JPH04206681A - Printed circuit board and surface processing method thereof - Google Patents

Printed circuit board and surface processing method thereof

Info

Publication number
JPH04206681A
JPH04206681A JP33019890A JP33019890A JPH04206681A JP H04206681 A JPH04206681 A JP H04206681A JP 33019890 A JP33019890 A JP 33019890A JP 33019890 A JP33019890 A JP 33019890A JP H04206681 A JPH04206681 A JP H04206681A
Authority
JP
Japan
Prior art keywords
group
printed wiring
wiring board
copper
substituted imidazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33019890A
Other languages
Japanese (ja)
Inventor
Matsutoshi Ihara
井原 松利
Toshihiro Suzuki
敏弘 鈴木
Shusaku Izumi
和泉 修作
Masahiro Furukawa
古川 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Hitachi Ltd
Original Assignee
Shikoku Chemicals Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp, Hitachi Ltd filed Critical Shikoku Chemicals Corp
Priority to JP33019890A priority Critical patent/JPH04206681A/en
Publication of JPH04206681A publication Critical patent/JPH04206681A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Abstract

PURPOSE:To improve the heat resistance property and solderability by forming a chemically formed film through contactness of a copper group wiring conductor surface with an imidazole compound substituted by 2-aryl group and with an aqueous solution including high fatty acid. CONSTITUTION:The surface of a printed circuit board including a copper group wiring conductor is placed in contact with an imidazole compound substituted by 2-aryl group expressed by the general expression (I) or (II) and an aqueous solution including at least a kind of a high fatty acid compound selected from a group of high fatty acid, ammonium salt of fatty acid and amine salt of high fatty acid. In this case, a weight ratio of imidazole compound is set to 0.01 to 5.0%. Thereby, a complex compound is formed through orientation of nitrogen atoms of imidazole to copper and an imidazole group preflux film is formed at the surface of a wiring conductor.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、印刷配線板の表面処理方法及びこの表面処理
方法により得られる印刷配線板に係り、特に銅系(銅も
しくは銅合金)配線導体を有する印刷配線板に好適な防
錆処理と電子部品等を接合する際の半田付けを容易かつ
確実ならしめる半田付は用プレフラックス処理とを兼ね
た表面処理方法及びこの表面処理方法により得られる印
刷配線板に関する。
[Industrial Application Field] The present invention relates to a method for surface treatment of a printed wiring board and a printed wiring board obtained by this surface treatment method, and is particularly suitable for a printed wiring board having a copper-based (copper or copper alloy) wiring conductor. The present invention relates to a surface treatment method that combines anti-corrosion treatment and pre-flux treatment to facilitate and ensure soldering when joining electronic components, etc., and a printed wiring board obtained by this surface treatment method.

