JPH0669802A - Pdm converting device - Google Patents

Pdm converting device

Info

Publication number
JPH0669802A
JPH0669802A JP21804292A JP21804292A JPH0669802A JP H0669802 A JPH0669802 A JP H0669802A JP 21804292 A JP21804292 A JP 21804292A JP 21804292 A JP21804292 A JP 21804292A JP H0669802 A JPH0669802 A JP H0669802A
Authority
JP
Japan
Prior art keywords
integrator
output
signal
pdm
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21804292A
Other languages
Japanese (ja)
Other versions
JP3092340B2 (en
Inventor
Satoshi Kikuchi
菊地  聡
Takashi Aihara
隆司 藍原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP04218042A priority Critical patent/JP3092340B2/en
Publication of JPH0669802A publication Critical patent/JPH0669802A/en
Application granted granted Critical
Publication of JP3092340B2 publication Critical patent/JP3092340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To enable normal operations even when an integrator composed of an OP amplifier at a low through rate is used by compensating analog signals in an adjuster composed of a proportional integrator. CONSTITUTION:An adjuster 7 is composed of the proportional integrator adding a resistor 14 to the integrator. An input analog signal Uo and a fed back analog signal U'o are added by an adder 1 and inputted to the adjuster 7. Based on the signal Uo+U'o, the adjuster 7 generates a compensating voltage, corrects the output of an OP amplifier 13 and outputs an analog signal U. Thus, the signals can be binarized for each clock with a threshold value as the border at a comparator 3. In this case, the value of the compensating voltage can be changed by changing the resistor 14. Therefore, this device is normally operated even when the integrator composed of the OP amplifier at the low through rate is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アナログ信号をパルス
密度変調(PDM)信号に変換する装置に関するもので
あり、本発明による装置の出力をディジタルフィルタに
入力することによりA/D変換器として応用できる。ま
た、本発明による装置の出力をフォトカプラを介して絶
縁し、その出力をD/A変換し、D/A変換された信号
をアナログフィルタに入力することにより、アナログ信
号の絶縁器としても応用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for converting an analog signal into a pulse density modulation (PDM) signal, which is used as an A / D converter by inputting the output of the device according to the present invention into a digital filter. It can be applied. In addition, the output of the device according to the present invention is isolated via a photocoupler, the output is D / A converted, and the D / A converted signal is input to an analog filter to be applied as an analog signal isolator. it can.

【0002】[0002]

【従来の技術】図6は従来技術によるPDM変換装置の
ブロック図を示し、1は加算器、2は積分器、3は比較
器、4はサンプル・ホルダ、5は1ビットD/A変換器
である。また、図7はOPアンプを用いた積分器2の構
成図であり、11は抵抗(抵抗値R)、12はコンデン
サ(容量C)、13はOPアンプである。図6におい
て、アナログ信号U0 は加算器1を介して積分器2に入
力され、比較器3、サンプル・ホルダ4を経由してPD
M信号に変換されて出力される。また出力されるPDM
信号の一部は1ビットD/A変換器5によってアナログ
信号U0 ’に変換され、加算器1にアナログ信号U0
の差が調節器2に入力されるようにフィードバックされ
る。 アナログ信号U0 ,U0 ’はそれぞれ、抵抗11
により、 i1 =U0 /R (1) i2 =U0 ’/R (2) として、図7の如く加算器1で加算され(但し、U0
は負の値である)、この和であるi3 は次式で表され、 i3 =i1 +i2 =(U0 +U0 ’)/R (3) このi3 が積分器2に入力される。このi3 を積分する
と、
2. Description of the Related Art FIG. 6 is a block diagram of a PDM converter according to the prior art, in which 1 is an adder, 2 is an integrator, 3 is a comparator, 4 is a sample holder, and 5 is a 1-bit D / A converter. Is. Further, FIG. 7 is a configuration diagram of the integrator 2 using an OP amplifier, where 11 is a resistor (resistance value R), 12 is a capacitor (capacitance C), and 13 is an OP amplifier. In FIG. 6, the analog signal U 0 is input to the integrator 2 via the adder 1 and is input to the PD via the comparator 3 and the sample holder 4.
It is converted into an M signal and output. Also output PDM
A part of the signal is converted into an analog signal U 0 ′ by the 1-bit D / A converter 5 and fed back to the adder 1 so that the difference from the analog signal U 0 is input to the adjuster 2. The analog signals U 0 and U 0 'are respectively generated by the resistor 11
By, i 1 = U 0 / R (1) i 2 = U 0 ' as / R (2), are added by the adder 1 as shown in FIG. 7 (where, U 0'
Is a negative value), and the sum i 3 is represented by the following equation: i 3 = i 1 + i 2 = (U 0 + U 0 ') / R (3) This i 3 is input to the integrator 2. To be done. When this i 3 is integrated,

