JPH0569911B2 - - Google Patents

Info

Publication number
JPH0569911B2
JPH0569911B2 JP14642686A JP14642686A JPH0569911B2 JP H0569911 B2 JPH0569911 B2 JP H0569911B2 JP 14642686 A JP14642686 A JP 14642686A JP 14642686 A JP14642686 A JP 14642686A JP H0569911 B2 JPH0569911 B2 JP H0569911B2
Authority
JP
Japan
Prior art keywords
less
tool steel
speed tool
ceq
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14642686A
Other languages
Japanese (ja)
Other versions
JPS62124259A (en
Inventor
Norimasa Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPS62124259A publication Critical patent/JPS62124259A/en
Publication of JPH0569911B2 publication Critical patent/JPH0569911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、通常の焼入−焼もどしによりHRC72
以上の超高硬度が得られる高速度工具鋼およびそ
の製造方法に関する。 〔従来の技術〕 HRC72以上の超硬度が得られる高速度工具鋼の
例は少なく、特公昭55−6096号、「硬質合金」、特
公昭57−2142号、「炭化物を富化した高速度工具
鋼」、特開昭57−181367号、「焼結高V高速度工具
鋼とその製造方法」、特開昭58−181848号、「含窒
化物焼結高V高速度工具鋼とその製造方法」に部
分的な開示があるのみである。 〔発明が解決しようとする問題点〕 ところが、従来の技術でHRC72以上を得ようと
すると、W、Mo、V等の高価な合金元素を多量
に含有させしめるか、TiN等の硬質物質を多量
に分散させしめる必要があり、材料が高価にな
る、被研削性が悪くなる、靭性が低下する等の問
題があつた。例えば、特公昭57−2142号に開示さ
れている実施例では、HRC72以上の超硬度が得ら
れるのは、No.11の合金(第1表、第2表)のみで
あるが、これは、W+2Mo量が49.7%と著しく高
い合金系である。 また、特開昭57−181367号に開示されている実
施例でも、25%以上のVを含有させしめないと
HRC72以上の超硬度は得られていない(第2図)。
さらに、特開昭58−181848号においても、15%以
上のTiNを分散させしめないとHRC72以上の超硬
度は達成されていない。 そこで、本発明は、W、Mo、V等の合金元
素、あるいはTiN等の硬質物質の含有量が比較
的少なくても、HRC72以上の超硬度が通常の焼入
−焼もどしにより得られる高速度工具鋼を提供し
ようとするものである。 〔問題点を解決するための手段〕 本発明は、粉末冶金製品であつて、Ceq=
0.06Cr+0.033W+0.063Mo+0.2Vとするとき、
C2.0〜3.5%の範囲で、かつ、0.1≦C−Ceq≦0.6
を満足し、さらにCr3〜10%、W1〜20%、Mo1
〜11%(ただし、18≦W+2Mo≦24)、V5.6〜15
%、Co15%以下、Si2%以下(望ましくはSi0.8〜
2%)、Mn1%以下(望ましくはMn0.25〜1.0
%)、残Feおよび不純物よりなる高速度工具鋼基
質に、Ti、V、Zr、Nb、Hf、Taの窒化物、炭
窒化物、炭化物の1種もしくは2種以上を合計
で、2〜12%を均一に分散させしめることによ
り、首記の問題点を解決するものである。 なお、本発明においては前記高速度工具鋼基質
に後述するような理由により、Ni2%以下、N0.1
%以下を適宜添加する場合も考えられる。 〔作用〕 本発明において、Cの含有量は最も重要な構成
要素である。Cは、同時に含有されるCr、W、
Mo、VとM6C、MCなどの炭化物を形成し、耐
摩耗性を付与する作用とともに、焼入硬化熱処理
によりマルテンサイト基地の硬度を高め、さらに
焼もどし二次硬化量を増す作用がある。上記の炭
化物形成元素であるCr、W、Mo、VとCが過不
足なく結合して、炭化物を形成する平衡炭素量
Ceqは、次式となることが理論的に知られてい
る。 Ceq=0.06(%Cr)+0.033(%W)+0.063(%Mo)+
0.2(%V) 従来の高速度工具鋼においては、C含有量と平
衡炭素量Ceqの差、C−Ceqはマイナスとなるよ
うに調整されている(例えばJIS SKH59では、
ほぼ−0.3、AISIM42でも−0.05)。 本発明において、W、Mo、V量やTiN等の分
散粒子の量が比較的少なくても、HRC72以上の超
硬度が得られ、実用性の高い高速度工具鋼を得る
目的で多数の合金系につき、実験、検討したとこ
ろ、Ceq=0.06Cr+0.033W+0.063Mo+0.2Vとす
るとき、18≦W+2Mo≦24の範囲でC−Ceqを従
来のようにマイナスにせずに、0.1≦C−Ceq≦
0.6を満足するようにCを含有させればよいこと
を新規に発見した。C−Ceqが、0.1未満では、上
述したように多量のW、Mo、V、TiNを含有せ
しめないと、HRC72以上の超硬度が得られない。
逆にC−Ceqが、0.6を越えると、焼入硬化熱処理
時に安定な残留オーステナイトが著しく増加し、