【従来の技術1 電子部品の印刷配線板への半田付けは、一般に、印刷配
線板の製造直後に塗布されるプレフラックスと、このプ
レフラックスが塗布された印刷配線板に各種電子部品を
搭載し、面実装した後、スルーホールを半田付けするた
めのポストフラックスとが用いられる。 このプレフラックスは、銅張り積層板をエツチング処理
などして作成した印刷配線板の銅導体回路を防錆処理し
て酸化を防止すると共に、スルーホールの半田付は用ポ
ストフラックスとの協同作用により、信頼性の高い半田
接合を歩留よく行うための材料であり、次のような諸特
性が要求される。 ■銅箔に対する密着性が良好で、空気・湿気や、その他
のガスによって劣化変質せず、長期間@箔表面を清浄に
保つこと。 ■銅および電子部品に用いられるその他の金属に対して
腐食作用を示さないこと。 ■プレフラックス塗膜は保管中にベトつかず、ゴミや油
類などを吸着しないこと。 ■ポストフラックスとの相溶性に優れ、半田付けの際は
良好な半田濡れ性が得られること。 ■半田付けの後、印刷配線板を洗浄する際、洗浄剤によ
って容易に除去されること。 ■発泡塗布や刷毛塗りが可能で、ピンホールや塗りむら
などの欠陥が発生し難く、均一に塗布でき、乾燥の速い
こと。 プレフラックスとして実用されているものには、ロジン
等をトルエン等の有機溶剤に溶解した樹脂系プレフラッ
クスと、アルキルイミダゾリウム塩を水に溶解したイミ
ダゾール系プレフラックスが知られている。 従来の樹脂系プレフラックスは、天然ロジン、重合ロジ
ン、ロジンエステル、マレイン化ロジン、水添ロジン、
テルペン樹脂、フェノール変性テルペン樹脂等を有機溶
剤に溶解させたもので、樹脂中に含まれる有機酸(例え
ば、アビエチン酸)のカルボキシル基が金属銅やその酸
化物と反応して可溶性ロジン石鹸を生成することにより
、銅表面の酸化がさらに進行しないように働くものであ
る。 この樹脂系プレフラックスは有機溶剤を用いているため
、その揮散によって作業環境及び安全性が著しく損なわ
れると言う本質的欠点を有している。 これに対してイミダゾール系プレフラックスは、アルキ
ルイミダゾール化合物と有機酸との塩を水溶液としたも
ので、作業の安全性に優れ、また銅表面のみに選択的に
膜形成するのでプレフラックスの性能も優れたものであ
る。銅表面に水性の2−長鎖アルキルイミダゾールと銅
とのコンプレックス化合物が形成されることが、銅の酸
化を防止する要因と考えられている。 なお、銅あるいは銅合金の表面に、2−長鎖アルキル基
置換イミダゾール化合物の皮膜を形成する表面処理方法
に関するものとしては、例えば特公昭46−17046
号、同48−11454号。 同48−25621号、同4.9−1983号、同49
−26183号、同58−22545号、同61−41
988号及び特開昭61−90492号の各公報を挙げ
ることができる。 イミダゾール系プレフラックスは、このように樹脂系プ
レフラックスの不具合な点を解消した優れたものである
が、後述するように高温に曝された場合には変質して膠
着する傾向があり、もはや分解してフラックスとしての
作用が損なわれ、前述のポストフラックスの協同作用を
阻害する恐れがあった。 【発明が解決しようとする課題】 近年、電子機器の小型化が進行し、チップ部品を代表と
する表面実装部品(以下、SMDと呼ぶ; 5uref
ace  Mount DeviceのW!11)が多
用されるようになってきた。 表面実装では、電子部品の半田付けは、プレフラックス
の塗布された配線板へ、先ずSMDをクリーム半田で固
定し、そのクリーム半田をリフローさせてSMDを印刷
配線板に接合する。その後、リード部品をスルーホール
に挿入し、ポストフラックスを塗布してから半田付けす
る手順で行われ、2段階の半田付けが行なわれる。SM
Dを印刷配線板の両面に取り付け、両面実装される場合
もあり、クリーム半田のりフローは印刷配線板の表面・
裏面の2回にわたって行うことになる。このような工程
で半田付は作業が行われた場合、リフロー処理によって
配線導体の銅が酸化されたり、プレフラックスが変質し
、ポストフラックスによる半田付けが不完全になるとい
う問題が生じ、従来の樹脂系プレフラックスやイミダゾ
ール系プレフラックスでは不充分であることがわかって
きた。 例えば、従来から知られているイミダゾール系プレフラ
ックスの2−長鎖アルキル基置換イミダゾール化合物の
化成皮膜を副導体回路部に形成したものは、室温〜15
0℃程度までは安定した半田付は性を示すが、リフロー
温度である240℃以上になると銅面が変色し、半田付
は性に支障を来すことがあった。これは2−長鎖アルキ
ル基置換イミダゾール化合物の耐熱性が低いという問題
があるためである。 本発明は、上記従来の問題点を解消することにあり、そ
の第1の目的は、耐熱性が高く、且つ作業環境を悪化さ
せることなく、配線導体回路部の防錆保護処理を兼ね改
良されたプレフラックスを用いた印刷配線板における配
線導体の表面処理方法を、そして第2の目的は、これに
より表面処理され改良された化成皮膜を有する印刷配線
板を、それぞれ提供することにある。 [課題を解決するための手段] 従来のイミダゾール系プレフラックスの作用は、銅もし
くは銅合金(以下、銅系と呼ぶ)の表面に2−長鎖アル
キル基置換イミダゾール化合物及び有機酸を含む水溶液
を接触させると、2−長鎖アルキル基置換イミダゾール
化合物と銅との錯体形成反応及び2−長鎖アルキル基置
換イミダゾール化合物間の水素結合並びにファンデルワ
ールス力の創作用により局部的に銅錯体となった2−長
鎖アルキル基置換イミダゾール化合物の化成皮膜が銅表
面に形成されることで説明されている。 他方、本発明に係わる2−アリール基置換イミダゾール
化合物は、従来から知られた化合物ではあるが、2−長
鎖アルキル基置換イミダゾール化合物とは異なり、前記
のような化成皮膜を形成しないものとされてきた。 本発明者らは、このような事情に鑑み種々実験検討の結
果、銅系配線導体の表面に、2−アリール基置換イミダ
ゾール化合物と、高級脂肪酸、高級脂肪酸のアンモニウ
ム塩及び高級脂肪酸のアミン塩から選択される1種乃至
は複数種の化合物を含む水性液を接触させたところ、耐
熱性に優れた化成皮膜が得られるという予期せざる知見
を得た。 本発明は、かかる知見に基づいて為されたもので、以下
に具体的にその目的達成手段につき説明する。 上記第1の目的は、 (I)、銅系配線導体を有する印刷配線板の表面を、2
−アリール基置換イミダゾール化合物と、高級脂肪酸、
高級脂肪酸のアンモニウム塩及び高級脂肪酸のアミン塩
の群から選択される少なくとも1種の高級脂肪酸類化合
物とを含む水性液で接触させ、前記銅系配線導体の表面
に化成膜を形成して成る印刷配線板の表面処理方法によ
り、達成される。 上記2−アリール基置換イミダゾール化合物としては、
下記一般式(N及び(■)の少なくとも1種から選ばれ
ることが、望ましい。 ただし、R工は水素もしくはメチル基、R2、R3は水
素、メチル基及びフェニル基の群から選ばれたいずれか
1種の基から成ることが望ましい。 本発明方法の実施に於いて用いられる2−、アリール基
置換イミダゾール化合物の代表的なものとしては、例え
ば2−フェニルイミダゾール、2−トルイルイミダゾー
ル、2−フェニル−4−メチルイミダゾール、2−フェ
ニル−4−ベンジルイミダゾール、2,4.5−t−リ
フェニルイミダゾール、2−フェニルベンズイミダゾー
ル等が挙げられる。 これらイミダゾール化合物は、例えば水−アルコール系
や水−アセトン系などの水−有機溶媒の混合溶剤に溶解
した水性系として用いても良いし、蟻酸、酢酸、乳酸、
プロピオン酸、グリコール酸、アクルル酸およびメタク
リル酸などの有機酸や鉱酸の塩とした後、水溶液として
用いても良い。 また、これらイミダゾール化合物は均一溶解液であって
も懸濁液であっても良いが、長期助錯目的のためには銅
表面に形成される化成皮膜の一様性から、均一溶解液と
して用いることが好ましい。 更にまた、本発明方法の実施に於いて用いられる高級脂
肪酸は、炭素数12〜22の直鎖脂肪酸、直鎖モノエン
酸および合成脂肪酸等であり、代表的なものを例示する
と、例えばラウリン酸、ミリスチン酸、バルミチン酸、
オレイン酸などが挙げられる。これら高級脂肪酸は単品
または2種類以しては、上記(I)匂いて説明した通り
の下記一般式(r)及び(IT)の少なくとも1種から
選ばれ。 (I)           (II)ただし、R1は
水素もしくはメチル基、R2、R3は水素、メチル基及
びフェニル基の群から選ばれるいずれか1種の基から成
ることが望ましい。 そして、上記2−アリール基置換イミダゾ1−ル化合物
は、例えば2−フェニルイミダゾール、2−トルイルイ
ミダゾール、2−フェニル−4−メチルイミダゾール、
2−フェニル−4−ベンジルアルコール類の混合系、水
−アセl−ン類の混合系である。 前記高級脂肪酸類は、溶媒の種類によっては溶解し得な
いものもあり、この場合には自己乳化または適当な活性
剤で乳化、懸濁して用いる。 本発明を実施するには、配線導体の表面に研磨、脱脂、
ソフトエツチング、酸洗浄等の処理を行った後、金属表
面を処理液中に浸漬するか、あるいは金属表面に処理液
を刷毛塗り、スプレー塗り、ローラー塗りなど適当な方
法で塗布することにより、配線導体に処理液を接触させ
ることが望ましい。なお、塗布の際、処理液の温度は2
0〜60℃が好ましく、温度が高くなるほど付着膜厚が
増す傾向にある。 上記本発明の第2の目的は。 (2)、銅系配線導体を有する印刷配線板の少なくとも
前記銅系配線導体表面に、2−アリール基置換イミダゾ
ール化合物の化成膜を形成して成る印刷配線板により、
達成される。 上記2−アリール基置換イミダゾール化合物と上を混合
して用いることができる。 高級脂肪酸は、プレフラックス皮膜形成の際の造膜性お
よびプレフラックス膜の撥水性(耐湿性)に関与するも
ので、これらは脂肪酸として添加しても良いし、アンモ
ニウム塩やアミン塩として添加してもよい。以下、これ
ら高級脂肪酸、高級脂肪酸アンモニウム塩および高級脂
肪酸アミン塩を高級脂肪酸類化合物と記述する。 本発明方法の実施に当たって、2−アリール基置換イミ
ダゾール化合物の添加量は、水または水性溶媒に対して
重量比で0.01〜5%の範囲が適当であり、好ましく
は0.1〜2%である。 高級脂肪酸類の添加量は、2−アリール基置換イミダゾ
ール化合物の添加量の等モル以下とするのが良く、多量
に用いるとプレフラックス膜の撥水性は増すものの耐熱
性に劣るものとなる。 本発明に於いて、好ましい溶媒の例は水もしくは水/メ
チルアルコール混合溶剤、水/エチルアルコール混合溶
剤、水/イソプロピルアルコール混合溶剤(各々4/6
〜9/1重量比)等の水−イミダゾール、2,4.5−
トリフェニルイミダゾール及び2−フェニルベンズイミ
ダゾールの群から選ばれた少なくとも1種から成ること
が望ましく、この2−アリール基置換イミダゾール化合
物は配線導体の銅と錯体を形成し、配線導体表面に化成
皮膜と成って被覆される。 [作用] 本発明において2−アリール基置換イミダゾール化合物
は、高級脂肪酸類を共存させることにより、従来の2−
長鎖アルキル基置換イミダゾール化合物と同様に、銅あ
るいは銅合金の表面に化成膜を形成する。しかも、本発
明により形成されたイミダゾール系プレフラックス膜は
、従来のアルキル基系よりも耐熱性に優れており、これ
はアリール基を有していることに基づくものと推考する
。 2−アリール基置換イミダゾール化合物は、配線導体の
銅と錯体を形成し、配線導体表面に化成皮膜と成って被
覆される。すなわち、銅にイミダゾールの窒素原子が配
位して錯体化合物を形成して化成皮膜となる。 [実施例] 以下実施例及び比較例によって、本発明を更に具体的に
説明する。 実施例1〜5は半田濡れ性試験についての実施例を示す
もので、特性試験条件については何れも下記のように共
通の方法によったので、予めこの特性試験条件について
説明する。 これらの試験に於ける化成皮膜の膜厚は、皮膜の比重を
便宜上1として、所定の大きさの銅箔に対する付着重量
を表面積で除して求めた参考値である。 また、半田濡れ時間の測定は以下に示す方法により行な
った。 先ずテストピース(5mmx50mmx0.3mm銅片
)をトリクロロエチレンで脱脂し、次いでソフトエツチ
ングした後、各処理液による処理及び加熱処理等を行い
、測定直前にポストフラッグスとして[山栄化学(株)
製ロジン系ポストフラックス、商品名JS−64]に浸
漬した。そして、このテストピースを半田濡れ性試験機
[(株)レスカ製ソルダーチエッカ−5AT−2000
型]を使用して測定したものであり、その測定条件は、
半田温度240 ℃1浸漬深さ2mm、浸漬スピード1
6mm/秒とした。 実施例1゜ 2−フェニルイミダゾール 2重量部、オレイン酸0.
1重量部、メタノール20重量部、及び水80重量部を
撹拌混合して本発明の2−アリール基置換イミダゾール
系プレフランクス溶液を調整した。この溶液を50℃に
昇温しでおき、前記半田濡れ試験用銅片を10秒間浸漬
し、引き上げ水切り後、100℃にて5分間乾燥してテ
ストピースを得た。このようにして得られたテストピー
スの化成及膜厚は0.14μmであった。 本実施例テストピースについて、化成皮膜形成直後、9
6時間室内放置後、及び65℃795%Rhの雰囲気下
96時間放置したものの夫々について、無加熱及び20
0℃/10分間空気加熱した場合の半田濡れ試験結果を
第1表に示す。 なお、半田濡れ性については、濡れ時間(秒表示)が短
いほど濡れ易く特性が良いことを示しでおり、本実施例
のものが比較例より優れていることがわかる。 ただし、表中の〔〕内数値は比較例1のデータを示す比
較例1゜ 2−ウンデシルイミダゾール1重量部及び酢酸 1.6
重量部を水100重量部に溶解し、従来の2−アルキル
基置換イミダゾール系プレフランクス溶液を調整した。 この溶液を液温50℃に調節し、半田濡れ性試験用銅片
を20秒間浸漬して取り出し、水洗乾燥して比較用テス
トピースを得た。このものの化成皮膜の膜厚は0623
μmであった。実施例1同様に半田濡れ性評価した結果
を上記第1表中の〔〕内に示す。 実施例2゜ 実施例1において、2〜フエニルイミダゾールの代わり
に2−フェニル−4−メチルイミダソールを用いた以外
は全く同様の処理を行ったところ、テストピースの化成
及膜厚は0.18μmであり、その半田濡れ性を評価し
た結果を第2表に示す。 実施例1と同様に良好な特性が得られた。 第2表、半田濡れ性試験結果 実施例3゜ 2−フェニルイミダゾリウム・アセテート 2重量部、
パルミチン酸アンモニウム 0.2重量部、及び水 1
00重量部を撹拌混合し本発明のイミダゾール系プレフ
ラックス溶液を調整した。 この溶液を40℃に昇温しでおき、前記半田濡れ試験用
銅片を30秒間浸漬し、引き上げ水切り後、100℃に
て5分間乾燥してテストピースを得た。 このようにして得られたテストピースの化成及膜厚は0
.22μmであった。 本実施例のテストピースについでも化成皮膜形成直後、
