool steel
speed tool
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29725487A
Other languages
Japanese (ja)
Inventor
Fujio Yamane
山根 不二夫
Norimasa Uchida
内田 憲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP29725487A priority Critical patent/JPH01139741A/en
Publication of JPH01139741A publication Critical patent/JPH01139741A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop the title warm forging mold having extremely high hardness and excellent wear resistance by mixing the powder of the high-speed tool steel having a specified composition and the powder of the nitride, carbide, and carbonitride of a specified metal in a specified ratio, press-forming, and then sintering the mixture. CONSTITUTION:From 88 to 90% atomized powder of the high-speed tool steel wherein the equilibrium carbon amt. (Ceq) expressed by (0.06Cr+0.033W+0.063 Mo+0.2V) is controlled to 0.1<=C-Ceq<=0.6 at 2.0-3.5% C, contg., by weight, 3-10% Cr, 1-20% W, 1-11% Mo, 5.6-15% V, <15% Co, <2% Si, <1% Mn, <2% Ni, <0.1% N, and the balance Fe where (W+2Mo) is controlled to 18-24% and 2-12% powder of one or >=2 kinds among the nitride, carbide, and carbonitride of Ti, Zr, V, Nb, Hf, and Ta are uniformly mixed. The mixture is formed into a mold, and then the surface is nitrided. Consequently, a warm forging mold having >72 HRC hardening and tempering hardness and >=63 HRC high-temp. hardness after tempering and having excellent wear resistance and seizing resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉末冶金法により製造された高速度工具鋼製
の温間鍛造用金型に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a warm forging die made of high speed tool steel manufactured by powder metallurgy.

〔従来の核術〕[Traditional nuclear technique]

轡械構造用炭素鋼・合金鋼、一般何造用圧延鋼材等の塑
性加工には一般に冷間ル造法、または熱間鍛造法が多く
用いられるが、これ等の塑性加工法は、それぞれ相互に
長所と短所を併せ持っている0 近年上述の塑性加工法のそれぞれの長所を生かし、短所
を補う加工法として被加工材6oo℃〜800℃程度に
加熱する温間鍛造法が注目され始めた。ところが温間鍛
造法は金型に対して苛酷な使用条件となるため、金型材
料が具備すべき条件として、温間においても高い硬さを
有すること、耐熱衝撃性が大きいこと、耐焼付性が良好
なこと等が要求される。
Generally, cold forming or hot forging is often used for plastic working of carbon steel/alloy steel for machine structures, rolled steel for general manufacturing, etc., but these plastic working methods are mutually exclusive. In recent years, a warm forging method in which the workpiece is heated to about 60° C. to 800° C. has begun to attract attention as a processing method that takes advantage of the advantages of each of the above-mentioned plastic working methods and compensates for their shortcomings. However, the warm forging method imposes harsh usage conditions on the mold, so the mold material must have high hardness even in warm conditions, high thermal shock resistance, and seizure resistance. Good quality is required.

このため枦、在では温間鍛造用金型には溶製高速度工具
鋼、粉末高速度工具鋼、超硬合金等が多く用いられてい
る。
For this reason, in modern times, warm forging dies are often made of ingot high-speed tool steel, powdered high-speed tool steel, cemented carbide, and the like.

〔発明が木矢しようとする問題点〕[Problems that the invention attempts to address]

従来の溶製材または粉末製の高速度工具鋼で農作した温
間鍛造用金型は、使用中の荷重が約500ton程度の
高荷重になると、被加工材と金型が互に摩擦し合い、金
型にかじりと焼き付きを生じて被加工材表面におシきず
を発生させるので、金型の寿命は短かいものであった。
Conventional warm forging molds made from melted lumber or powdered high-speed tool steel can cause friction between the workpiece and the mold when the load during use reaches a high load of approximately 500 tons. The life of the mold was short because it caused galling and seizure on the mold and caused scratches on the surface of the workpiece.

超硬合金は、炭化物の含有量が約80%程度で焼き付き
が生じに<<、また高温硬さが高く摩耗も少ないため、
温間鍛造金型にも多用されている。
Cemented carbide has a carbide content of about 80%, which causes seizure, and also has high high temperature hardness and little wear.
It is also widely used in warm forging dies.

しかし超硬合金は、高速度工具鋼に比べじん性が低いた
め熱衝撃に弱く、ヒートクラックが大割れに進展するも
のもあり、個々の寿命のバラツキが大きいという欠点も
あった。
However, since cemented carbide has lower toughness than high-speed tool steel, it is susceptible to thermal shock, and some heat cracks can develop into large cracks, and the service life of each product varies widely.