また、残留オーステナイトの分解温度が高温側に
移行するので、焼もどし二次硬化させても、HR
C72以上の超硬度が得られなくなる。すなわち、
18≦W+2Mo≦24の範囲で、0.1≦C−Ceq≦0.6
の条件でのみ、本願の目的は達成できる。 Cは同時に含有されるCr、W、Mo、Vの量に
よつて適宜に変えるべきであることは上述したご
とくである。後述する本発明のCr、W、Mo、V
の含有量の範囲で、かつ0.1≦C−Ceq≦0.6を満
足させるにはCは少なくとも2.0%は必要である。
一方、上記の条件を満たしていてもC含有量が
3.5%を越えると靭性が低下し著しくなるのでC
含有量は2.0〜3.5%の範囲で、かつ0.1≦C−Ceq
≦0.6と限定した。さらに、Cr含有量が6%を越
えて10%以下の場合にはC含有量の下限を2.25%
に限定するとよい。 Crは焼入れ硬化性を高める作用があるが、3
%未満ではこの効果が少なく、逆に10%を越える
と残留オーステナイト量が増大し焼入れ、焼き戻
し硬さを下げるのでCrの含有量は3〜10%に限
定した。特に、真空焼入れなど冷却速度の遅い焼
入れ炉で熱処理してもHRC72以上の超硬度を得る
ためにはCrの含有量は6%を越えて10%以下が
望ましい。 WおよびMoは前述のごとくCと結合してM6C
型の炭化物を形成し、耐摩耗性を高める作用と焼
入れ硬化熱処理時に基地中に固溶し、焼き戻し熱
処理によつてこれが微細な炭化物として析出し二
次硬化度を高める作用がある。本発明の安定して
HRC72以上の超硬度を得るという目的を達成する
には、W1〜20%、Mo1〜11%の範囲でW+2Mo
量が18%以上を含有せしめる必要がある。しか
し、W+2Mo量が24%を越えると材料が高価に
なるのみならず靭性も低下するのでW、Moの含
有量はW+2Mo量で18〜24%に限定した。なお、
本発明では等量(原子パーセントで)のWとMo
はほぼ等価の作用を有している。 VもW、Moと同じくCと結合して、MC型炭
化物を形成する。このMC型炭化物の硬度はHV
2500〜3000とM6C型炭化物の硬度(HV1500〜
1800)と比較して著しく高硬度である。このため
とくに耐摩耗性を重視する工具においてはV含有
量の多い高速度工具鋼を用いると工具寿命が向上
する。しかしながら、V含有量を必要以上に多く
しても、被研削性を悪くして研削ヤケによる低寿
命を誘発し、また靭性を低下させるだけなので、
本発明においてはV含有量は15%を上限とした。
一方、5.6%未満では、耐摩耗の効果が不足する
のでV含有量は、5.6〜15%に限定した。 Coは、基地に固溶し、焼もどし硬度、高温硬
度を高める作用がある。しかし、多量に含有する
と、靭性が著しく低下するので、Coの含有量は、
15%以下に限定した。 Siは、脱酸を目的として、2%以下含有させる
が、とくにSi0.8〜2%の範囲では、脱酸効果の
他に基地の硬度を高める効果および耐酸化性、耐
食性を高める効果、さらにはアトマイズ作業性を
向上させる効果があらわれる。2%を越えると靭
性の低下が著しくなる。 Mnも脱酸効果があり、さらに焼入性を高める
作用があるので、1%以下含有させる。とくに、
上記のSi含有量が高い場合には、フエライトを安
定化し、A1変態点を上昇させるSiの弊害をMnに
よつて緩和できるので、Mn0.25〜1.0%含有させ
るとよい。 Niは、基地の靭性を高める効果があるが、2
%を越えると、残留オーステナイト量を極度に増
加させ、焼もどし硬さが低下するので、本発明に
おいては2%以下の含有を許容する。なお、通常
高速度工具鋼において微量のNiが含有され、
Ni0.25%以下の範囲はJISでは不純物量として扱
われている。 Nは、基地の硬さを高める作用と、MC型炭化
物中に固溶して、MCN型の炭窒化物を形成して
耐溶着性を高める作用とがある。しかし、工業的
に含有できる量は、上限が0.1%であるので、0.1
%以下に限定した。なお、高速度工具鋼におい
て、通常N0.05%程度以下は不純物量として含有
される。 Ti、V、Zr、Nb、Hf、Taの窒化物、炭化物、
炭窒化物を分散させしめると、硬さを高める効果
がある。一方本発明のごとく、C含有量が平衡炭
素量(Ceq)より、0.1〜0.6高めとなれば、焼入
硬化処理時にオーステナイト結晶粒が粗大化し、
マルテンサイト組織が粗れて、靭性が極端に低下
するのが、従来の常識であつたが、本発明によつ
てTi、V、Zr、Nb、Hf、Taの窒化物、炭窒化
物、炭化物の1種もしくは2種以上を合計で、2
〜12%を均一に分散させしめることにより、この
欠点を解消することができ、溶融開始温度直下の
高いオーステナイト化温度で焼入硬化処理を行な
つても、著しく微細な組織となることを発見し
た。すなわち、上記窒化物、炭化物、炭窒化物を
分散させしめることがC含有量がCeq量より高め
とすることにより生じる欠点をうまく補い、本発
明の目的を達成させている。しかし、2%未満で
は、上記効果が少なく、一方、12%を越えると効
果が飽和するばかりでなく、被研削性、靭性を著
しく低下させるので、上記窒化物、炭化物、炭窒
化物の分散量は合計で、2〜12%に限定した。窒
化物、炭化物、炭窒化物を基質中に均一に分散さ
せしめる方法としては、上記の化学組成からなる
高速度工具鋼の粉末を水、ガス、油などのアトマ
イズ法により製造し、この粉末と窒化物、炭化
物、炭窒化物の粉末とを混合した後、成形、焼結
するのが、最も、適している。なお、混合に際し
ては、焼結後の最終炭素含有量を調節すること、
および焼結性を向上させるなどの目的で、黒鉛粉
末、ブラツクカーボンなどの炭素粉末を同時に添
加混合するとよい。さらに、Cr、Ni、Mo、W、
Cu、Co、Fe粉末の1種または2種以上を合計で
