JPH0673572A - Surface-treating agent of copper or copper alloy - Google Patents

Surface-treating agent of copper or copper alloy

Info

Publication number
JPH0673572A
JPH0673572A JP28088791A JP28088791A JPH0673572A JP H0673572 A JPH0673572 A JP H0673572A JP 28088791 A JP28088791 A JP 28088791A JP 28088791 A JP28088791 A JP 28088791A JP H0673572 A JPH0673572 A JP H0673572A
Authority
JP
Japan
Prior art keywords
copper
acid
water
minutes
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28088791A
Other languages
Japanese (ja)
Inventor
Hideaki Yamaguchi
秀明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28088791A priority Critical patent/JPH0673572A/en
Publication of JPH0673572A publication Critical patent/JPH0673572A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PURPOSE:To form a highly heat-resistant coating film on the surface of copper or copper alloy by surface-treating the coating film with a soln. contg. a specified imidazole or its derivative. CONSTITUTION:A metal is surface-treated with a soln. contg. an imidazole shown by the formula or its derivative. In the formula, R1 is hydrogen atom or lower alkyls, R2 is phenyl, and HA is org. or inorg. acid. Consequently, a remarkable effect is produced in mounting electronic parts on the surface of a printed circuit board.

Description

【発明の詳細な説明】 (産業上の利用分野)この発明は金属の表面処理剤に関
するものであリ、特にプリント配線板の表面処理剤又は
防錆剤として好適なものである。 (従来の技術)従来、プリント配線板の銅又は銅合金か
らなる回路部を防錆し、半田付け性を保持する目的で使
用されているプレフラックスは、大別してプリント配線
板全体をコーティングするロジン系プレフラックスと、
選択的に銅又は銅合金と化学反応させるアルキルイミダ
ゾール系プレフラックスの2種類がある。前者は天然ロ
ジン、ロジンエステル、ロジン変成マレイン酸樹脂等
を、有機溶剤に溶解させたものをロールコターで塗布す
るか、噴霧又は浸漬によつてプリント配線板全体に塗布
し、乾燥して被膜を形成する方法で用いられる。このた
め有機溶剤の揮散によって作業環境及び安全性が著しく
損われる欠点がある。又、ロジン系プレフラックスは揮
発性溶剤を使用しているため作業時引火の危険が伴うと
いう欠点も有している。他方、アルキルイミダゾール系
プレフラックスは水溶性であり、作業環境の面でも安全
性の面でも優れているが、化学反応したアルキルイミダ
ゾール銅錯体が高温に曝されると空気中の酸素と銅の触
媒作用で変質してポストフラックスの作用を阻害して、
半田付け性を悪くするという欠点を有している。 (発明が解決しようとする課題)ところで、近年プリン
ト配線板に電子部品を半田付けする方法として表面実装
法が多く採用されている。この表面実装法、電子部品の
仮止めクリーム半田のリフロー等、プリント配線板が高
温に曝される機会が多くなり、プリント配線板の半田付
け性を保持するために用いられるプレフラックスの耐熱
性、即ちプリント配線板が高温に曝された後での半田付
け性が優れていることがプレフラックスの性能に要求さ
れるようになった。又、大気汚染等に問題を有する揮発
性溶剤を使用せず、且つ高温に曝された後でも半田付け
性の優れたプレフラックスの開発が切望されている。 (課題を解決するための手段)本発明者はこのような事
情に鑑み、揮発性溶剤を使用せず且つ高温に曝された後
でも半田付け性の良いプレフラックスに関して鋭意検討
を重ねた結果、酢酸、カプリン酸、グリコール酸、パラ
ニトロ安息香酸、パラトルエンスルホン酸、ピクリン
酸、蓚酸、蟻酸、コハク酸、亜りん酸、マレイン酸、ア
クリル酸、フマール酸、酒石酸、アジピン酸、乳酸、オ
レイン酸等の有機酸、塩酸、硫酸、燐酸、又は酢酸亜
鉛、酢酸鉛、水酸化亜鉛、水酸化鉛、硫化亜鉛、リン酸
亜鉛、酸化亜鉛、塩化亜鉛、塩化第一鉄、塩化第二鉄、
酸化第一鉄、酸化第二鉄、塩化第一銅、塩化第二銅、酸
化第一銅、酸化第二銅、水酸化銅、リン酸銅、炭酸銅、
酢酸銅、硫酸銅等の金属化合物を含む水溶液、又はメタ
ノール、エタノール、イソプロピルアルコール、ブタノ
ール、アセトン等の水溶性溶媒、のいずれかの群から選
ばれた少なくとも一つの液と、有効成分として下記一般
式で表わされる化合物を1種類又は2種類以上を混合し
た溶液を金属表面処剤として用いる場合には、上述した
従来の問題点を解決し所期の目的を達成出来ることを見
出し、本発明を完成するに至ったものである。 一般式 [但し式中Rは水素原子又は低級のアルキル基、R
はフェニル基、HAは有機又は無機の酸を示す。] 上記一般式で表わされる化合物を可溶化あるいは乳化さ
せるために用いられる上記した有機酸等は、有機酸、有
機酸の塩、あるいはアルコール等の水溶性溶媒を夫々単
独に用いることができる他、任意の割合で混合して使用
することも可能である。例えば上記水溶性溶媒は単独で
用いられる他有機酸等と併用することもでき、特に有機
酸等単独では、2−フェニル−イミダゾール、2−フェ
ニル−4−メチル−イミダゾールあるいはその誘導体の
溶解が困難となる場合には、水溶性溶媒を含有させるこ
とが好ましく、この場合の含有率は0〜50%とするこ
とが適当である場合が多い。上記各溶媒により溶解して
得られた溶液は、上記有効成分を0.01〜40%、好
ましくは0.5〜5%含有した可溶化溶液あるいは、乳
化溶液に浸漬処理する方法が一般的であり、浸漬は0〜
100℃の温度範囲で浸漬時間は数秒〜数十分の処理範
囲が適当である。又化成被膜形成後、酸化処理赤外線
・近赤外線・遠赤外線・紫外線照射処理を0〜300℃
の温度範囲で、処理時間数秒〜数十分の処理範囲が適当
である。オゾンOに数秒〜数十分の暴露処理範囲が
適当である。過酸化水素水1〜20%の濃度に数秒〜
数十分の浸漬、噴霧の薬液処理の範囲が適当である。
〜の処理を行なうことにより耐熱性に優れた化成被膜
が出来る。本発明の金属表面処理剤の有効成分として具