【0003】[0003]

【数1】 [Equation 1]

【0004】なる積分器2からのアナログ信号Uが得ら
れる。比較器3ではこのアナログ信号Uをしきい値と比
較し、このしきい値を境に“0”と“1”の2値に変換
したのち、サンプル・ホルダ4へ出力する。サンプル・
ホルダ4は比較器3の出力をクロックによりサンプル・
ホールドすることでPDM信号を形成する。図8はサン
プル・ホルダ4より出力されるPDM信号波形図であ
る。図8(a)はアナログ信号U0 としての入力が0%
のときの波形図であり、この場合には出力はすべてゼロ
である。入力が25%になると図8(b)の如く4クロ
ック周期で1が1回のパターンで出力される波形図とな
る。入力が50%になると図8(C)の如く1,0が交
互に出力される波形図となる。入力が75%になると図
8(d)に示すように4クロック周期で1が3回のパタ
ーンで出力される波形図となる。入力が100%になる
と図8(e)に示すようにすべて1が出力される波形図
となる。このように、PDM信号の平均値はアナログ信
号U0 と一致するように変換される。
An analog signal U from the integrator 2 is obtained. The comparator 3 compares the analog signal U with a threshold value, converts the analog signal U into a binary value of "0" and "1" at the boundary, and then outputs the binary value to the sample holder 4. sample·
The holder 4 samples the output of the comparator 3 with a clock.
A PDM signal is formed by holding. FIG. 8 is a waveform diagram of the PDM signal output from the sample holder 4. In FIG. 8A, the input as the analog signal U 0 is 0%.
It is a waveform diagram at the time of, and the output is all zero in this case. When the input becomes 25%, as shown in FIG. 8 (b), the waveform is such that 1 is output once in four clock cycles. When the input becomes 50%, 1 and 0 are alternately output as shown in FIG. 8C. When the input becomes 75%, as shown in FIG. 8D, the waveform becomes such that 1 is output in a pattern of 3 times in 4 clock cycles. When the input becomes 100%, the waveform becomes such that all 1s are output as shown in FIG. 8 (e). In this way, the average value of the PDM signal is converted so as to match the analog signal U 0 .

【0005】[0005]

【発明が解決しようとする課題】図8に示したPDM信
号波形は積分器2が理想的なものの場合であり、実際に
用いられる積分器は安価なスルーレトの遅いものである
ため正常なPDM変換が行われない場合が生じる。例え
ば、図9はPDM信号波形であり、入力が50%付近の
ときPDM変換装置の出力波形は、積分器が理想的なも
のであれば図9(a)に示すサンプル・ホルダのクロッ
クの1クロック分のパルス波形として出力される。しか
し、実際に用いられるようなスルーレートの遅いOPア
ンプを使用すると、図9(b)に示す2クロックのパル
ス幅を持つ出力波形となる。
The PDM signal waveform shown in FIG. 8 is the case where the integrator 2 is an ideal one, and since the integrator actually used is an inexpensive integrator with a slow slew rate, a normal PDM conversion is performed. There is a case that is not done. For example, FIG. 9 shows a PDM signal waveform, and when the input is around 50%, the output waveform of the PDM converter is 1 of the clock of the sample holder shown in FIG. 9A if the integrator is ideal. It is output as a pulse waveform for the clock. However, when an OP amplifier having a slow slew rate that is actually used is used, an output waveform having a pulse width of 2 clocks shown in FIG. 9B is obtained.