5%以下同時に混合させると、焼結性を向上させ
る効果がある。 〔実施例〕 次に、実施例によつて、本発明をさらに詳細に
説明する。 実施例 1 第1表に示す合計21種類のベース粉末組成から
なる粉末を水アトマイズ法によつて製造した。こ
の粉末をさらに粉砕し、350メツシユの篩で分級
した後、平均粒径1〜10μのTiN、TiCN、NbC、
VN、NbN、TaC、ZrN、VC、HfC、HfN、
HfCN、ZrCN、VCN、TaN、NbCN、TaCN、
ZrC粉末を第1表に示す割合で混合した。さら
に、上記粉末の酸素含有量と等量の炭素粉末を添
加後、ボールミルを用い、36Hr湿式混合して乾
燥後、冷間静水圧プレスで、6t/cm2の圧力で成形
した。この成形体を真空中1200〜1250℃で焼結
し、その後、熱間静水圧プレスで真密度化させ
た。 このようにして得られた高速度工具鋼(第1表
No.1〜No.21)を焼なまし後、焼入−焼もどしを行
なつて硬さを測定した。焼入は、1200〜1260℃に
加熱したソルトバス中に浸漬後油冷し、焼もどし
は、いずれも大気中560℃×(1+1+1)Hrで
行なつた。焼もどし後の硬さを第1表に併記した
が、本発明鋼のNo.1〜No.18においては、いずれも
HRC72以上の超硬度が得られた。 比較鋼No.19、No.20はベース組成、硬質分散粒子
含有量は本発明の範囲にあるものの、いずれもC
−Ceqが低いレベルにあるため、硬度が本発明鋼
に及ばない。 従来鋼のNo.21では、C−Ceqは、約−0.13と低
いことおよび、W+2Mo=16.4と少ないため、
TiN粒子を約10%分散させたにもかかわらず、
HRC68.9の硬さしか得られていない。 さらに、第1表中のNo.1、No.2、No.3、No.4、
No.6およびNo.21の高速度工具鋼を用いて真剣バイ
トを作成し、切削試験を行なつた。その結果を第
1図および第2図に示す。第1図はSKD61をHR
C45に調質した被削材を高速−低送りの条件で切
削した結果を示す図である。切削耐久寿命時間
は、ほぼ高硬度の得られる高速度工具鋼の順とな
つており、本発明鋼はいずれも、従来鋼より耐久
寿命に優れている。 第2図は、SKD61をHRC41に調質した被削材
を低速−高送りの条件で切削した結果である。こ
の条件でも本発明鋼は従来鋼に比較し、優れた切
削耐久性を示している。これは、本発明鋼が高硬
度であるにもかかわらず、高送り条件にも耐える
切刃の靭性をも有しているためである。
[Industrial Application Field] The present invention is capable of producing H R C72 by normal quenching and tempering.
The present invention relates to a high-speed tool steel that can obtain the above-mentioned ultra-high hardness and a method for producing the same. [Prior art] There are few examples of high-speed tool steels that have a superhardness of H R C72 or higher. "Speed Tool Steel", JP-A-57-181367, "Sintered High-V High-Speed Tool Steel and Its Manufacturing Method", JP-A-58-181848, "Nitride-Containing Sintered High-V High-Speed Tool Steel and Its Manufacturing Method" There is only a partial disclosure in "Manufacturing method". [Problems to be solved by the invention] However, in order to obtain H R C72 or higher using conventional techniques, it is necessary to contain large amounts of expensive alloying elements such as W, Mo, and V, or to use hard materials such as TiN. It is necessary to disperse a large amount of the material, which causes problems such as the material becomes expensive, the grindability deteriorates, and the toughness decreases. For example, in the example disclosed in Japanese Patent Publication No. 57-2142, only alloy No. 11 (Tables 1 and 2) can achieve a superhardness of H R C72 or higher; is an alloy system with a significantly high W+2Mo content of 49.7%. Furthermore, even in the embodiment disclosed in JP-A No. 57-181367, it is necessary to contain 25% or more of V.