そこで本発明は、従来の高速度工具鋼製の金型よりも普
硬度で酎に粍性が良く、かつ炭化物、窒化物の含有量を
多くして耐焼付性を改善し、ざらに超硬合金製の金型よ
りもじん性が高く熱衝撃に強い温間取運用金型を提供し
ようとするものである0 〔問題点を牌決するための手段〕 本発明は、平衡炭素量(Ceq)がCeq=0−06C
r十0−033W+ 0.063Mo + 0.2 V
とするときC2,0〜3.5%の範囲で0.1≦C−C
eq≦0.6を満足し、さらにCr:3〜10%、W:
1〜20%+ Mo : 1〜11チ(ただし18≦W
 + 2 Mo≦24 ) 、V : 5.6〜15%
In view of this, the present invention has developed a mold that has a higher normal hardness and better corrosion resistance than conventional molds made of high-speed tool steel, and has a higher content of carbides and nitrides to improve seizure resistance. The purpose of the present invention is to provide a warm-working mold that has higher toughness and is more resistant to thermal shock than alloy molds. is Ceq=0-06C
r10-033W+0.063Mo+0.2V
When C2, 0.1≦C−C in the range of 0 to 3.5%
satisfies eq≦0.6, furthermore Cr: 3 to 10%, W:
1~20%+Mo: 1~11chi (however, 18≦W
+2Mo≦24), V: 5.6-15%
.

Co : 15%以下* Si : 2%以下、 Mn
 : 1%以下。
Co: 15% or less* Si: 2% or less, Mn
: Less than 1%.

Ni : 2%以下、 N : 0.1%以下、残部F
eおよび不可避不純物からなる高速度工具鋼のアトマイ
ズ粉末を88〜98%と、Ti 、Zr、V、Nb、H
f 、Taの窒化物、炭化物、炭鴛化物の1種または2
種以上を合計で2〜12%を均一に混合した後、成形・
焼結してなる温間鍛造用金型、またこのうち焼入れ・焼
もどし後HRC72以上の硬さを有し、その後600℃
に加熱してもHRC63以上の高温硬さを保持するもの
、さらにHRC72の硬さにおいて次頁■吸収工坏ルキ
ー130kqf−期を有するもの、またさらに状況によ
っては表面処理を施したことを特徴とする温間鍛造用金
型である。
Ni: 2% or less, N: 0.1% or less, remainder F
The atomized powder of high speed tool steel consisting of e and inevitable impurities is 88-98%, Ti, Zr, V, Nb, H
f, one or two of Ta nitrides, carbides, and carbohydrides
After uniformly mixing 2 to 12% of the seeds and above, molding and
A mold for warm forging made by sintering, which has a hardness of HRC 72 or higher after quenching and tempering, and then 600℃
It is characterized by having a high-temperature hardness of HRC 63 or higher even when heated to a temperature of 72, and by having a hardness of HRC 72 and an absorption rate of 130 kqf, and depending on the situation, it has been subjected to surface treatment. This is a mold for warm forging.

〔作用〕[Effect]

次に本発明における各添加元素の作用およびその摩加範
囲限定理由を述べる。
Next, the effect of each additive element in the present invention and the reason for limiting the abrasion range will be described.

本発明の金型の素材の組成のうち、Cの含有量は最も重
要な樽成要素である。Cは、同時に含有されるCr 、
W + Mo r Vと結合してMs C、MCなどの
炭化物を形成し、耐摩耗性を付与する作用とともに、焼
入硬化熱処理によりマルテンサイト基地の修・さを窩め
、さらに焼もどし二次硬化量を増す作用がある。上記の
炭化物形成元素であるCr 、 W 。
Among the compositions of the mold material of the present invention, the C content is the most important component. C is Cr contained at the same time,
It combines with W + Mor V to form carbides such as Ms C and MC, and has the effect of imparting wear resistance, as well as the repair and strength of the martensite base through quench hardening heat treatment, and further secondary tempering. It has the effect of increasing the amount of hardening. Cr and W are the carbide-forming elements mentioned above.

Mo 、 VとCが過不足なく結合して、炭化物を形成
する平衡炭素量Ceq Vi、次式となることが理論的
に知られている。
It is theoretically known that Mo, V and C combine in just the right amount to form a carbide, with an equilibrium carbon content Ceq Vi expressed by the following formula.