96時間室内放置後、及び65℃95%Rhの雰囲気下
96時間放置したものの夫々について、無加熱及び20
0”ClO分間空気加熱した場合の半田濡れ性試験を行
なった。その結果を第3表に示すが、実施例1と同様良
好な特性が得られた。 以下余白 第3表、半田濡れ性試験結果 実施例4゜ 2−フェニルベンズイミダゾール2重量部、ミリスチン
酸0.1重量部、メタノール60重量部、および水40
重量部を撹拌混合し本発明のイミダソール系プレフラッ
クス溶液を調整した。 この溶液を45℃に昇温しでおき、前記半田濡れ試験用
銅片を10秒間浸漬し、引き上げ水切り後、ヘアードラ
イヤーにて30秒間乾燥してテストピースを得た。この
ようにして得られたテストピースの化成及膜厚は0.0
8μmであった。 本実施例テストピースについて、化成皮膜形成直後、9
6時間室内放置後、及び65°C95%Rhの雰囲気下
96時間放置したものの夫々について、無加熱及び20
0 ℃10分間空気加熱した場合の半田濡れ試験結果を
第4表に示す。無加熱の場合には比較例1と特性に大差
ないが、加熱した場合には著しく改善されている。 第4表、半田濡れ性試験結果 実施例5゜ 2−フェニルイミダゾリウム・アセテート 2重量部、
酢酸 1重量部、ラウリン酸0.1重量部、及び水 1
00重量部を撹拌混合し、さらに液のpHが6.2とな
るまで濃アンモニア水を点滴し、本発明のイミダソール
系プレフラックス溶液を調整した。 この溶液を50℃に昇温しでおき、前記半田濡れ試験用
銅片を30秒間浸漬し、引き上げ水切り後、100 ℃
にて5分間乾燥してテストピースを得た。このようにし
て得られたテストピースの化成及膜厚は0.28μmで
あった。 本実施例テストピースについて、化成皮膜形成直後、9
6時間室内放置後、及び65°C95%Rhの雰囲気下
96時間放置したものの夫々について、無加熱及び20
0℃10分間空気加熱した場合の半田濡れ試験を行なっ
た。その結果を第5表に示すが、実施例1と同様に良好
な特性が得られた。 以下余白 第5表、半田濡れ性試験結果 実施例6゜ この例では、実際の印刷配線板に本発明のイミダゾール
系プレフラックスを用いて配線導体に表面処理を施し、
化成皮膜を形成して印刷配線板を得る実施例を示す。 以下、図面を用いて具体的に説明する。 第1図は、本発明の2−アリール基置換イミダゾールを
含む処理液で配線導体を表面処理した印刷配線板の製造
工程図を示したものである。 第1図(a)は表面処理前の印刷配線板1の断面を示し
たものである。これは、予め両面網張り絶縁基板5に周
知の方法でスルーホール2と、2線導体パターン(この
図では示されていない)とを設け、次いでスルーホール
内壁及び配線導体パターン上に銅めっき4を施し、電子
部品の接続に供するラント7及びスルーホール内を除き
基板上にソルダーレジスト3を被覆して製造されたもの
であり、印刷配線板としてはリジット、もしくはフレキ
シブル何れでも同様に処理の対象となる。 第1図(b)に示すようにソフトエツチング溶液で銅め
っき導体4の粗面化を行ない、第1図(c)に示すよう
に酸性溶液にて導体表面の酸化膜を除去し、水洗にて清
浄化する。 さらに、第1図(d)に示すように本発明の2=アリ一
ル基置換イミダゾール化合物と高級脂肪酸類とを含む水
性処理液で上記印刷配線板の導体表面を処理する。この
処理方法としては、処理液に印刷配線板を浸漬する(デ
イツプ方式)、処理液を含浸させたローラーを印刷配線
板に当てる(ローラーコータ一方式)、あるいは処理液
をスプレーで印刷配線板に当てる(スプレ一方式)等の
各種の処理液を塗布する方法により行なわれる。 その後、基板を乾燥して水分を蒸発させ、ランド7及び
スルーホール内のめっき膜等の導体表面に化成皮膜6を
形成させる。 具体的な表面処理及び処理された印刷配線板の例を以下
に示す。 上記第1図(a)に示した構造のガラスーニポキシ銅ス
ルーホール基板(基板厚さ1.6mm、スルーホールの
穴径0.8mm、穴数105)に、実施例1〜5の処理
液(プレフラックス)を前記実施例と同様にして50℃
で30秒間浸漬し、化成皮膜6を形成した。この試験印
刷配線板を65℃95%Rhにて96時間保持した。 その後、210℃10分間の空気加熱を行い、室温に冷
却後、ポストフラックスとして前記JS−64を刷毛塗
りし、245℃で5秒間半田付けを行った。その結果、
銅−スルーホール半田上がり率は99%乃至100%と
極めて高率であった。 これに対し比較例1の従来型イミダゾール系プレフラッ
クスを使用したもの場合には38%〜72%と低かった
。 なお、銅−スルーホール半田上がり率とは、スルーホー
ル内に充填された半田の高さ90%以上のものが、スル
ーホール全体の数に対し何個あるかを百分率で表示した
ものである。 このようにして導体表面に化成皮膜6を形成した印刷配
線板上に周知の方法により、面実装電子部品とリード部
品と実装した。面実装電子部品は前記表面処理に形成さ
れた化成皮膜6がプレフラックスとして有効に作用し信
頼性の高い実装特性が得られた。また、リード部品につ
いてもポストフラックスをスルーホール内に供給して、
リードをスルーホール内に挿入して半田接続し信頼性の
高い実装が実現できた。
[Prior art 1] Soldering of electronic components to a printed wiring board generally involves using pre-flux applied immediately after manufacturing the printed wiring board, and mounting various electronic components on the printed wiring board coated with this pre-flux. After surface mounting, post flux is used to solder the through holes. This pre-flux prevents oxidation by treating the copper conductor circuits of printed wiring boards made by etching copper-clad laminates to prevent rust, and also works with post-flux to prevent soldering of through-holes. It is a material for making highly reliable solder joints with high yield, and requires the following properties. ■It has good adhesion to copper foil, does not deteriorate or change in quality due to air, moisture, or other gases, and keeps the foil surface clean for a long period of time. ■Do not exhibit corrosive effects on copper or other metals used in electronic components. ■The preflux coating film should not become sticky or absorb dust or oil during storage. ■It has excellent compatibility with post flux and provides good solder wettability during soldering. - Easily removed by cleaning agent when cleaning printed wiring boards after soldering. ■Can be applied with a foam or brush, is less prone to defects such as pinholes and uneven coating, can be applied evenly, and dries quickly. Known prefluxes that are in practical use include resin-based prefluxes in which rosin or the like is dissolved in an organic solvent such as toluene, and imidazole-based prefluxes in which alkylimidazolium salts are dissolved in water. Conventional resin prefluxes include natural rosin, polymerized rosin, rosin ester, maleated rosin, hydrogenated rosin,
Terpene resin, phenol-modified terpene resin, etc. are dissolved in an organic solvent, and the carboxyl group of the organic acid (e.g. abietic acid) contained in the resin reacts with metallic copper and its oxides to produce soluble rosin soap. This prevents further oxidation of the copper surface. Since this resin-based preflux uses an organic solvent, it has an essential drawback in that its volatilization significantly impairs the working environment and safety. On the other hand, imidazole-based preflux is an aqueous solution of a salt of an alkylimidazole compound and an organic acid, and has excellent work safety.It also selectively forms a film only on the copper surface, so it has excellent preflux performance. It is excellent. The formation of a complex compound of aqueous 2-long chain alkylimidazole and copper on the copper surface is considered to be a factor in preventing copper oxidation. For example, Japanese Patent Publication No. 17046/1983 describes a surface treatment method for forming a film of a 2-long chain alkyl group-substituted imidazole compound on the surface of copper or copper alloy.
No. 48-11454. 48-25621, 4.9-1983, 49
-26183, 58-22545, 61-41
No. 988 and Japanese Unexamined Patent Application Publication No. 61-90492. Imidazole-based preflux is an excellent product that eliminates the problems of resin-based preflux, but as described below, it tends to deteriorate and stick when exposed to high temperatures, and it no longer decomposes. There was a fear that the action as a flux would be impaired and the cooperative action of the post-flux described above would be inhibited. [Problems to be Solved by the Invention] In recent years, electronic devices have become smaller, and surface mount devices (hereinafter referred to as SMDs), typically chip components, have become increasingly smaller.
ace Mount Device's W! 11) has come into widespread use. In surface mounting, when soldering electronic components, the SMD is first fixed with cream solder to a wiring board coated with pre-flux, and the cream solder is reflowed to join the SMD to the printed wiring board. Thereafter, the lead component is inserted into the through hole, post flux is applied, and then soldered, resulting in two-step soldering. SM
D is attached to both sides of the printed wiring board, and in some cases it is mounted on both sides, and the cream solder paste flow is applied to the surface of the printed wiring board.