体的には、2−フェニル−イミダゾール、2−フェニル
−4−メチル−イミダゾール、が好適なものとして例示
される。本発明の表面処理剤を金属表面又は、プリント
配線板の表面に塗布するには、浸漬、噴霧による方法を
用いる。 実施例 1 2−フェニルイミダゾールを有効成分とする2%溶液を
5リットル容器に入れ、液温を40°Cに加熱し調整し
た。他方、1cm×5cm×0.3mmの銅板及び20
cm×24cm×1.6mmのスルーホール基板を脱脂
⇒水洗⇒ソフトエッチング⇒水洗⇒酸洗⇒水洗し表面を
洗浄した試料片を準備し、上記2−フェニルイミダゾー
ルを有効成分とする2%溶液に60秒間浸漬した。その
後水洗し次いで熱風乾燥機に入れ、100℃で5分加熱
した後、 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスを刷毛塗りしてスルーホールの半田
上りを測定した。 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスに浸漬し半田濡れ性試験器を用いて
濡れ時間を測定した。 耐湿(90%RH/40℃/96hr)処理後の試験
片をポストフラックスに浸漬して半田濡れ性試験機を用
いて濡れ時間を測定した。 この試験結果は表1に示した。 実施例2 2−フェニル−4−メチルイミダゾールを有効成分とす
る2%溶液を5リットル容器に入れ、液温を40℃に加
熱し調整した。他方、1cm×5cm×0.3mmの銅
板及び20cm×24cm×1.6mmのスルーホール
基板を脱脂⇒水洗⇒ソフトエッチング⇒水洗⇒酸洗⇒水
洗し表面を洗浄した試験片を準備し、上記2−フェニル
−4−メチルイミダゾールを有効成分とする2%溶液に
60秒間浸漬した。その後水洗し次いで熱風乾燥機に入
れ、100℃で5分加熱した後、 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスを刷毛塗りしてスルーホールの半田
上りを測定した。 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスに浸漬し半田濡れ性試験器を用いて
濡れ時間を測定した。 耐湿(90%RH/40℃/96hr)処理後の試験
片をポストフラックスに浸漬して半田濡れ性試験器を用
いて濡れ時間を測定した。 この試験結果は表1に示した。 実施例3 2−フェニルイミダゾール、2−フェニル−4−メチル
イミダゾールを有効成分とする2%混合溶液を5リット
ル容器に入れ、液温を40°Cに加熱し調整した。他
方、1cm×5cm×0.3mmの銅板及び20cm×
24cm×1.6mmのスルーホール基板を脱脂⇒水洗
⇒ソフトエッチ⇒水洗⇒酸洗⇒水洗し表面を洗浄した試
験片を準備し、上記2−フェニルベンツイミダゾール、
2−フェニル−4−メチルイミダゾールを有効成分とす
る2%混合溶液に60秒間浸漬して、その後水洗し次い
で熱風乾燥機に入れ100℃で5分加熱した後、 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスを刷毛塗りしてスルーホールの半田
上りを測定した。 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスに浸漬して半田濡れ性試験器を用い
て濡れ時間を測定した。 耐湿(90%RH/40℃/96hr)処理後の試験
片をポストフラックスに浸漬して半田濡れ性試験器を用
いて濡れ時間を測定した。 この試験結果は表1に示した。 比較例1 市販のプレフラックス(有効成分2−ウンデシル−4−
メチルイミダゾール「商品名、グリコートT、四国化成
工業(株)」)を用い、1cm×5cm×0.3mmの
銅板及び20cm×24cm×1.6mmのスルーホー
ル基板を脱脂⇒水洗⇒酸洗⇒水洗し銅表面を洗浄した
後、グリコートT水溶液に30℃で15秒浸漬した、そ
の後水洗し次いで熱風乾燥気に入れ100℃で5分加熱
した後、 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスを刷毛塗りしてスルーホールの半田
上りを測定した。 熱風乾燥機に入れ200℃で10分間加熱して測定前
にポストフラックスに浸漬して半田濡れ性試験器を用い
て濡れ時間を測定した。 耐湿(90%RH/40℃/96hr)処理後の試験
片をポストフラックスに浸漬して半田濡れ性試験器を用
いて濡れ時間を測定した。 この試験結果は表1に示した。(発明の効果)本発明のプレフラックスは、銅又は銅合
金の表面に形成された被膜は耐熱性に優れ、高温下に曝
された後でも半田濡れ性が非常に良好という効果があ
り、プリント配線板に電子部品を表面実装するのに、特
に顕著な効果を発揮しうるものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Use) The present invention relates to a metal surface treatment agent, and is particularly suitable as a surface treatment agent or rust preventive agent for printed wiring boards. (Prior Art) Pre-flux, which has been conventionally used for the purpose of preventing corrosion of a circuit portion made of copper or copper alloy of a printed wiring board and maintaining solderability, is roughly classified into a rosin that coats the entire printed wiring board. System preflux,
There are two types of alkylimidazole-based preflux that selectively chemically react with copper or a copper alloy. For the former, apply natural rosin, rosin ester, rosin-modified maleic acid resin, etc. dissolved in an organic solvent with a roll coater, or apply it to the entire printed wiring board by spraying or dipping, and then dry to form a film. Used in the method. Therefore, there is a drawback in that the working environment and safety are significantly impaired by the volatilization of the organic solvent. The rosin-based preflux also has a drawback that it involves a risk of ignition during work because it uses a volatile solvent. On the other hand, the alkylimidazole-based preflux is water-soluble, and is excellent in terms of working environment and safety, but when the chemically reacted alkylimidazole copper complex is exposed to high temperatures, it is a catalyst for oxygen and copper in the air. It deteriorates by the action and inhibits the action of postflux,