【0006】このことを図10に示す積分器の出力波形
図を用いて説明する。積分器2が理想的なものであるな
らば積分器の出力は図10(a)のように、T1 ,T2
間の立ち上がり電圧V1 と、T2 ,T3 間の立ち上がり
電圧V2 とは等しい。T2 においてしきい値をよぎらず
にT3 でしきい値をよぎる場合、入力が50%付近なの
で、次のT4 では、T2 での電圧レベルa点とほとんど
同じ電圧レベルb点まで下がる。立ち上がり電圧がしき
い値を2クロックかかってよぎっても立ち下がり電圧
は、1クロックでしきい値をよぎることができる。この
時のPDM変換装置の出力波形を図10(b)に示す。
This will be described with reference to the output waveform diagram of the integrator shown in FIG. If the integrator 2 is ideal, the output of the integrator is T 1 , T 2 as shown in FIG.
The rising voltage V 1 between them and the rising voltage V 2 between T 2 and T 3 are equal. When the threshold value is not crossed at T 2 but the threshold value is crossed at T 3 , the input is around 50%, so at the next T 4 , up to the voltage level b point which is almost the same as the voltage level a point at T 2. Go down. Even if the rising voltage crosses the threshold value for two clocks, the falling voltage can cross the threshold value for one clock. The output waveform of the PDM conversion device at this time is shown in FIG.

【0007】しかし実際に積分器を構成するOPアンプ
はスルーレートが遅く、図10(c)に示す出力波形と
なる。図10(a)と同様に、1クロックでしきい値を
越えずに2クロックかかる場合、T4 の立ち下がり電圧
の電圧レベルはc点とほぼ同じ電圧レベルまで戻ること
ができず、しきい値をよぎるのにT5 までかかる。これ
はOPアンプの入力信号の極性が反転したときT1 から
2 までの立ち上がり電圧V1 とT2 からT3 までの立
ち上がり電圧V2 との大きさがV2 >V1 という関係
に、またT3 からT4 までの立ち下がり電圧V3 と、T
4 からT5 までの立ち下がり電圧V4 との大きさがV4
>V3 という関係となる現象が起きるからである。図1
0(d)はこの時のPDM変換装置の出力波形である。
However, the OP amplifier which actually constitutes the integrator has a slow slew rate and has an output waveform shown in FIG. As in the case of FIG. 10A, when 2 clocks are taken without exceeding the threshold value in 1 clock, the voltage level of the falling voltage of T 4 cannot return to almost the same voltage level as the point c, and the threshold level is not reached. It takes T 5 to cross the value. This relationship magnitude of the rising voltage V 2 from the rising voltage V 1 and T 2 of the from T 1 to T 2 to T 3 is that V 2> V 1 when the polarity of the input signal of the OP amplifier is inverted, the falling voltage V 3 from T 3 to T 4, T
4 from falling voltage V 4 to T 5 magnitude V 4
This is because a phenomenon that has a relation of> V 3 occurs. Figure 1
0 (d) is the output waveform of the PDM converter at this time.

【0008】このように、従来の技術においては、スル
ーレートの遅いOPアンプをPDM変換装置に用いる
と、クロック周波数が高い場合には正常なPDM変換が
行われず、ディジタルフィルタを接続してA/D変換器
として使用すると出力リプルが大きくなる。本発明は上
記問題点に鑑みてなされ、高価な高速のOPアンプを用
いることなく、スルーレートの遅いOPアンプで構成し
た積分器を用いても正常な動作をするPDM変換装置の
提供を目的とする。
As described above, in the conventional technique, when an OP amplifier having a slow slew rate is used in a PDM conversion device, normal PDM conversion is not performed when the clock frequency is high, and a digital filter is connected to the A / D converter. When used as a D converter, the output ripple becomes large. The present invention has been made in view of the above problems, and an object of the present invention is to provide a PDM conversion device that operates normally even if an integrator configured with an OP amplifier having a slow slew rate is used without using an expensive high-speed OP amplifier. To do.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
第1の発明は、従来の技術でPDM変換器に用いられて
いた積分器を比例積分器によって構成される調節器に換
え、調節器内でアナログ信号の補償を行うことを特徴と
する。第2の発明は、前記積分器に積分器の出力信号と
入力信号の極性に対応した定電圧を出力する定電圧素子
を加え、積分器の出力と前記定電圧素子との出力の和に
よってアナログ信号の補償を行うことを特徴とする。
In order to achieve the above object, a first invention is to replace an integrator used in a PDM converter in the prior art with an adjuster constituted by a proportional integrator. It is characterized in that an analog signal is compensated for inside. A second aspect of the present invention adds a constant voltage element that outputs a constant voltage corresponding to the polarities of the output signal and the input signal of the integrator to the integrator, and analogizes the sum of the output of the integrator and the output of the constant voltage element. It is characterized in that the signal is compensated.