Ceq−0,06(%Cr) + 0.033(%W)
 + 0.063(%Mo )+0.2(%V) 従来の高速度工具鋼においては、C含有量と平衡炭X借
CeQの差、C−Ceqはマイナスとなるように調整さ
れている(例えはJIS  5KH59は、はぼ−0,
3、AISIM42では−0,05)。
Ceq-0.06 (%Cr) + 0.033 (%W)
+ 0.063 (% Mo ) + 0.2 (% V) In conventional high-speed tool steel, the difference between C content and equilibrium coal For example, JIS 5KH59 is Habo-0,
3, -0,05 for AISIM42).

本発明において、W 、 Mo 、 V 量やTiN等
の分散粒子の量が比較的少なくても、HRC72以上の
超硬度が得られ、実用性の高い胃速度工具悌1の金型を
得る目的で多数の合金系につき、実験、検討したところ
、Ceq= 0−06Cr + 0.033W+ 0.
063Mo+0.2Vとするとき、18≦W + 2 
Mo≦24の範囲でC−Ceqを従来のようにマイナス
にせずに、0.1≦C−Ceq≦0.6を満足するよう
にCを含有させればよいことを新規に発見した。C−C
eqが、0.1未満では、上述したように多量のW 、
 JVfo 、 V、 TiNを含有せしめないと、H
RC72以上の超硬度が得られない。逆にC−Ceqが
、0.6を越えると、焼入硬化熱処理時に安定な残留オ
ーステナイトが著しく増加し、また、残留オーステナイ
トの分解温度が高温側に移行するので、焼もどしにより
二次硬化させても、HRC72以上の超硬度が得られな
くなる。すなわち、18≦W+2Mo≦24の範囲で、
0.1≦C−Ceq≦0.6の条件でのみ、本願の目的
は達成できる。
In the present invention, even if the amount of W, Mo, V and the amount of dispersed particles such as TiN are relatively small, a super hardness of HRC 72 or more can be obtained, and the purpose is to obtain a highly practical mold for gastric speed tool 1. After experimenting and examining many alloy systems, Ceq=0-06Cr+0.033W+0.
When 063Mo+0.2V, 18≦W + 2
It has been newly discovered that in the range of Mo≦24, instead of making C-Ceq negative as in the past, it is sufficient to contain C so that 0.1≦C-Ceq≦0.6 is satisfied. C-C
When eq is less than 0.1, a large amount of W as mentioned above,
If JVfo, V, and TiN are not included, H
A superhardness of RC72 or higher cannot be obtained. On the other hand, when C-Ceq exceeds 0.6, stable retained austenite increases significantly during quench hardening heat treatment, and the decomposition temperature of retained austenite shifts to a high temperature side, so secondary hardening is performed by tempering. Even if the hardness is higher than HRC72, it will not be possible to obtain a superhardness of HRC72 or higher. That is, in the range of 18≦W+2Mo≦24,
The object of the present application can be achieved only under the condition of 0.1≦C-Ceq≦0.6.

Cは同時に富有されるCr * W e Mo 、Vの
量によって適宜に変えるべきであることは上述したごと
くである。後述する本発明のCr、W、Mo、Vの含有
量のa囲で、かつ0.1≦C−Ceq≦0.6を満足さ
せるにはCは少なくとも2.0%は必要である。
As mentioned above, C should be appropriately changed depending on the amount of Cr*W e Mo and V that are simultaneously enriched. At least 2.0% of C is required in order to satisfy 0.1≦C-Ceq≦0.6 within a range of the content of Cr, W, Mo, and V of the present invention, which will be described later.

一方、上記の条件を満たしていてもat有量が3.5%
を越えると靭性の低下が著しくなるのでC含有量は2.
0〜3.5俤の範囲で、かつ0.1≦C−Ceq≦0.
6と限定した。
On the other hand, even if the above conditions are met, the at content is 3.5%.
If the C content exceeds 2.0, the decrease in toughness will be significant, so the C content should be 2.
In the range of 0 to 3.5 kou, and 0.1≦C-Ceq≦0.
It was limited to 6.