This will be done twice on the back side. If soldering is carried out in such a process, the problem arises that the reflow process oxidizes the copper of the wiring conductor, changes the quality of the pre-flux, and makes the soldering with post-flux incomplete. It has become clear that resin-based prefluxes and imidazole-based prefluxes are insufficient. For example, a conventionally known imidazole-based preflux in which a chemical conversion film of a 2-long-chain alkyl group-substituted imidazole compound is formed on the sub-conductor circuit part can be used at room temperature to
Although stable soldering shows good properties up to about 0°C, when the temperature exceeds the reflow temperature of 240°C, the copper surface becomes discolored and the soldering properties are sometimes impaired. This is because there is a problem that the heat resistance of the 2-long chain alkyl group-substituted imidazole compound is low. The present invention aims to solve the above-mentioned conventional problems, and its first purpose is to provide an improved anti-rust protection treatment for wiring conductor circuits, which has high heat resistance and does not worsen the working environment. A second object of the present invention is to provide a method for surface treating a wiring conductor in a printed wiring board using a preflux, and a printed wiring board having an improved chemical conversion film surface-treated thereby. [Means for solving the problem] The action of conventional imidazole-based preflux is to apply an aqueous solution containing a 2-long chain alkyl group-substituted imidazole compound and an organic acid to the surface of copper or copper alloy (hereinafter referred to as copper-based). When brought into contact, a copper complex is locally formed due to a complex formation reaction between the 2-long chain alkyl group-substituted imidazole compound and copper, hydrogen bonding between the 2-long chain alkyl group-substituted imidazole compounds, and the creation of van der Waals forces. It is explained that a chemical conversion film of a 2-long-chain alkyl group-substituted imidazole compound is formed on the copper surface. On the other hand, the 2-aryl group-substituted imidazole compound according to the present invention is a conventionally known compound, but unlike the 2-long-chain alkyl group-substituted imidazole compound, it does not form the above-mentioned chemical conversion film. It's here. In view of these circumstances, the present inventors conducted various experimental studies and found that a 2-aryl group-substituted imidazole compound, a higher fatty acid, an ammonium salt of a higher fatty acid, and an amine salt of a higher fatty acid were added to the surface of a copper-based wiring conductor. It was unexpectedly discovered that when an aqueous liquid containing one or more selected compounds is brought into contact with the material, a chemical conversion film with excellent heat resistance can be obtained. The present invention has been made based on this knowledge, and means for achieving the object will be specifically explained below. (I) The surface of a printed wiring board having a copper-based wiring conductor is
-Aryl group-substituted imidazole compound, higher fatty acid,
A chemical film is formed on the surface of the copper-based wiring conductor by contacting it with an aqueous liquid containing at least one higher fatty acid compound selected from the group of ammonium salts of higher fatty acids and amine salts of higher fatty acids. This is achieved by a surface treatment method for printed wiring boards. The above 2-aryl group-substituted imidazole compound includes:
It is desirable that it is selected from at least one of the following general formulas (N and (■)). However, R is hydrogen or a methyl group, and R2 and R3 are any one selected from the group of hydrogen, methyl group, and phenyl group. Representative examples of the 2-, aryl-substituted imidazole compounds used in carrying out the method of the present invention include, for example, 2-phenylimidazole, 2-tolylimidazole, 2-phenyl -4-methylimidazole, 2-phenyl-4-benzylimidazole, 2,4.5-t-riphenylimidazole, 2-phenylbenzimidazole, etc. These imidazole compounds are, for example, water-alcoholic and water- It may be used as an aqueous system dissolved in a water-organic solvent mixture such as acetone, or formic acid, acetic acid, lactic acid,
It may be used as an aqueous solution after forming a salt of an organic acid or mineral acid such as propionic acid, glycolic acid, acrylic acid, and methacrylic acid. In addition, these imidazole compounds may be in the form of a homogeneous solution or a suspension, but for long-term auxiliary complex purposes, they are used as a homogeneous solution because of the uniformity of the chemical conversion film formed on the copper surface. It is preferable. Furthermore, the higher fatty acids used in carrying out the method of the present invention include straight chain fatty acids having 12 to 22 carbon atoms, straight chain monoenoic acids, synthetic fatty acids, etc. Typical examples include lauric acid, myristic acid, valmitic acid,
Examples include oleic acid. These higher fatty acids, singly or in combination, are selected from at least one of the following general formulas (r) and (IT) as explained in (I) above. (I) (II) However, it is desirable that R1 be hydrogen or a methyl group, and R2 and R3 be any one group selected from the group consisting of hydrogen, a methyl group, and a phenyl group. The above-mentioned 2-aryl group-substituted imidazol compounds include, for example, 2-phenylimidazole, 2-tolylimidazole, 2-phenyl-4-methylimidazole,
These are a mixed system of 2-phenyl-4-benzyl alcohols and a mixed system of water-acetones. Some of the higher fatty acids cannot be dissolved depending on the type of solvent, and in this case, they are used by self-emulsification or by emulsifying or suspending them with a suitable activator. To carry out the present invention, the surface of the wiring conductor must be polished, degreased,
After performing treatments such as soft etching and acid cleaning, wiring can be done by immersing the metal surface in a treatment solution, or by applying the treatment solution to the metal surface using an appropriate method such as brushing, spraying, or roller coating. It is desirable to bring the treatment liquid into contact with the conductor. In addition, during coating, the temperature of the treatment liquid is 2.