It has the drawback of deteriorating the solderability. (Problems to be solved by the invention) By the way, in recent years, a surface mounting method has been widely adopted as a method for soldering an electronic component to a printed wiring board. Due to this surface mounting method, reflow of solder paste solder for electronic parts, and the like, the printed wiring board is often exposed to high temperatures, and the heat resistance of the pre-flux used to maintain the solderability of the printed wiring board, That is, the pre-flux performance is required to have excellent solderability after the printed wiring board is exposed to high temperature. Further, it is desired to develop a pre-flux which does not use a volatile solvent having a problem in air pollution and has excellent solderability even after being exposed to a high temperature. (Means for Solving the Problem) In view of such circumstances, the present inventor has conducted extensive studies on a preflux having good solderability even after being exposed to a high temperature without using a volatile solvent, and as a result, Acetic acid, capric acid, glycolic acid, paranitrobenzoic acid, paratoluenesulfonic acid, picric acid, oxalic acid, formic acid, succinic acid, phosphorous acid, maleic acid, acrylic acid, fumaric acid, tartaric acid, adipic acid, lactic acid, oleic acid, etc. Organic acids, hydrochloric acid, sulfuric acid, phosphoric acid, or zinc acetate, lead acetate, zinc hydroxide, lead hydroxide, zinc sulfide, zinc phosphate, zinc oxide, zinc chloride, ferrous chloride, ferric chloride,
Ferrous oxide, ferric oxide, cuprous chloride, cupric chloride, cuprous oxide, cupric oxide, copper hydroxide, copper phosphate, copper carbonate,
Copper acetate, an aqueous solution containing a metal compound such as copper sulfate, or at least one liquid selected from the group consisting of water-soluble solvents such as methanol, ethanol, isopropyl alcohol, butanol, and acetone, and the following general as an active ingredient: The present invention was found to be able to solve the above-mentioned conventional problems and achieve the intended object when a solution prepared by mixing one or more compounds represented by the formula with each other is used as a metal surface treating agent. It has been completed. General formula [Wherein R 1 is a hydrogen atom or a lower alkyl group, R 2
Represents a phenyl group, and HA represents an organic or inorganic acid. As the above-mentioned organic acid or the like used for solubilizing or emulsifying the compound represented by the above general formula, an organic acid, a salt of the organic acid, or a water-soluble solvent such as alcohol can be used alone, respectively. It is also possible to mix and use it at an arbitrary ratio. For example, the above water-soluble solvent can be used alone or in combination with other organic acids, etc., and particularly when the organic acid alone is used, it is difficult to dissolve 2-phenyl-imidazole, 2-phenyl-4-methyl-imidazole or a derivative thereof. In such a case, it is preferable to include a water-soluble solvent, and in this case, the content rate is often appropriate to be 0 to 50%. The solution obtained by dissolving with each of the above-mentioned solvents is generally a method of immersing the solution in a solubilizing solution or an emulsifying solution containing 0.01 to 40%, preferably 0.5 to 5% of the active ingredient. Yes, soaking is 0