CrFi燦入れ硬化性を高める作用があるが、6%未満
ではこの効果が少なく、逆に10%を越えると残留オー
ステナイ)tが増大し、燐入れφきもどし硬さを下ける
のでOrの含有量は3〜10%に限定した。特に、真空
焼入れなど冷却速度の遅い焼入れ炉で熱処理してもHR
C72以上の超硬度を得るためにはCrの含有量は6%
を越えて10チ以下が望ましい。
CrFi has the effect of increasing sintering hardenability, but if it is less than 6%, this effect is small, and on the other hand, if it exceeds 10%, the residual austenite (t) increases and the phosphorization φ restoration hardness is lowered, so the inclusion of Or. The amount was limited to 3-10%. In particular, even if heat treated in a quenching furnace with a slow cooling rate such as vacuum quenching, the
In order to obtain a superhardness of C72 or higher, the Cr content must be 6%.
It is desirable to exceed 10 inches or less.

WおよびMoは前述のととくCと結合してMgC型の炭
化物を形成し、耐摩耗性を高める作用と焼入れ硬化熱処
理時に基地中に固溶し、焼きもどし熱処理によってこれ
が微細な炭化物として析出し二次硬化度を高める作用が
ある。本発明の安定してHRC72以上の超硬度を得る
という目的を達成するには、W1〜20%、Mo1〜1
1’%の範囲でW+2Mofiが18チ以上を含有せし
める必要がある。
W and Mo combine with the aforementioned Totoku C to form MgC type carbide, which has the effect of increasing wear resistance and solid solution in the matrix during quenching and hardening heat treatment, which precipitates as fine carbide during tempering heat treatment. It has the effect of increasing the degree of secondary hardening. In order to achieve the purpose of stably obtaining superhardness of HRC72 or higher according to the present invention, W1-20%, Mo1-1
It is necessary to contain W+2Mofi of 18 or more in the range of 1'%.

しかし、W+2Mo′fが24%を越えると材料が高価
になるのみならず靭性も低下するのでW + Moの含
有量はW+2Mo量で18〜24チに限定した。なお、
本発明では等!(原子パーセントで)のWとMoはほぼ
等価の作用を有している。
However, if W+2Mo'f exceeds 24%, the material not only becomes expensive but also has poor toughness, so the content of W + Mo was limited to 18 to 24% in terms of W+2Mo. In addition,
In the present invention, etc.! W and Mo (in atomic percent) have approximately equivalent effects.

VもW、Moと同じくCと結合して、MC型炭化物を形
成する。このMC型炭化物の硬さはHV 2500〜3
000とMaC型炭化炭化物さHV1500〜1800
と比較して著しく高い硬さである。このためとくに耐摩
耗性を重視する工具においてはV含有量の多い尚速度工
具鋼を用いると工具寿命が向上する。
Like W and Mo, V also combines with C to form MC type carbide. The hardness of this MC type carbide is HV 2500~3
000 and MaC type carbide carbide HV1500-1800
Its hardness is significantly higher than that of For this reason, in tools where wear resistance is particularly important, use of high speed tool steel with a high V content will improve tool life.

しかしながら、■含有量を必要以上に多くしても、破研
削性を悪くして研削ヤケによる低寿命を誘発し、また靭
性を低下させるたけなので、本発明においてはV含南I
iは15チを上限とした。一方、5.6%未満では、耐
摩耗の効果が不足するのでV含有量は、5.6〜15%
に限定した。
However, even if the content of
The upper limit of i was 15 inches. On the other hand, if the V content is less than 5.6%, the wear resistance effect will be insufficient, so the V content should be 5.6 to 15%.
limited to.

Coは、基地に固溶し、焼もどし硬さ、高温硬さを^め
る作用がある。しかし、多量に含有すると、靭性が著し
く低下するので、Coの含有量は、15%以下に限定し
た。
Co dissolves in the matrix and has the effect of reducing tempering hardness and high temperature hardness. However, if it is contained in a large amount, the toughness will be significantly reduced, so the content of Co is limited to 15% or less.

Stは、脱酸を目的として、2%以下含有させるが、と
くに5iO08〜2%の範囲では、脱酸効果の他に基地
の硬度を高める効果および耐酸化性、耐食性を高める効
果、さらにはアトマイズ作業性を向上させる効果があら
れれる。2%を越えると靭性の低下が著しくなる。
St is contained in an amount of 2% or less for the purpose of deoxidation, but especially in the range of 5iO08 to 2%, it not only has a deoxidizing effect but also has the effect of increasing the hardness of the base, oxidation resistance, corrosion resistance, and even atomization. It has the effect of improving work efficiency. If it exceeds 2%, the toughness will be significantly reduced.