A superhardness higher than H R C72 has not been obtained (Figure 2).
Furthermore, even in JP-A-58-181848, superhardness of H R C72 or higher is not achieved unless 15% or more of TiN is dispersed. Therefore, the present invention aims at achieving a superhardness of H R C72 or higher through normal quenching and tempering even if the content of alloying elements such as W, Mo, and V or hard substances such as TiN is relatively small. The aim is to provide high-speed tool steel. [Means for solving the problems] The present invention is a powder metallurgy product in which Ceq=
When 0.06Cr + 0.033W + 0.063Mo + 0.2V,
In the range of C2.0 to 3.5%, and 0.1≦C-Ceq≦0.6
Satisfied, and additionally Cr3~10%, W1~20%, Mo1
~11% (18≦W+2Mo≦24), V5.6~15
%, Co15% or less, Si2% or less (preferably Si0.8~
2%), Mn 1% or less (preferably Mn 0.25-1.0
%), one or more types of nitrides, carbonitrides, and carbides of Ti, V, Zr, Nb, Hf, and Ta are added to the high-speed tool steel matrix consisting of residual Fe and impurities in a total of 2 to 12 The problem mentioned above is solved by uniformly dispersing the %. In addition, in the present invention, for the reasons described later, Ni2% or less and N0.1 are added to the high-speed tool steel substrate.
% or less may be added as appropriate. [Operation] In the present invention, the content of C is the most important component. C is Cr, W, which is contained at the same time.
It forms carbides such as Mo, V, M 6 C, and MC, and has the effect of imparting wear resistance, as well as increasing the hardness of the martensite base through quench hardening heat treatment, and further increasing the amount of secondary hardening through tempering. . Equilibrium carbon amount at which the above carbide-forming elements Cr, W, Mo, V and C combine in just the right amount to form carbide.
It is theoretically known that Ceq is expressed as the following formula. Ceq=0.06(%Cr)+0.033(%W)+0.063(%Mo)+
0.2 (%V) In conventional high-speed tool steel, the difference between the C content and the equilibrium carbon content Ceq, C-Ceq, is adjusted to be negative (for example, in JIS SKH59,
Almost -0.3, even -0.05 in AISIM42). In the present invention, even if the amount of W, Mo, V or dispersed particles such as TiN is relatively small, a superhardness of H R C72 or higher can be obtained and a large number of As a result of experiments and studies regarding the alloy system, when Ceq = 0.06Cr + 0.033W + 0.063Mo + 0.2V, C-Ceq does not become negative as in the past in the range of 18≦W + 2Mo≦24, but 0.1≦C-Ceq ≦
It was newly discovered that it is sufficient to contain C so as to satisfy 0.6. If C-Ceq is less than 0.1, a superhardness of H R C72 or higher cannot be obtained unless large amounts of W, Mo, V, and TiN are contained as described above.
Conversely, when C-Ceq exceeds 0.6, stable retained austenite increases significantly during quench hardening heat treatment,
In addition, since the decomposition temperature of retained austenite shifts to the high temperature side, even if secondary hardening is performed by tempering, H R
It becomes impossible to obtain a superhardness of C72 or higher. That is,
In the range of 18≦W+2Mo≦24, 0.1≦C−Ceq≦0.6
The purpose of this application can be achieved only under these conditions. As mentioned above, C should be appropriately changed depending on the amounts of Cr, W, Mo, and V contained at the same time. Cr, W, Mo, V of the present invention described below
At least 2.0% of C is required in order to satisfy 0.1≦C-Ceq≦0.6.
On the other hand, even if the above conditions are met, the C content remains
If it exceeds 3.5%, the toughness will decrease significantly, so C
The content is in the range of 2.0 to 3.5%, and 0.1≦C-Ceq
It was limited to ≦0.6. Furthermore, if the Cr content is more than 6% and less than 10%, the lower limit of the C content is set at 2.25%.
It is best to limit it to Cr has the effect of increasing quench hardenability, but 3
If the content of Cr is less than 1%, this effect will be small, and if it exceeds 10%, the amount of retained austenite will increase and the hardness of quenching and tempering will decrease, so the content of Cr was limited to 3 to 10%. In particular, in order to obtain a superhardness of H R C72 or higher even when heat treated in a quenching furnace with a slow cooling rate such as vacuum quenching, the Cr content is preferably more than 6% and less than 10%. As mentioned above, W and Mo combine with C to form M 6 C
It has the effect of forming carbide in the mold and increasing the wear resistance, and solid solution in the matrix during quench hardening heat treatment, which precipitates as fine carbide during tempering heat treatment and increases the degree of secondary hardening. The stability of the present invention
To achieve the purpose of obtaining superhardness of H R C72 or higher, W + 2Mo should be set in the range of W1~20% and Mo1~11%.