The temperature is preferably 0 to 60°C, and the higher the temperature, the thicker the deposited film tends to be. The second object of the present invention is as follows. (2) A printed wiring board having a copper-based wiring conductor, in which a chemically formed film of a 2-aryl group-substituted imidazole compound is formed on at least the surface of the copper-based wiring conductor,
achieved. The above can be used in combination with the above 2-aryl group-substituted imidazole compound. Higher fatty acids are involved in the film-forming properties during preflux film formation and the water repellency (moisture resistance) of the preflux film, and they may be added as fatty acids or as ammonium salts or amine salts. It's okay. Hereinafter, these higher fatty acids, higher fatty acid ammonium salts, and higher fatty acid amine salts will be referred to as higher fatty acid compounds. In carrying out the method of the present invention, the amount of the 2-aryl group-substituted imidazole compound added is suitably in the range of 0.01 to 5% by weight, preferably 0.1 to 2%, based on water or aqueous solvent. It is. The amount of higher fatty acids added is preferably equal to or less than the amount of the 2-aryl group-substituted imidazole compound added; if a large amount is used, the water repellency of the preflux film increases, but the heat resistance becomes inferior. In the present invention, examples of preferred solvents include water, water/methyl alcohol mixed solvent, water/ethyl alcohol mixed solvent, and water/isopropyl alcohol mixed solvent (4/6 each).
water-imidazole, 2,4.5-
It is preferable that the compound is composed of at least one selected from the group of triphenylimidazole and 2-phenylbenzimidazole, and this 2-aryl group-substituted imidazole compound forms a complex with the copper of the wiring conductor to form a chemical conversion film on the surface of the wiring conductor. covered. [Function] In the present invention, the 2-aryl group-substituted imidazole compound can be used in combination with higher fatty acids to improve the conventional 2-aryl group-substituted imidazole compound.
Similar to long-chain alkyl group-substituted imidazole compounds, a chemical film is formed on the surface of copper or copper alloy. Moreover, the imidazole-based preflux film formed according to the present invention has better heat resistance than conventional alkyl-based films, and this is thought to be due to the presence of aryl groups. The 2-aryl group-substituted imidazole compound forms a complex with the copper of the wiring conductor, and is coated on the surface of the wiring conductor as a chemical conversion film. That is, the nitrogen atom of imidazole coordinates with copper to form a complex compound, resulting in a chemical conversion film. [Examples] The present invention will be explained in more detail below using Examples and Comparative Examples. Examples 1 to 5 show examples of solder wettability tests, and the characteristic test conditions were all based on the same method as described below, so the characteristic test conditions will be explained in advance. The film thickness of the chemical conversion film in these tests is a reference value obtained by dividing the weight attached to a copper foil of a predetermined size by the surface area, assuming that the specific gravity of the film is 1 for convenience. Further, the solder wetting time was measured by the method shown below. First, a test piece (5 mm x 50 mm x 0.3 mm copper piece) was degreased with trichlorethylene, then soft etched, and then treated with various treatment solutions and heat treated, and immediately before measurement, it was coated as a post flag [Sanei Chemical Co., Ltd.]
rosin-based post flux, trade name JS-64]. This test piece was then tested using a solder wettability tester [Solder Checker-5AT-2000 manufactured by Resca Co., Ltd.].
The measurement conditions were as follows:
Solder temperature 240℃ 1 immersion depth 2mm, immersion speed 1
The speed was set at 6 mm/sec. Example 1 2-phenylimidazole 2 parts by weight, oleic acid 0.
1 part by weight, 20 parts by weight of methanol, and 80 parts by weight of water were stirred and mixed to prepare a 2-aryl group-substituted imidazole-based preflux solution of the present invention. The temperature of this solution was raised to 50°C, and the copper piece for the solder wetting test was immersed in it for 10 seconds, pulled up, drained, and dried at 100°C for 5 minutes to obtain a test piece. The chemical conversion and film thickness of the test piece thus obtained was 0.14 μm. Regarding the test piece of this example, immediately after forming the chemical conversion film, 9
After being left indoors for 6 hours, and after being left in an atmosphere of 65°C, 795% Rh for 96 hours, no heating and 20
Table 1 shows the results of the solder wetting test when air heating was performed at 0° C. for 10 minutes. Regarding solder wettability, the shorter the wetting time (in seconds), the easier it is to wet and the better the properties, and it can be seen that the solder of this example is superior to the comparative example. However, the numbers in [ ] in the table indicate the data of Comparative Example 1 Comparative Example 1 2-Undecylimidazole 1 part by weight and acetic acid 1.6
Parts by weight were dissolved in 100 parts by weight of water to prepare a conventional 2-alkyl group-substituted imidazole preflux solution. The temperature of this solution was adjusted to 50° C., and a copper piece for solder wettability testing was immersed for 20 seconds, taken out, washed with water and dried to obtain a test piece for comparison. The film thickness of this chemical conversion film is 0623
It was μm. The results of solder wettability evaluation in the same manner as in Example 1 are shown in [ ] in Table 1 above. Example 2 The same treatment as in Example 1 was performed except that 2-phenyl-4-methylimidazole was used instead of 2-phenylimidazole, and the chemical conversion and film thickness of the test piece were 0. .18 μm, and the results of evaluating its solder wettability are shown in Table 2. Similar to Example 1, good characteristics were obtained. Table 2, Solder wettability test results Example 3゜2-phenylimidazolium acetate 2 parts by weight,
Ammonium palmitate 0.2 parts by weight and water 1
00 parts by weight were stirred and mixed to prepare an imidazole preflux solution of the present invention. The temperature of this solution was raised to 40°C, and the copper piece for the solder wetting test was immersed in it for 30 seconds, pulled up, drained, and dried at 100°C for 5 minutes to obtain a test piece. The chemical conversion and film thickness of the test piece thus obtained were 0.