Mnも脱酸効果があり、さらに幣入性を高める作用があ
るので、1%以下含有させる。とくに、上記のS i 
ta量が普い場合には、フェライトを安定化し、A変態
点を上昇させるSiの整置を胤によって緩和できるので
、Mn0.25〜1.0%含有させるとよい。
Mn also has a deoxidizing effect and also has the effect of improving bankability, so it is contained in an amount of 1% or less. In particular, the above S i
When the amount of Ta is moderate, it is preferable to contain 0.25 to 1.0% of Mn, since the arrangement of Si, which stabilizes ferrite and raises the A transformation point, can be relaxed by seeds.

Niは、基地の靭性を高める効果があるか、2%を越え
ると、残留オーステナイト量を極度に増加させ、焼もど
し硬さが低下するので、本発明においては2%以下の含
有を許容する。なお、通常側速度工具鋼において微量の
Niが含有され、Ni O,25チ以下の範囲はJIS
では不純物量として扱われている。
Ni has the effect of increasing the toughness of the matrix, but if it exceeds 2%, the amount of retained austenite increases extremely and the tempering hardness decreases, so the present invention allows the content to be 2% or less. In addition, a trace amount of Ni is contained in the normal side speed tool steel, and the range of Ni O, 25 or less is JIS
It is treated as an amount of impurities.

Nは、基地の硬さを高める作用と、MC型炭化物中Kf
i!ii溶して、MCN型の炭窒化物を形成して耐溶着
性を高める作用もある。しかし、工業的に含有できる量
は、上限が0.1%であるので、0.1−以下に限定し
た。なお、高速度工具鋼において、通常N O,05%
程度以下は不純物として含有している。
N has the effect of increasing the hardness of the matrix and the Kf in the MC type carbide.
i! It also has the effect of increasing welding resistance by melting and forming MCN-type carbonitrides. However, since the upper limit of the amount that can be contained industrially is 0.1%, it is limited to 0.1% or less. In addition, in high-speed tool steel, usually NO, 05%
Anything below this level is contained as an impurity.

Ti 、Zr 、V、Nb 、)(f +Taの窒化物
、炭化物、炭窒化物を分散せしめると、硬さを高める効
果がある。一方本発明のごとく、C含有量が平衡炭素量
(Ceq)より、0.1〜0.6高めとなれば、焼入硬
化処理時にオーステナイト結晶粒が粗大化し、マルテン
サイト組綽が粗れて、靭性が極端に低下するのが、従来
の常識であった。
Dispersing Ti, Zr, V, Nb, ) (f + Ta nitrides, carbides, and carbonitrides has the effect of increasing hardness.On the other hand, as in the present invention, the C content is equal to the equilibrium carbon amount (Ceq) It was conventional wisdom that if the value was higher than 0.1 to 0.6, the austenite crystal grains would become coarse during the quench hardening process, the martensite structure would become rough, and the toughness would be extremely reduced. .

しかし本発明によって’ri +Zr 、V、Nb 、
Hf +Taの窒化物、炭化物、炭窒化物の1種または
2種以上を合計で、2〜12%を均一に分散せしめるこ
とにより、この欠点を解消することができ、溶融開始温
度直下の高いオーステナイト化温度ψで燐入硬化処理を
行なっても、著しく微細な組織となることを発見した。
However, according to the present invention, 'ri + Zr, V, Nb,
This drawback can be overcome by uniformly dispersing one or more of Hf + Ta nitrides, carbides, and carbonitrides in a total amount of 2 to 12%. It was discovered that even if phosphorescence hardening treatment was performed at the curing temperature ψ, a significantly finer structure was obtained.

すなわち、上Hじ窒化物、炭化物、炭窒化物を分散せし
めることがC含有量がCeq ilより高めとすること
により生じる欠点をうまく榊い、本発明の目的を達成さ
せている。しかし、2%未満では、上記効果が少なく、
一方、12%を越えると効果が飽和するはかりでなく、
被研削性、靭性を著しく低下させるので、上記窒化物、
炭化物、炭窒化物の分散量は合計で2〜12%に限定し
た。
That is, by dispersing the above nitrides, carbides, and carbonitrides, the disadvantages caused by the C content being higher than that of Ceq il can be successfully overcome, and the object of the present invention can be achieved. However, if it is less than 2%, the above effect will be small;
On the other hand, the effect is not saturated when it exceeds 12%;
The above nitrides, as they significantly reduce grindability and toughness,
The amount of dispersion of carbides and carbonitrides was limited to 2 to 12% in total.