It is necessary to contain 18% or more. However, if the amount of W + 2Mo exceeds 24%, the material not only becomes expensive but also has a lower toughness, so the content of W and Mo was limited to 18 to 24% in terms of W + 2Mo. In addition,
In the present invention, equal amounts (in atomic percent) of W and Mo
has almost the same effect. Like W and Mo, V also combines with C to form MC type carbide. The hardness of this MC type carbide is H V
2500~3000 and M6 C type carbide hardness (H V 1500~
1800) has significantly higher hardness. For this reason, in tools where wear resistance is particularly important, use of high speed tool steel with a high V content will improve tool life. However, even if the V content is increased more than necessary, it will only worsen the grindability, shorten the service life due to grinding burns, and reduce the toughness.
In the present invention, the upper limit of the V content is 15%.
On the other hand, if the V content is less than 5.6%, the wear resistance effect is insufficient, so the V content is limited to 5.6 to 15%. Co dissolves in the matrix and has the effect of increasing tempering hardness and high-temperature hardness. However, if it is contained in a large amount, the toughness will decrease significantly, so the content of Co
Limited to 15% or less. Si is contained in an amount of 2% or less for the purpose of deoxidation, but especially in the Si range of 0.8 to 2%, in addition to the deoxidation effect, it has the effect of increasing the hardness of the base, and the effect of increasing oxidation resistance and corrosion resistance. appears to have the effect of improving atomization workability. If it exceeds 2%, the toughness will be significantly reduced. Mn also has a deoxidizing effect and also has the effect of increasing hardenability, so it is contained in an amount of 1% or less. especially,
When the above-mentioned Si content is high, Mn can be used to stabilize ferrite and alleviate the adverse effects of Si, which increases the A1 transformation point, so it is preferable to include 0.25 to 1.0% of Mn. Ni has the effect of increasing the toughness of the base, but 2
If it exceeds 2%, the amount of retained austenite will increase extremely and the tempering hardness will decrease, so in the present invention, the content is allowed to be 2% or less. Note that high-speed tool steel usually contains a small amount of Ni,
The range of Ni 0.25% or less is treated as an impurity amount by JIS. N has the effect of increasing the hardness of the base, and the effect of forming a solid solution in the MC type carbide to form an MCN type carbonitride, thereby increasing the welding resistance. However, the upper limit of the amount that can be contained industrially is 0.1%, so 0.1
% or less. In high-speed tool steel, N0.05% or less is usually contained as an impurity. Nitride, carbide of Ti, V, Zr, Nb, Hf, Ta,
Dispersing carbonitrides has the effect of increasing hardness. On the other hand, as in the present invention, if the C content is 0.1 to 0.6 higher than the equilibrium carbon content (Ceq), the austenite crystal grains will become coarse during the quench hardening process.
It was conventional wisdom that the martensitic structure would become rough and the toughness would be extremely reduced, but with the present invention, the martensitic structure is roughened and the toughness is extremely reduced. A total of one or more types of 2
It was discovered that this defect could be overcome by uniformly dispersing ~12% of the material, resulting in a significantly finer structure even when quench hardening was performed at a high austenitizing temperature just below the melting start temperature. did. That is, the dispersion of the nitrides, carbides, and carbonitrides effectively compensates for the drawbacks caused by the C content being higher than the Ceq content, thereby achieving the object of the present invention. However, if it is less than 2%, the above effect will be small, while if it exceeds 12%, the effect will not only be saturated, but also the grindability and toughness will be significantly reduced. was limited to 2% to 12% in total. A method for uniformly dispersing nitrides, carbides, and carbonitrides in a matrix is to produce high-speed tool steel powder with the above chemical composition by atomizing water, gas, oil, etc. The most suitable method is to mix the powder with nitride, carbide, or carbonitride powder, and then mold and sinter it. In addition, when mixing, adjust the final carbon content after sintering,
Also, for the purpose of improving sinterability, carbon powder such as graphite powder or black carbon may be added and mixed at the same time. Furthermore, Cr, Ni, Mo, W,
Mixing one or more of Cu, Co, and Fe powders in a total amount of 5% or less has the effect of improving sinterability. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example 1 Powders having a total of 21 base powder compositions shown in Table 1 were manufactured by a water atomization method. After further crushing this powder and classifying it with a 350 mesh sieve, TiN, TiCN, NbC with an average particle size of 1 to 10μ,
VN, NbN, TaC, ZrN, VC, HfC, HfN,
HfCN, ZrCN, VCN, TaN, NbCN, TaCN,
ZrC powder was mixed in the proportions shown in Table 1. Furthermore, after adding carbon powder in an amount equal to the oxygen content of the powder, the mixture was wet mixed using a ball mill for 36 hours, dried, and then molded using a cold isostatic press at a pressure of 6 t/cm 2 . This compact was sintered in vacuum at 1200 to 1250°C, and then subjected to true densification using hot isostatic pressing. High speed tool steel thus obtained (Table 1
After annealing No. 1 to No. 21), quenching and tempering were performed and the hardness was measured. Quenching was performed by immersing in a salt bath heated to 1,200 to 1,260°C and cooling in oil, and tempering was performed in the air at 560°C x (1+1+1) hours. The hardness after tempering is also listed in Table 1, but for steels No. 1 to No. 18 of the present invention, all
A superhardness of H R C72 or higher was obtained. Comparative steels No. 19 and No. 20 have a base composition and hard dispersed particle content within the range of the present invention, but both have C.