A treatment range of a few seconds to a few tens of minutes is suitable for the immersion time in the temperature range of 100 ° C. Also, after forming the chemical conversion film, oxidize infrared rays / near infrared rays / far infrared rays / ultraviolet rays to 0-300 ° C.
In the above temperature range, a treatment time of several seconds to several tens of minutes is suitable. An exposure treatment range of a few seconds to a few tens of minutes is suitable for ozone O 3 . Hydrogen peroxide in a concentration of 1-20% for a few seconds
The range of chemical treatment such as immersion and spraying for several tens of minutes is appropriate.
By performing the treatments 1 to 3, a chemical conversion coating having excellent heat resistance can be obtained. Specific examples of the active ingredient of the metal surface treating agent of the present invention include 2-phenyl-imidazole and 2-phenyl-4-methyl-imidazole as preferable examples. In order to apply the surface treatment agent of the present invention to a metal surface or the surface of a printed wiring board, a dipping or spraying method is used. Example 1 A 2% solution containing 2-phenylimidazole as an active ingredient was placed in a 5 liter container, and the liquid temperature was adjusted to 40 ° C by heating. On the other hand, 1 cm x 5 cm x 0.3 mm copper plate and 20
Degreasing a through-hole substrate of cm × 24 cm × 1.6 mm ⇒ water washing ⇒ soft etching ⇒ water washing ⇒ acid washing ⇒ water washing, prepare a sample piece with the surface washed, and make it a 2% solution containing 2-phenylimidazole as the active ingredient. It was immersed for 60 seconds. After that, it was washed with water and then put in a hot air dryer and heated at 100 ° C. for 5 minutes, then put in a hot air dryer and heated at 200 ° C. for 10 minutes, and brushed with post flux before measurement to measure the solder rise of through holes. . The sample was placed in a hot air dryer, heated at 200 ° C. for 10 minutes, immersed in post flux before measurement, and the wetting time was measured using a solder wettability tester. The test piece after the moisture resistance (90% RH / 40 ° C./96 hr) treatment was dipped in post flux and the wetting time was measured using a solder wettability tester. The test results are shown in Table 1. Example 2 A 2% solution containing 2-phenyl-4-methylimidazole as an active ingredient was placed in a 5 liter container and the liquid temperature was adjusted to 40 ° C by heating. On the other hand, a 1 cm x 5 cm x 0.3 mm copper plate and a 20 cm x 24 cm x 1.6 mm through-hole substrate were degreased ⇒ washed with water ⇒ soft etching ⇒ washed with water ⇒ pickled ⇒ washed with water, and prepared a test piece whose surface was washed, It was immersed for 60 seconds in a 2% solution containing -phenyl-4-methylimidazole as an active ingredient. After that, it was washed with water and then put in a hot air dryer and