.. It was 22 μm. Regarding the test piece of this example, immediately after the chemical conversion coating was formed,
After being left indoors for 96 hours, and after being left for 96 hours in an atmosphere of 65°C and 95% Rh,
A solder wettability test was conducted when air heating was performed for 0" ClO minutes. The results are shown in Table 3, and good characteristics were obtained as in Example 1. Table 3 below shows the solder wettability test. Results Example 4 2 parts by weight of 2-phenylbenzimidazole, 0.1 part by weight of myristic acid, 60 parts by weight of methanol, and 40 parts by weight of water.
The imidasol-based preflux solution of the present invention was prepared by stirring and mixing the weight parts. This solution was heated to 45° C., and the solder wetting test copper piece was immersed in it for 10 seconds, pulled up, drained, and dried with a hair dryer for 30 seconds to obtain a test piece. The chemical conversion and film thickness of the test piece thus obtained were 0.0
It was 8 μm. Regarding the test piece of this example, immediately after forming the chemical conversion film, 9
After being left indoors for 6 hours and for 96 hours in an atmosphere of 65°C and 95% Rh,
Table 4 shows the results of the solder wetting test when air heating was performed at 0° C. for 10 minutes. In the case of no heating, the characteristics are not much different from those of Comparative Example 1, but in the case of heating, they are significantly improved. Table 4, Solder wettability test results Example 5゜2-phenylimidazolium acetate 2 parts by weight,
1 part by weight of acetic acid, 0.1 part by weight of lauric acid, and 1 part by weight of water
00 parts by weight were stirred and mixed, and further concentrated ammonia water was dripped until the pH of the liquid became 6.2 to prepare an imidasol-based preflux solution of the present invention. The temperature of this solution was raised to 50°C, the solder wetting test copper piece was immersed in it for 30 seconds, and after draining, it was heated to 100°C.
A test piece was obtained by drying for 5 minutes. The chemical conversion and film thickness of the test piece thus obtained was 0.28 μm. Regarding the test piece of this example, immediately after forming the chemical conversion film, 9
After being left indoors for 6 hours, and after being left for 96 hours in an atmosphere of 65°C and 95% Rh,
A solder wetting test was conducted when air heating was performed for 10 minutes at 0°C. The results are shown in Table 5, and as in Example 1, good characteristics were obtained. Table 5 below, solder wettability test results Example 6 In this example, the imidazole preflux of the present invention was used to surface-treat the wiring conductors on an actual printed wiring board.
An example will be shown in which a printed wiring board is obtained by forming a chemical conversion film. Hereinafter, a detailed explanation will be given using the drawings. FIG. 1 shows a manufacturing process diagram of a printed wiring board in which a wiring conductor is surface-treated with a treatment liquid containing a 2-aryl group-substituted imidazole of the present invention. FIG. 1(a) shows a cross section of printed wiring board 1 before surface treatment. In this method, a through hole 2 and a two-wire conductor pattern (not shown in this figure) are provided in advance on a double-sided mesh insulating substrate 5 by a well-known method, and then copper plating 4 is formed on the inner wall of the through hole and the wiring conductor pattern. It is manufactured by coating the board with solder resist 3 except for the runts 7 and through-holes used for connecting electronic components, and the printed wiring board can be processed equally whether it is rigid or flexible. becomes. As shown in Figure 1(b), the surface of the copper-plated conductor 4 is roughened with a soft etching solution, and as shown in Figure 1(c), the oxide film on the conductor surface is removed with an acidic solution, and then washed with water. Clean it. Furthermore, as shown in FIG. 1(d), the conductor surface of the printed wiring board is treated with an aqueous treatment liquid containing the 2=aryl group-substituted imidazole compound of the present invention and higher fatty acids. This treatment method includes immersing the printed wiring board in the processing liquid (dip method), applying a roller impregnated with the processing liquid to the printed wiring board (roller coater type), or spraying the processing liquid onto the printed wiring board. This is done by applying various treatment liquids, such as spraying (one-way spraying). Thereafter, the substrate is dried to evaporate moisture, and a chemical conversion film 6 is formed on the conductor surface such as the plating film in the land 7 and the through hole. Examples of specific surface treatments and treated printed wiring boards are shown below. A glass nipoxy copper through-hole substrate (substrate thickness 1.6 mm, through-hole diameter 0.8 mm, number of holes 105) having the structure shown in FIG. flux) at 50°C in the same manner as in the previous example.
was immersed for 30 seconds to form a chemical conversion film 6. This test printed wiring board was held at 65° C. and 95% Rh for 96 hours. Thereafter, air heating was performed at 210° C. for 10 minutes, and after cooling to room temperature, the JS-64 described above was applied with a brush as a post flux, and soldering was performed at 245° C. for 5 seconds. the result,
The copper-through-hole soldering rate was extremely high at 99% to 100%. On the other hand, in the case of Comparative Example 1, which used the conventional imidazole preflux, it was as low as 38% to 72%. Note that the copper-through-hole solder rise rate is expressed as a percentage of the number of through-holes in which the solder filled in the through-hole has a height of 90% or more, based on the total number of through-holes. Surface-mounted electronic components and lead components were mounted on the printed wiring board with the chemical conversion film 6 formed on the surface of the conductor by a well-known method. In the surface-mounted electronic component, the chemical conversion film 6 formed during the surface treatment effectively acted as a preflux, and highly reliable mounting characteristics were obtained. Also, for lead parts, post flux is supplied into the through holes,
We were able to achieve highly reliable mounting by inserting the leads into the through holes and making solder connections.