【0010】第3の発明は、フィードバックされたアナ
ログ信号に比例定数を掛ける比例ゲインと、比例ゲイン
からの出力と積分器からの出力の差をとる第2の加算器
を設けたことを特徴とする。
A third invention is characterized in that a proportional gain for multiplying a fed back analog signal by a proportional constant and a second adder for taking a difference between an output from the proportional gain and an output from the integrator are provided. To do.

【0011】[0011]

【作用】第1の発明においては、比例積分器の比例項に
よって得られる補償電圧V0 ,V0 ’によってアナログ
信号の補償を行うことにより、積分器の特性に左右され
ることなく、アナログ信号のPDM変換を行う。第2の
発明においては、積分器の出力に定電圧素子から得られ
る補償電圧V0,V0 ’によってアナログ信号の補償を
行うことにより積分器の特性に左右されることなく、ア
ナログ信号のPDM変換を行う。
According to the first aspect of the invention, the analog signal is compensated by the compensation voltages V 0 and V 0 'obtained by the proportional term of the proportional integrator, so that the analog signal is not affected by the characteristics of the integrator. PDM conversion is performed. According to the second aspect of the present invention, by compensating an analog signal with the compensation voltage V 0 , V 0 ′ obtained from the constant voltage element at the output of the integrator, the PDM of the analog signal is not affected by the characteristics of the integrator. Do the conversion.

【0012】第3の発明において、フィードバックされ
たアナログ信号に比例定数を掛けることによって得られ
る補償電圧V0 ,V0 ’を用いて、積分器からの出力の
差をとることにより、積分器の特性に左右されないアナ
ログ信号のPDM変換を行う。
In the third aspect of the invention, the difference between the outputs from the integrator is obtained by using the compensation voltages V 0 and V 0 ′ obtained by multiplying the fed back analog signal by a proportional constant. Performs PDM conversion of an analog signal that is not affected by characteristics.

【0013】[0013]

【実施例】以下、図面を参照して本発明を詳細に説明す
る。図1は本発明によるPDM変換装置の第1の実施例
を示すブロック図であり、従来の技術に対して、図6に
示した従来技術によるPDM変換装置の積分器2が、調
節器7に代わった点で相違している。図3は第1の発明
による調節器7の構成を示したものであって、11,1
4は抵抗、12はコンデンサ、13はOPアンプであ
る。第1の発明によれば、調節器7は、図7に示した積
分器に抵抗14(抵抗値r)を加えた比例積分器から構
成されている。比例積分器によって構成することによ
り、(3)式で示した入力に対し調節器7より出力され
るアナログ信号Uは、次式で与えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing a first embodiment of a PDM converter according to the present invention. In contrast to the conventional technique, the integrator 2 of the conventional PDM converter shown in FIG. The difference is that they have changed. FIG. 3 shows the configuration of the adjuster 7 according to the first invention.
Reference numeral 4 is a resistor, 12 is a capacitor, and 13 is an OP amplifier. According to the first aspect of the invention, the adjuster 7 is composed of a proportional integrator in which the resistor 14 (resistance value r) is added to the integrator shown in FIG. By configuring with a proportional integrator, the analog signal U output from the adjuster 7 with respect to the input shown in equation (3) is given by the following equation.