heated at 100 ° C. for 5 minutes, then put in a hot air dryer and heated at 200 ° C. for 10 minutes, and brushed with post flux before measurement to measure the solder rise of through holes. . The sample was placed in a hot air dryer, heated at 200 ° C. for 10 minutes, immersed in post flux before measurement, and the wetting time was measured using a solder wettability tester. The test piece after the moisture resistance (90% RH / 40 ° C./96 hr) treatment was dipped in post flux and the wetting time was measured using a solder wettability tester. The test results are shown in Table 1. Example 3 A 2% mixed solution containing 2-phenylimidazole and 2-phenyl-4-methylimidazole as active ingredients was placed in a 5 liter container, and the liquid temperature was adjusted to 40 ° C. On the other hand, 1 cm x 5 cm x 0.3 mm copper plate and 20 cm x
Prepare a test piece whose surface has been cleaned by degreasing a 24 cm × 1.6 mm through-hole substrate with water, washing with water, soft etching, washing with water, pickling, and washing with water, and then using the above-mentioned 2-phenylbenzimidazole,
It is immersed in a 2% mixed solution containing 2-phenyl-4-methylimidazole as an active ingredient for 60 seconds, washed with water, put in a hot air dryer and heated at 100 ° C. for 5 minutes, and then put in a hot air dryer at 200 ° C. After heating for 10 minutes, a post flux was brush-painted before the measurement, and the solder buildup of the through hole was measured. The sample was placed in a hot air dryer, heated at 200 ° C. for 10 minutes, immersed in post flux before measurement, and the wetting time was measured using a solder wettability tester. The test piece after the moisture resistance (90% RH / 40 ° C./96 hr) treatment was dipped in post flux and the wetting time was measured using a solder wettability tester. The test results are shown in Table 1. Comparative Example 1 Commercially available preflux (active ingredient 2-undecyl-4-
Methylimidazole "trade name, Glycoat T, Shikoku Chemicals Co., Ltd." is used to degrease a 1 cm x 5 cm x 0.3 mm copper plate and a 20 cm x 24 cm x 1.6 mm through-hole substrate ⇒ water wash ⇒ acid wash ⇒ water wash After washing the copper surface, it was immersed in an aqueous solution of Glycoat T for 15 seconds at 30 ° C., then washed with water, put in a hot air drying oven and heated at 100 ° C. for 5 minutes, then placed in a hot air dryer and heated at 200 ° C. for 10 minutes for measurement. The post flux was brush-painted before and the solder rise of the through hole was measured. The sample was placed in a hot air dryer, heated at 200 ° C. for 10 minutes, immersed in post flux before measurement, and the wetting time was measured using a solder wettability tester. The test piece after the moisture resistance (90% RH / 40 ° C./96 hr) treatment was dipped in post flux and the wetting time was measured using a solder wettability tester. The test results are shown in Table 1. (Effect of the invention) The pre-flux of the present invention has an effect that the coating film formed on the surface of copper or copper alloy has excellent heat resistance and has very good solder wettability even after being exposed to a high temperature. This is particularly effective for surface-mounting electronic components on a wiring board.