【発明の効果】【Effect of the invention】

本発明方法によれば、銅系配線導体表面に2−アリール
基置換イミダゾール化合物を主成分とする耐熱性に優れ
た化成皮膜を形成することが可能であり、特に印刷配線
板の表面実装法における半田付は性を改善し得るもので
ある。
According to the method of the present invention, it is possible to form a chemical conversion film with excellent heat resistance mainly composed of a 2-aryl group-substituted imidazole compound on the surface of a copper-based wiring conductor. Soldering can improve performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の2−アリール基置換イミダゾールを含
む処理液で配線導体を表面処理した印刷配線板の製造工
程図である。 く符号の説明〉 1・・印刷配線板、      2・スルーホール、3
・ソルダーレジスト、   4 銅めっき、5・・・絶
縁基板、       6・化成皮膜、7・・ラント。
FIG. 1 is a process diagram for manufacturing a printed wiring board in which a wiring conductor is surface-treated with a treatment liquid containing a 2-aryl group-substituted imidazole according to the present invention. Explanation of symbols: 1.Printed wiring board, 2.Through hole, 3.
・Solder resist, 4. Copper plating, 5.. Insulating substrate, 6. Chemical conversion film, 7.. Runt.

Claims (10)

【特許請求の範囲】[Claims] 1.銅系配線導体を有する印刷配線板の表面を、2−ア
リール基置換イミダゾール化合物と、高級脂肪酸、高級
脂肪酸のアンモニウム塩及び高級脂肪酸のアミン塩の群
から選択される少なくとも1種の高級脂肪酸類化合物と
を含む水性液で接触させ、前記銅系配線導体の表面に化
成膜を形成して成る印刷配線板の表面処理方法。
1. The surface of a printed wiring board having a copper-based wiring conductor is coated with a 2-aryl group-substituted imidazole compound and at least one higher fatty acid compound selected from the group of higher fatty acids, ammonium salts of higher fatty acids, and amine salts of higher fatty acids. A surface treatment method for a printed wiring board, comprising forming a chemical film on the surface of the copper-based wiring conductor by contacting it with an aqueous liquid containing the copper-based wiring conductor.
2.上記2−アリール基置換イミダゾール化合物を、水
もしくは水と有機溶媒との混合溶剤に対し、重量比で0
.01〜5.0%添加量して水性液と成し、かかる水性
液を上記印刷配線板の表面に塗布する工程を有して成る
請求項1記載の印刷配線板の表面処理方法。
2. The above 2-aryl group-substituted imidazole compound is added to water or a mixed solvent of water and an organic solvent at a weight ratio of 0.
.. 2. The method for surface treatment of a printed wiring board according to claim 1, comprising the step of adding 0.01 to 5.0% to form an aqueous liquid and applying the aqueous liquid to the surface of the printed wiring board.
3.上記2−アリール基置換イミダゾール化合物が、下
記一般式( I )及び(II)の少なくとも1種から選ば
れ、 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ただし、R_1は水素もしくはメチル基、R_2、R_
3は水素、メチル基及びフェニル基の群から選ばれたい
ずれか1種の基から成る請求項1記載の印刷配線板の表
面処理方法。
3. The above-mentioned 2-aryl group-substituted imidazole compound is selected from at least one of the following general formulas (I) and (II), ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc. ▼(II) However, R_1 is hydrogen or methyl group, R_2, R_
2. The method for surface treatment of a printed wiring board according to claim 1, wherein 3 is any one group selected from the group consisting of hydrogen, methyl group, and phenyl group.
4.上記高級脂肪酸が、ラウリン酸、ミリスチン酸、パ
ルミチン酸及びオレイン酸の群から選ばれる少なくとも
1種から成る請求項1乃至3何れか記載の印刷配線板の
表面処理方法。
4. 4. The method for surface treatment of a printed wiring board according to claim 1, wherein the higher fatty acid comprises at least one selected from the group consisting of lauric acid, myristic acid, palmitic acid, and oleic acid.
5.上記水と有機溶媒との混合溶剤が、水−アルコール
系及び水−アセトン系の少なくとも1種から成る請求項
2記載の印刷配線板の表面処理方法。
5. 3. The method for surface treatment of a printed wiring board according to claim 2, wherein the mixed solvent of water and an organic solvent comprises at least one of a water-alcohol type and a water-acetone type.
6.上記2−アリール基置換イミダゾール化合物として
、2−フェニルイミダゾール、2−トルイルイミダゾー
ル、2−フェニル−4−メチルイミダゾール、2−フェ
ニル−4−ベンジルイミダゾール、2,4,5−トリフ
ェニルイミダゾール及び2−フェニルベンズイミダゾー
ルの群から選ばれた少なくとも1種から成る請求項1乃
至3何れか記載の印刷配線板の表面処理方法。
6. The above-mentioned 2-aryl group-substituted imidazole compounds include 2-phenylimidazole, 2-tolylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-benzylimidazole, 2,4,5-triphenylimidazole and 2- The method for surface treating a printed wiring board according to any one of claims 1 to 3, comprising at least one member selected from the group of phenylbenzimidazoles.
7.上記銅系配線導体を有する印刷配線板の表面を水性
液で接触させ、前記銅系配線導体の表面に化成膜を形成
するに際し、前記水性液の温度を20〜60℃として成
る請求項1記載の印刷配線板の表面処理方法。
7. Claim 1: When the surface of the printed wiring board having the copper-based wiring conductor is brought into contact with an aqueous liquid and a chemically formed film is formed on the surface of the copper-based wiring conductor, the temperature of the aqueous liquid is set at 20 to 60°C. The surface treatment method for the printed wiring board described above.
8.銅系配線導体を有する印刷配線板の少なくとも前記
銅系配線導体表面に、2−アリール基置換イミダゾール
化合物の化成膜を形成して成る印刷配線板。
8. A printed wiring board comprising a printed wiring board having a copper-based wiring conductor, wherein a chemically formed film of a 2-aryl group-substituted imidazole compound is formed on at least the surface of the copper-based wiring conductor.
9.上記2−アリール基置換イミダゾール化合物として
下記一般式( I )及び(II)の少なくとも1種から選
ばれ、 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ただし、R_1は水素もしくはメチル基、R_2、R_
3は水素、メチル基及びフェニル基の群から選ばれるい
ずれか1種の基から成る請求項8記載の印刷配線板。
9. The above 2-aryl group-substituted imidazole compound is selected from at least one of the following general formulas (I) and (II), ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (II) However, R_1 is hydrogen or methyl group, R_2, R_
9. The printed wiring board according to claim 8, wherein 3 is any one group selected from the group consisting of hydrogen, methyl group, and phenyl group.
10.上記2−アリール基置換イミダゾール化合物が、
2−フェニルイミダゾール、2−トルイルイミダゾール
、2−フェニル−4−メチルイミダゾール、2−フェニ
ル−4−ベンジルイミダゾール、2,4,5−トリフェ
ニルイミダゾール及び2−フェニルベンズイミダゾール
の群から選ばれた少なくとも1種から成る請求項8もし
くは9記載の印刷配線板。
10. The above 2-aryl group-substituted imidazole compound is
At least one selected from the group of 2-phenylimidazole, 2-tolylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-benzylimidazole, 2,4,5-triphenylimidazole and 2-phenylbenzimidazole The printed wiring board according to claim 8 or 9, comprising one type.
JP33019890A 1990-11-30 1990-11-30 Printed circuit board and surface processing method thereof Pending JPH04206681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33019890A JPH04206681A (en) 1990-11-30 1990-11-30 Printed circuit board and surface processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33019890A JPH04206681A (en) 1990-11-30 1990-11-30 Printed circuit board and surface processing method thereof