窒化物、炭化物、炭窒化物を基質中に均一に分散せしめ
る方法としては、上記の化学組成からなる高速度工具鋼
の粉末を水、カス、油などのアトマイズ法により製造し
、この粉末と窒化物、炭化物。
A method for uniformly dispersing nitrides, carbides, and carbonitrides in a matrix is to produce high-speed tool steel powder with the above chemical composition by atomizing water, scum, oil, etc. matter, carbide.

炭窒化物の粉末とを混合した後、成形、焼結するのが、
最も、適している。
After mixing with carbonitride powder, molding and sintering are performed.
most suitable.

混合に際しては、焼結後の最終炭素含有量をと輪部する
こと、および焼結性を向上させるなどの目的で、黒鉛粉
末、ブラックカーボンなどの炭素粉末を同時に添加混合
するとよい。さらに、Cr、Ni。
When mixing, carbon powder such as graphite powder or black carbon may be added and mixed at the same time for the purpose of controlling the final carbon content after sintering and improving sinterability. Furthermore, Cr, Ni.

Mo t W、 Cu + Co 、 Fe粉末の1種
または2種以上を合計で5%以下同時に混合させると、
焼結性を向上させる効果がある。
When one or more of Mo t W, Cu + Co, and Fe powder are simultaneously mixed in a total amount of 5% or less,
It has the effect of improving sinterability.

〔実施例〕〔Example〕

次に一実流例に基づいて本発明をさらに詳細に説明する
Next, the present invention will be explained in more detail based on an actual flow example.

第6図に示す形状の温間鍛造用金型を製作するため、ま
ず第1表に示す組成の金型用素材を準備した。
In order to manufacture a warm forging die having the shape shown in FIG. 6, first, a die material having the composition shown in Table 1 was prepared.

この素材から金型を製作すると同時に高温硬さと抗折試
験用の試料を製作した。この試料と金型について超硬合
金を除く3材質にVi所定の標準熱処理を施し、表中に
示す硬さを得た。
A mold was made from this material, and samples for high-temperature hardness and bending tests were also made. Regarding this sample and mold, three materials other than the cemented carbide were subjected to Vi predetermined standard heat treatment to obtain the hardness shown in the table.

熱処理後、超硬合金を含む4材質の高温硬さ。High temperature hardness of 4 materials including cemented carbide after heat treatment.

吸収エネルギを測定し、結果をそれぞれ第1図。The absorbed energy was measured and the results are shown in Figure 1.

第2図に示す。Shown in Figure 2.

巣1図に示すように本発明の金型用素材の高温硬さは各
温度において超硬合金製金型素材よυも低いが、溶製材
5KH51や粉末高速度油製金型素材に比べ高い値を示
している。また第2図に示すように、本発明の金型用素
材の抗折試験における吸収エネルギは溶製材5KH51
や粉末高速度工具鋼製金型素材よりも低い値を示してい
るが、超硬合金製金型素材よりも高い靭性値を有してお
り硬さレベルに見合った良好な靭性値を示している。
As shown in Figure 1, the high-temperature hardness of the mold material of the present invention is lower than that of the cemented carbide mold material at each temperature, but it is higher than that of the ingot material 5KH51 or powdered high-speed oil mold material. It shows the value. Furthermore, as shown in Fig. 2, the absorbed energy in the bending test of the material for molds of the present invention is 5KH51.
Although the toughness value is lower than that of powdered high-speed tool steel mold materials, it has a higher toughness value than cemented carbide mold materials, and shows good toughness values commensurate with the hardness level. There is.

また本発明の金型用素材は目標値である600℃におけ
る高温硬さHRC63(HV772)以上と、HRC7
2における吸収エネルギ130hf−wm以上を有して
いることが判明した。
In addition, the mold material of the present invention has a high temperature hardness of HRC63 (HV772) or higher at 600°C, which is the target value, and HRC7
It was found that the absorbed energy in the case of No. 2 was 130 hf-wm or more.

次に上述の4材質の金型を第3図に示すように外ケース
3.内ケース2に組込んで温間鍛造金型を完成した。そ
のうち本発明金型には一部?化処理を施した。
Next, as shown in FIG. The warm forging mold was completed by assembling it into the inner case 2. Are some of them included in the mold of the present invention? A chemical treatment was applied.

外ケース6、内ケース2は熱関金型用物を用いてHRC
48に熱処理した後研削仕上けを行なった。
Outer case 6 and inner case 2 are HRCed using heat mold tools.
After heat treatment to a temperature of 48°C, finishing by grinding was performed.