- Since the Ceq is at a low level, the hardness is not as high as that of the steel of the present invention. For conventional steel No. 21, C-Ceq is low at approximately -0.13 and W + 2Mo = 16.4, so
Despite dispersing approximately 10% of TiN particles,
Only a hardness of H R C68.9 was obtained. Furthermore, No. 1, No. 2, No. 3, No. 4 in Table 1,
Cutting tests were conducted using serious cutting tools made using No. 6 and No. 21 high-speed tool steels. The results are shown in FIGS. 1 and 2. Figure 1 shows SKD61 H R
It is a figure which shows the result of cutting the work material tempered to C45 under the conditions of high speed and low feed. The cutting durability is in the order of high-speed tool steels that provide approximately high hardness, and all of the steels of the present invention are superior in durability to conventional steels. Figure 2 shows the results of cutting a workpiece material made from SKD61 tempered to H R C41 under conditions of low speed and high feed. Even under these conditions, the steel of the present invention exhibits superior cutting durability compared to conventional steel. This is because, although the steel of the present invention has high hardness, it also has the toughness of the cutting edge to withstand high feed conditions.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上に述べた如く、本発明の高速度工具鋼は、
W、Mo、V等の合金元素あるいは、TiN等の硬
質物質の含有量が比較的少なくてもHRC72以上の
超硬度が通常の焼入−焼もどしで得られ、優れた
切削耐久性を有する切削工具材として最適なもの
である。
As stated above, the high speed tool steel of the present invention is
Even if the content of alloying elements such as W, Mo, and V or hard substances such as TiN is relatively low, a superhardness of H R C72 or higher can be obtained through normal quenching and tempering, and excellent cutting durability can be achieved. It is the most suitable cutting tool material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明鋼および従来鋼から作
製した真剣バイトによる切削試験の結果を示す図
である。
FIGS. 1 and 2 are diagrams showing the results of cutting tests using serious cutting tools made from the steel of the present invention and the conventional steel.

Claims (1)

【特許請求の範囲】 1 粉末冶金製品であつて、Ceq=0.06Cr+
0.033W+0.063Mo+0.2Vとするとき、C2.0〜3.5
%の範囲で、0.1≦C−Ceq≦0.6を満足し、さら
にCr3〜10%、W1〜20%、Mo1〜11%(ただし、
18≦W+2Mo≦24)、V5.6〜15%、Co15%以下、
Si2%以下、Mn1%以下、残Feおよび不純物より
なる高速度工具鋼基質と、該基質中に均一に分散
したTi、V、Zr、Nb、Hf、Taの窒化物、炭窒
化物、炭化物の1種もしくは2種以上でなり、合
計で全体に対して2〜12%である硬質粒子とから
なることを特徴とする超硬度高速度工具鋼。 2 粉末冶金製品であつて、Ceq=0.06Cr+
0.033W+0.063Mo+0.2Vとするとき、C2.0〜3.5
%の範囲で、0.1≦C−Ceq≦0.6を満足し、さら
にCr3〜10%、W1〜20%、Mo1〜11%(ただし、
18≦W+2Mo≦24)、V5.6〜15%、Co15%以下、
Si2%以下、Mn1%以下、Ni2%以下、残Feおよ
び不純物よりなる高速度工具鋼基質と、該基質中
に均一に分散したTi、V、Zr、Nb、Hf、Taの
窒化物、炭窒化物、炭化物の1種もしくは2種以
上でなり、合計で全体に対して2〜12%である硬
質粒子とからなることを特徴とする超硬度高速度
工具鋼。 3 粉末冶金製品であつて、Ceq=0.06Cr+
0.033W+0.063Mo+0.2Vとするとき、C2.0〜3.5
%の範囲で、0.1≦C−Ceq≦0.6を満足し、さら
にCr3〜10%、W1〜20%、Mo1〜11%(ただし、
18≦W+2Mo≦24)、V5.6〜15%、Co15%以下、
Si2%以下、Mn1%以下、N0.1%以下、残Feおよ
び不純物よりなる高速度工具鋼基質と、該基質中
に均一に分散したTi、V、Zr、Nb、Hf、Taの
窒化物、炭窒化物、炭化物の1種もしくは2種以
上でなり、合計で全体に対して2〜12%である硬
質粒子とからなることを特徴とする超硬度高速度
工具鋼。 4 粉末冶金製品であつて、Ceq=0.06Cr+
0.033W+0.063Mo+0.2Vとするとき、C2.0〜3.5
%の範囲で、0.1≦C−Ceq≦0.6を満足し、さら
にCr3〜10%、W1〜20%、Mo1〜11%(ただし、
18≦W+2Mo≦24)、V5.6〜15%、Co15%以下、
Si2%以下、Mn1%以下、Ni2%以下、N0.1%以
下、残Feおよび不純物よりなる高速度工具鋼基
質と、該基質中に均一に分散したTi、V、Zr、
Nb、Hf、Taの窒化物、炭窒化物、炭化物の1
種もしくは2種以上でなり、合計で全体に対して
2〜12%である硬質粒子とからなることを特徴と
する超硬度高速度工具鋼。 5 高速度工具鋼基質中のCは2.25〜3.5%、Cr
は6%を越えて10%以下である特許請求の範囲第
1項〜第4項のいずれか記載の超硬度高速度工具
鋼。 6 高速度工具鋼基質中のSiは0.8〜2%、Mnは
0.25〜1.0%である特許請求の範囲第1項〜第5
項のいずれか記載の超硬度高速度工具鋼。 7 焼入れ−焼き戻し後の硬さがHRC72以上で
ある特許請求の範囲第1項〜6項のいずれか記載
の超硬度高速度工具鋼。 8 Ceq=0.06Cr+0.033W+0.063Mo+0.2Vとす
るとき、C2.0〜3.5%の範囲で、0.1≦C−Ceq≦
0.6を満足し、さらにCr3〜10%、W1〜20%、
Mo1〜11%(ただし、18≦W+2Mo≦24)、V5.6
〜15%、Co15%以下、Si2%以下、Mn1%以下を