Publications (1)

Publication Number Publication Date
JPH04206681A true JPH04206681A (en) 1992-07-28

Family

ID=18229933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33019890A Pending JPH04206681A (en) 1990-11-30 1990-11-30 Printed circuit board and surface processing method thereof

Country Status (1)

Country Link
JP (1) JPH04206681A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627499A1 (en) * 1993-05-10 1994-12-07 Shikoku Chemicals Corporation Agent for treating surfaces of copper and copper alloys
US7393395B2 (en) 2004-02-05 2008-07-01 Nippon Mining & Metals Co., Ltd. Surface-treating agent for metal
US7754105B2 (en) 2005-05-24 2010-07-13 Shikoku Chemicals Corporation Water-soluble preflux and usage of the same
JP2012503864A (en) * 2008-09-24 2012-02-09 アーテー・ウント・エス・オーストリア・テヒノロギー・ウント・ジュステームテッヒニク・アクチェンゲゼルシャフト Method for improving the corrosion resistance of electronic components, especially printed circuit board conductors
WO2012161341A1 (en) 2011-05-23 2012-11-29 Shikoku Chemicals Corporation Surface treating composition for copper and copper alloy and utilization thereof
WO2012176591A1 (en) 2011-06-20 2012-12-27 Shikoku Chemicals Corporation Surface treating composition for copper and copper alloy and utilization thereof
CN107046776A (en) * 2017-04-06 2017-08-15 江门崇达电路技术有限公司 A kind of anti-oxidant surface treatment method of PCB

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501281A (en) * 1981-08-17 1983-08-04 ウエスタ−ン エレクトリツク カムパニ−,インコ−ポレ−テツド Articles containing corrosion inhibitor-coated copper and methods of coating
JPS63293179A (en) * 1987-05-21 1988-11-30 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Protection of copper from corrosion
JPS6473092A (en) * 1987-09-16 1989-03-17 Daiwa Kasei Kenkyusho Production of rust-preventive agent for metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501281A (en) * 1981-08-17 1983-08-04 ウエスタ−ン エレクトリツク カムパニ−,インコ−ポレ−テツド Articles containing corrosion inhibitor-coated copper and methods of coating
JPS63293179A (en) * 1987-05-21 1988-11-30 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Protection of copper from corrosion
JPS6473092A (en) * 1987-09-16 1989-03-17 Daiwa Kasei Kenkyusho Production of rust-preventive agent for metal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627499A1 (en) * 1993-05-10 1994-12-07 Shikoku Chemicals Corporation Agent for treating surfaces of copper and copper alloys
US7393395B2 (en) 2004-02-05 2008-07-01 Nippon Mining & Metals Co., Ltd. Surface-treating agent for metal
US7754105B2 (en) 2005-05-24 2010-07-13 Shikoku Chemicals Corporation Water-soluble preflux and usage of the same
JP2012503864A (en) * 2008-09-24 2012-02-09 アーテー・ウント・エス・オーストリア・テヒノロギー・ウント・ジュステームテッヒニク・アクチェンゲゼルシャフト Method for improving the corrosion resistance of electronic components, especially printed circuit board conductors
WO2012161341A1 (en) 2011-05-23 2012-11-29 Shikoku Chemicals Corporation Surface treating composition for copper and copper alloy and utilization thereof
US9532493B2 (en) 2011-05-23 2016-12-27 Shikoku Chemicals Corporation Surface treating composition for copper and copper alloy and utilization thereof
US10398028B2 (en) 2011-05-23 2019-08-27 Shikoku Chemicals Corporation Surface treating composition for copper and copper alloy and utilization thereof
WO2012176591A1 (en) 2011-06-20 2012-12-27 Shikoku Chemicals Corporation Surface treating composition for copper and copper alloy and utilization thereof
US9649713B2 (en) 2011-06-20 2017-05-16 Shikoku Chemicals Corporation Surface treating composition for copper and copper alloy and utilization thereof
CN107046776A (en) * 2017-04-06 2017-08-15 江门崇达电路技术有限公司 A kind of anti-oxidant surface treatment method of PCB
CN107046776B (en) * 2017-04-06 2019-04-02 江门崇达电路技术有限公司 A kind of anti-oxidant surface treatment method of PCB

Similar Documents

Publication Publication Date Title
EP0627499B1 (en) Agent for treating surfaces of copper and copper alloys
EP0797690B1 (en) Printed circuit board manufacture
US6524644B1 (en) Process for selective deposition of OSP coating on copper, excluding deposition on gold
TWI241872B (en) Improved coating for silver plated circuits
JP2008508425A (en) Silver plating in electronic component manufacturing
JP3311858B2 (en) Copper and copper alloy surface treatment agent
JP4647073B2 (en) Method of soldering copper and copper alloy
JPH04206681A (en) Printed circuit board and surface processing method thereof
CA2026684A1 (en) Surface treating agents for metal work
JP2005068530A (en) Surface-treating agent, printed circuit board, and method for surface-treating metal on printed circuit board
JP2686168B2 (en) Surface treatment method for copper and copper alloy and surface treatment agent for soldering
JPH06268356A (en) Method for using preflux and manufacture of printed wiring board
JPH07243053A (en) Surface treating agent for copper and copper alloy
JPH04202780A (en) Surface treatment of copper and copper alloy and printed circuit board
TWI448581B (en) Surface treating agent for copper or copper alloy and use thereof
JP2913410B2 (en) Surface treatment agent for copper or copper alloy
JPH03124395A (en) Preflux for soldering
JPH07330738A (en) Protecting agent for metal surface and production using the same
JPH06264258A (en) Surface treating agent for copper and copper alloy
JPH05230674A (en) Surface treatment of metal
JP3398296B2 (en) Copper and copper alloy surface treatment agent
JPH07202386A (en) Metal surface protective agent and surface treatment method
JPH05156475A (en) Surface treatment of metal
JPH05202492A (en) Surface treatment of metal
JPH06299375A (en) Treatment of metallic surface such as solder, electroless solder, ag, ni, zn, cu and cu alloy