この後金t1!1に内ケース2を焼成め代0.5.で焼
成めを施し、さらに外ケース6を同じ焼嵌め代で焼成め
を行って、端面の研削仕上けを施した。
After this, the inner case 2 was fired using gold t1!1 with a margin of 0.5. Then, the outer case 6 was fired with the same shrink fitting allowance, and the end face was finished with a grinding finish.

第4図に示す鍛造方案にしたがって700〜750℃に
加熱したJIS 555Cを鍛造し、金型内径部に焼付
きが生じこのφ付きが被加工材にスリ疵となって転写さ
れ始めた時点を寿命とし、超硬合金の寿命数を100と
する指数で第1表に併記した。
JIS 555C heated to 700-750℃ was forged according to the forging method shown in Figure 4, and the point at which seizing occurred on the inner diameter of the mold and the φ began to be transferred to the workpiece as scratches was determined. The lifespan is also listed in Table 1 as an index with the lifespan number of the cemented carbide as 100.

鍛造試験の結果によれは本発明金型は、超硬合金とほぼ
同等の寿命指数を示し、本発明金型に窒化処理を施した
ものはさらに20%の寿命向上を示すことが判明した0 本実施例では金型は焼嵌代、応力計算の結果から6重筒
としたが、場合によっては内ケースと外ケースを一体と
して2N筒とすることができることは言うまでもない。
According to the results of the forging test, it was found that the mold of the present invention exhibited a life index almost equivalent to that of cemented carbide, and that the mold of the present invention subjected to nitriding treatment showed an additional 20% improvement in life. In this embodiment, the mold was made into a 6-layer cylinder based on the results of shrink-fitting allowance and stress calculation, but it goes without saying that the inner case and the outer case can be integrated into a 2N cylinder depending on the case.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明による温間鍛造用金型は、超
硬合金製金型に比べ靭性が優れ、また寿命も同一レベル
を有し、窒化処理を行なうとさらに寿命向上が達成でき
、工業上極めて有効な発明である。
As described above, the warm forging mold according to the present invention has superior toughness and the same lifespan as cemented carbide molds, and the lifespan can be further improved by nitriding. This invention is extremely effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る本発明金型と従来金型の高温硬さ
を示すグラフ、第2図は本発明金型と従来金型の抗折試
験における吸収エネルギと硬さの関係を示すグラフ、第
6図は温間鍛造金型の一実施例を示す図、第4図は温間
鍛造方案の一実施例を示す図である。
Fig. 1 is a graph showing the high-temperature hardness of the present invention mold and the conventional mold according to the present invention, and Fig. 2 shows the relationship between absorbed energy and hardness in the bending test of the present invention mold and the conventional mold. 6 is a diagram showing an embodiment of a warm forging die, and FIG. 4 is a diagram showing an embodiment of a warm forging method.

Claims (1)