含み、残Feおよび不純物よりなる高速度工具鋼
のアトマイズ粉末と、Ti、Zr、V、Nb、Hf、
Taの窒化物、炭窒化物、炭化物の1種もしくは
2種以上の合計で2〜12%の粉末とを均一に混合
した後、成形、焼結してなる超硬度高速度工具鋼
の製造方法。 9 Ceq=0.06Cr+0.033W+0.063Mo+0.2Vとす
るとき、C2.0〜3.5%の範囲で、0.1≦C−Ceq≦
0.6を満足し、さらにCr3〜10%、W1〜20%、
Mo1〜11%(ただし、18≦W+2Mo≦24)、V5.6
〜15%、Co15%以下、Si2%以下、Mn1%以下を
含み、残Feおよび不純物よりなる合成成分とな
るように、アトマイズ合金粉末と、Cr、Mo、
W、Co、Feの1種もしくは2種以上の合計で5
%以下の金属粉末を用い、これら両種の粉末と、
さらにTi、Zr、V、Nb、Hf、Taの窒化物、炭
窒化物、炭化物の1種もしくは2種以上の合計で
2〜12%の粉末とを均一に混合した後、成形、焼
結してなる超硬度高速度工具鋼の製造方法。
[Claims] 1. A powder metallurgy product, Ceq=0.06Cr+
When 0.033W + 0.063Mo + 0.2V, C2.0~3.5
% range, satisfies 0.1≦C-Ceq≦0.6, and furthermore Cr3~10%, W1~20%, Mo1~11% (however,
18≦W+2Mo≦24), V5.6~15%, Co15% or less,
A high-speed tool steel matrix consisting of 2% Si or less, 1% or less Mn, residual Fe and impurities, and nitrides, carbonitrides, and carbides of Ti, V, Zr, Nb, Hf, and Ta uniformly dispersed in the matrix. 1. A superhard high-speed tool steel characterized by comprising hard particles of one or more kinds, the total amount of which is 2 to 12% of the total. 2 Powder metallurgy product, Ceq=0.06Cr+
When 0.033W + 0.063Mo + 0.2V, C2.0~3.5
% range, satisfies 0.1≦C-Ceq≦0.6, and furthermore Cr3~10%, W1~20%, Mo1~11% (however,
18≦W+2Mo≦24), V5.6~15%, Co15% or less,
A high-speed tool steel matrix consisting of Si2% or less, Mn1% or less, Ni2% or less, residual Fe and impurities, and nitrides and carbonitrides of Ti, V, Zr, Nb, Hf, and Ta uniformly dispersed in the matrix. 1. A superhard high-speed tool steel characterized by comprising hard particles comprising one or more types of hard particles and carbides, and the total amount of the hard particles is 2 to 12% of the total. 3 Powder metallurgy product, Ceq=0.06Cr+
When 0.033W + 0.063Mo + 0.2V, C2.0~3.5
% range, satisfies 0.1≦C-Ceq≦0.6, and furthermore Cr3~10%, W1~20%, Mo1~11% (however,
18≦W+2Mo≦24), V5.6~15%, Co15% or less,
A high speed tool steel matrix consisting of Si 2% or less, Mn 1% or less, N 0.1% or less, residual Fe and impurities, and nitrides of Ti, V, Zr, Nb, Hf, Ta uniformly dispersed in the matrix, 1. A superhard high-speed tool steel characterized by comprising hard particles consisting of one or more types of carbonitrides and carbides, and the total amount being 2 to 12% of the total. 4 Powder metallurgy product, Ceq=0.06Cr+
When 0.033W + 0.063Mo + 0.2V, C2.0~3.5
% range, satisfies 0.1≦C-Ceq≦0.6, and furthermore Cr3~10%, W1~20%, Mo1~11% (however,
18≦W+2Mo≦24), V5.6~15%, Co15% or less,
A high-speed tool steel matrix consisting of Si2% or less, Mn1% or less, Ni2% or less, N0.1% or less, residual Fe and impurities, and Ti, V, Zr, uniformly dispersed in the matrix,
Nitride, carbonitride, and carbide of Nb, Hf, and Ta
1. A superhard high-speed tool steel characterized by comprising one or more kinds of hard particles, the total amount of which is 2 to 12% of the total. 5 C in the high-speed tool steel matrix is 2.25-3.5%, Cr
The superhard high-speed tool steel according to any one of claims 1 to 4, wherein: is more than 6% and less than 10%. 6 Si in the high-speed tool steel matrix is 0.8-2%, Mn is
Claims 1 to 5 which are 0.25 to 1.0%
The superhard high-speed tool steel described in any of the above. 7. The superhard high-speed tool steel according to any one of claims 1 to 6, which has a hardness of HRC72 or higher after quenching and tempering. 8 When Ceq=0.06Cr+0.033W+0.063Mo+0.2V, 0.1≦C−Ceq≦ in the range of C2.0 to 3.5%
Satisfies 0.6 and further Cr3~10%, W1~20%,
Mo1~11% (18≦W+2Mo≦24), V5.6
~15%, Co15% or less, Si2% or less, Mn1% or less, atomized powder of high speed tool steel consisting of residual Fe and impurities, Ti, Zr, V, Nb, Hf,