Claims (1)

【特許請求の範囲】 (1) 金属表面を下記一般式で表されるイミダゾール
化合物又はその誘導体の塩を含む溶液で表面処理するこ
とを特徴とする金属の表面処理方法 一般式 [但し、式中Rは水素原子又は低級アルキル基、R
はフェニル基、HAは有機又は無機の酸を示す。]
What is claimed is: (1) A method for surface treatment of metal, characterized in that the metal surface is treated with a solution containing a salt of an imidazole compound represented by the following general formula or a derivative thereof. [Wherein R 1 is a hydrogen atom or a lower alkyl group, R 2
Represents a phenyl group, and HA represents an organic or inorganic acid. ]
JP28088791A 1991-08-01 1991-08-01 Surface-treating agent of copper or copper alloy Pending JPH0673572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28088791A JPH0673572A (en) 1991-08-01 1991-08-01 Surface-treating agent of copper or copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28088791A JPH0673572A (en) 1991-08-01 1991-08-01 Surface-treating agent of copper or copper alloy

Publications (1)

Publication Number Publication Date
JPH0673572A true JPH0673572A (en) 1994-03-15

Family

ID=17631331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28088791A Pending JPH0673572A (en) 1991-08-01 1991-08-01 Surface-treating agent of copper or copper alloy

Country Status (1)

Country Link
JP (1) JPH0673572A (en)

Similar Documents

Publication Publication Date Title
KR100556679B1 (en) Process for selective deposition of copper substrates
EP0620293B1 (en) Composition for treating copper or copper alloys
US5498301A (en) Agent for treating surfaces of copper and copper alloys
JPH07243054A (en) Surface treating agent for copper and copper alloy
JP3952410B2 (en) Metal surface treatment agent, printed circuit board, and metal surface treatment method for printed circuit board
KR960008153B1 (en) Metal surface treatment agents
JPS6316223B2 (en)
JPH06322551A (en) Treating agent for copper and copper alloy
JP2005068530A (en) Surface-treating agent, printed circuit board, and method for surface-treating metal on printed circuit board
JPH03124395A (en) Preflux for soldering
JP2913410B2 (en) Surface treatment agent for copper or copper alloy
JPH0673572A (en) Surface-treating agent of copper or copper alloy
JPH06268356A (en) Method for using preflux and manufacture of printed wiring board
JPH04206681A (en) Printed circuit board and surface processing method thereof
JPH07243053A (en) Surface treating agent for copper and copper alloy
JPH0593280A (en) Surface treatment of metal
JPH05202492A (en) Surface treatment of metal
JPH0593281A (en) Surface treatment of metal
JPH0598474A (en) Surface treatment of metal
JPH05230674A (en) Surface treatment of metal
JP3668767B2 (en) Surface treatment method for metals such as solder, electroless solder, silver, nickel and zinc
JPH05156475A (en) Surface treatment of metal
JPH0779061A (en) Surface treatment agent for copper and copper alloy
JPH07330738A (en) Protecting agent for metal surface and production using the same
JPH07166381A (en) Surface treating agent for copper and copper alloy