【特許請求の範囲】 1、平衡炭素量(Ceq)が重量比でCeq=0.06
Cr+0.033W+0.063Mo+0.2Vとする
とき、C:2.0〜3.5%の範囲で0.1≦C−Ce
q≦0.6を満足し、さらにCr:3〜10%、W:1
〜20%、Mo:1〜11%(ただし、18≦W+2M
o≦24)、V:5.6〜15%、Co:15%以下、
Si2%以下、Mn:1%以下、Ni:2%以下、N:
0.1%以下、残部Feおよび不可避不純物からなる高
速度工具鋼のアトマイズ粉末を88〜90%と、Ti、
Zr、V、Nb、Hf、Taの窒化物、炭化物、炭窒化
物の1種または2種以上を合計で2〜12%を、均一に
混合した後、成形、焼結してなる超硬度高速度工具鋼を
用いたことを特徴とする温間鍛造用金型。 2、超硬度高速度工具鋼が焼入れ焼もどしによりHRC
72以上の硬さを有し、かつ焼入れ焼もどし後600℃
に加熱した時の高温硬さがHRC63以上であることを
特徴とする特許請求の範囲第1項記載の温間鍛造金型。 3、超硬度高速度工具鋼が硬さHRC72における抗折
試験(試験片:5mmφ×70mml、支点間距離:5
0mm、中心一点荷重方式)時の吸収エネルギーが13
0kgf・mm以上であることを特徴とする特許請求の
範囲第1項または、第2項記載の温間鍛造用金型。 4、超硬度高速度工具鋼を金型に加工後、表面処理を施
したことを特徴とする特許請求の範囲第1項〜第3項の
いずれかに記載の温間鍛造用金型。
[Claims] 1. Equilibrium carbon content (Ceq) is Ceq=0.06 in weight ratio
When Cr+0.033W+0.063Mo+0.2V, C: 0.1≦C-Ce in the range of 2.0 to 3.5%
Satisfies q≦0.6, further Cr: 3 to 10%, W: 1
~20%, Mo: 1~11% (however, 18≦W+2M
o≦24), V: 5.6 to 15%, Co: 15% or less,
Si: 2% or less, Mn: 1% or less, Ni: 2% or less, N:
Atomized powder of high speed tool steel consisting of 0.1% or less, the balance Fe and unavoidable impurities, 88 to 90% Ti,
High hardness made by uniformly mixing 2 to 12% of one or more of nitrides, carbides, and carbonitrides of Zr, V, Nb, Hf, and Ta, then molding and sintering. A mold for warm forging characterized by using speed tool steel. 2. HRC of superhard high speed tool steel is achieved by quenching and tempering.
Hardness of 72 or higher and 600℃ after quenching and tempering
The warm forging mold according to claim 1, wherein the hot forging mold has a high temperature hardness of HRC63 or higher when heated to . 3. Bending test of superhard high-speed tool steel with hardness HRC72 (test piece: 5 mmφ x 70 mml, distance between fulcrums: 5
Absorbed energy at 0 mm (center single point loading method) is 13
The mold for warm forging according to claim 1 or 2, characterized in that it has a diameter of 0 kgf·mm or more. 4. The mold for warm forging according to any one of claims 1 to 3, characterized in that the mold is made of superhard high-speed tool steel and then subjected to surface treatment.
JP29725487A 1987-11-25 1987-11-25 Warm forging mold Pending JPH01139741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29725487A JPH01139741A (en) 1987-11-25 1987-11-25 Warm forging mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29725487A JPH01139741A (en) 1987-11-25 1987-11-25 Warm forging mold

Publications (1)

Publication Number Publication Date
JPH01139741A true JPH01139741A (en) 1989-06-01

Family

ID=17844150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29725487A Pending JPH01139741A (en) 1987-11-25 1987-11-25 Warm forging mold

Country Status (1)

Country Link
JP (1) JPH01139741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578773A (en) * 1991-08-07 1996-11-26 Erasteel Kloster Aktiebolag High-speed steel manufactured by powder metallurgy
CN102371327A (en) * 2011-12-13 2012-03-14 重庆工具厂有限责任公司 Forging mould and method for high-speed steel spindle piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578773A (en) * 1991-08-07 1996-11-26 Erasteel Kloster Aktiebolag High-speed steel manufactured by powder metallurgy
CN102371327A (en) * 2011-12-13 2012-03-14 重庆工具厂有限责任公司 Forging mould and method for high-speed steel spindle piece

Similar Documents

Publication Publication Date Title
US4249945A (en) Powder-metallurgy steel article with high vanadium-carbide content
CN100482842C (en) High malleable high wear-resisting cold process mould steel
JP2020501027A (en) Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
JPH01139741A (en) Warm forging mold
JPH02182867A (en) Powdered tool steel
KR20190071746A (en) Powder metallurgy produced steels, methods of making parts of this type of steel, and parts made of such steels
JPH02109619A (en) Throw away drill tip
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
JPH0143017B2 (en)
JPH07188859A (en) Powder high speed steel
JPS5952227B2 (en) high speed tool steel
JP3629851B2 (en) Cold tool steel for plasma carburizing
US5599377A (en) Mixed iron powder for powder metallurgy
JPS5937742B2 (en) High wear resistance sintered high speed steel
JP2688729B2 (en) Aluminum corrosion resistant material
JPS62124259A (en) Super head high-speed tool steel
JPS58185751A (en) High speed steel manufactured by powder metallurgy processing
JPH0674486B2 (en) High hardness sintered high speed steel ingot with excellent hot workability
CN110343963B (en) Hot work die steel and preparation method thereof
JPH09111422A (en) Sintered superhard alloy
KR100299463B1 (en) A method of manufacturing cold work tool steel with superior toughness and wear resistance
JPH06212368A (en) Low alloy sintered steel excellent in fatigue strength and its production
JP3748131B2 (en) Powdered high-speed tool steel with excellent toughness and wear resistance
JPH0941102A (en) Sintered head alloy
JPH04371317A (en) Fin for forming roll