A method for producing ultra-hard high-speed tool steel by uniformly mixing 2 to 12% powder of one or more Ta nitrides, carbonitrides, and carbides, and then forming and sintering the mixture. . 9 When Ceq=0.06Cr+0.033W+0.063Mo+0.2V, 0.1≦C−Ceq≦ in the range of C2.0 to 3.5%
Satisfies 0.6 and further Cr3~10%, W1~20%,
Mo1~11% (18≦W+2Mo≦24), V5.6
The atomized alloy powder contains Cr, Mo,
5 in total of one or more of W, Co, and Fe
% or less of metal powder, these two types of powder,
Furthermore, after uniformly mixing powder of 2 to 12% in total of one or more of Ti, Zr, V, Nb, Hf, and Ta nitrides, carbonitrides, and carbides, it is molded and sintered. A manufacturing method for ultra-hard high-speed tool steel.
JP14642686A 1985-08-19 1986-06-23 Super head high-speed tool steel Granted JPS62124259A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18155585 1985-08-19
JP60-181555 1985-08-19

Publications (2)

Publication Number Publication Date
JPS62124259A JPS62124259A (en) 1987-06-05
JPH0569911B2 true JPH0569911B2 (en) 1993-10-04

Family

ID=16102830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14642686A Granted JPS62124259A (en) 1985-08-19 1986-06-23 Super head high-speed tool steel

Country Status (1)

Country Link
JP (1) JPS62124259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148161A (en) * 1995-11-21 1997-06-06 Samsung Electro Mech Co Ltd Synchronous cable binding device of flyback transformer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133016A (en) * 1995-11-09 1997-05-20 Toyota Motor Corp Exhaust purifying device for internal combustion engine
JP3761733B2 (en) * 1999-01-19 2006-03-29 山陽特殊製鋼株式会社 Clad mold for hot pressing and manufacturing method thereof
EP2933345A1 (en) * 2014-04-14 2015-10-21 Uddeholms AB Cold work tool steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240410A (en) * 1975-09-27 1977-03-29 Hitachi Ltd Tool steel
JPS61146427A (en) * 1984-12-18 1986-07-04 Inoue Japax Res Inc Fluid jet machining system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148161A (en) * 1995-11-21 1997-06-06 Samsung Electro Mech Co Ltd Synchronous cable binding device of flyback transformer

Also Published As

Publication number Publication date
JPS62124259A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US4880461A (en) Super hard high-speed tool steel
EP0875588B1 (en) Wear resistant, powder metallurgy cold work tool steel articles having high impact toughness and a method for producing the same
EP0599910B1 (en) High-speel manufactured by powder metallurgy
US5682588A (en) Method for producing ferrous sintered alloy having quenched structure
US4121930A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
JP2794641B2 (en) Cold-worked steel with high compressive strength
US4121929A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
GB1583878A (en) Nitrogen-containing powder metallurgical tool steel
KR20090058546A (en) Metallurgical powder composition and method of production
EP1129229A1 (en) Steel, use of the steel, product made of the steel and method of producing the steel
EP2004870A1 (en) Cold-working steel
JPH0569911B2 (en)
JPH02109619A (en) Throw away drill tip
JPS5952227B2 (en) high speed tool steel
JPH0143017B2 (en)
US4212670A (en) Titanium oxycarbonitride based hard alloy
JPH0575822B2 (en)
JPH0575821B2 (en)
CA2154512C (en) Mixed iron powder for powder metallurgy
JPH01309737A (en) Blanking punch
JPH0321621B2 (en)
KR100406428B1 (en) Co-free high speed steel having superior hardness by modifying Si content and method for manufacturing the same
JPH04371317A (en) Fin for forming roll
JPH03126844A (en) Steel for hot roll having excellent wear resistance
JPH09111422A (en) Sintered superhard alloy