【0014】[0014]

【数2】 [Equation 2]

【0015】次に、(5)式に示すアナログ信号Uによ
る補償作用について説明する。図11は本発明による補
償作用の説明図であり、図11(a)は、積分器から出
力されるアナログ信号を補償した波形図、図11(b)
は、補償したアナログ信号によって得られる出力波形図
である。(5)式で与えられた調節器7の出力のうち、 r(U0 +U0 ’)/R が、図11(a)に示した補償電圧V0 ,V0 ’に相当
する。この第1の発明によれば、この補償電圧V0 ,V
0 ’により積分器の出力が補償されるため、各クロック
毎にしきい値を境に“0”と“1”の2値に変換するこ
とができる。なお、補償電圧V0 ,V0 ’の値は抵抗1
4の抵抗値rを換えることにより変更することができ
る。
Next, the compensation operation by the analog signal U shown in the equation (5) will be described. FIG. 11 is an explanatory view of the compensation operation according to the present invention, FIG. 11 (a) is a waveform diagram in which an analog signal output from the integrator is compensated, and FIG. 11 (b).
FIG. 4 is an output waveform diagram obtained by a compensated analog signal. Of the output of the regulator 7 given by the equation (5), r (U 0 + U 0 ′) / R corresponds to the compensation voltages V 0 and V 0 ′ shown in FIG. 11A. According to the first aspect of the invention, the compensation voltages V 0 , V
Since the output of the integrator is compensated by 0 ', it can be converted into a binary value of "0" and "1" with the threshold value as a boundary for each clock. Note that the values of the compensation voltages V 0 and V 0 ′ are the resistance 1
It can be changed by changing the resistance value r of 4.

【0016】図4は第2の発明による調節器7の構成を
示した図であり、図7に示した積分器に定電圧素子を加
えた構成となっている。図4(a)は定電圧素子にダイ
オード15を、図4(b)は定電圧素子にツェナーダイ
オード16を用いて補償電圧を得ている。図4(a)、
図4(b)において、それぞれの定電圧素子より発生す
る電圧VZ はi3 の極性に対応していて、調節器出力U
は、次式で与えられる。
FIG. 4 is a diagram showing the configuration of the regulator 7 according to the second invention, which is a configuration in which a constant voltage element is added to the integrator shown in FIG. In FIG. 4A, the diode 15 is used as the constant voltage element, and in FIG. 4B, the Zener diode 16 is used as the constant voltage element to obtain the compensation voltage. FIG. 4 (a),
In FIG. 4B, the voltage V Z generated by each constant voltage element corresponds to the polarity of i 3 , and the regulator output U
Is given by the following equation.

【0017】[0017]

【数3】 [Equation 3]

【0018】この(6)式にて与えられる調節器出力U
は第1の発明と同様に図11(a)の波形であり、図1
1(a)の補償電圧V0 ,V0 ’は(6)式の定数項V
Z で与えられ、定電圧素子を使用していることから、V
Z =V0 =V0 ’となる。したがって、第2の発明にお
いても、第1の発明と同様に補償電圧V0 ,V0 ’によ
り積分器の出力が補償される。
Regulator output U given by equation (6)
Is the waveform of FIG. 11A as in the first invention.
The compensation voltages V 0 and V 0 'of 1 (a) are the constant term V of the equation (6).
Given by Z and using the constant voltage element, V
Z = V 0 = V 0 ′. Therefore, also in the second invention, the output of the integrator is compensated by the compensation voltages V 0 and V 0 ′ as in the first invention.

【0019】図2は本発明によるPDM変換装置の第2
の実施例による第3の発明を示したブロック図である。
図2において、図6に示した従来のPDM変換装置に対
し、比例ゲイン6と第2の加算器8が新たに加えられた
点で相違している。図2に示すブロック図の一部は、図
5に示す回路構成図と等価であり、実際には図5に示す
回路構成図により実施される。すなわち、図5は図2の
加算器1,第2の加算器8,積分器2,比例ゲイン6を
実施するための回路構成図である。図5において、サン
プル・ホルダ4より出力され、D/A変換器5によって
変換されたアナログ信号U0 ’は抵抗11と、コンデン
サ17の並列回路へ導かれ、(1),(2)式により求
められるi1 ,i2 と、
FIG. 2 shows a second PDM converter according to the present invention.
6 is a block diagram showing a third invention according to the embodiment of FIG.
2 is different from the conventional PDM conversion device shown in FIG. 6 in that a proportional gain 6 and a second adder 8 are newly added. A part of the block diagram shown in FIG. 2 is equivalent to the circuit configuration diagram shown in FIG. 5, and is actually implemented by the circuit configuration diagram shown in FIG. That is, FIG. 5 is a circuit configuration diagram for implementing the adder 1, the second adder 8, the integrator 2, and the proportional gain 6 of FIG. In FIG. 5, the analog signal U 0 'output from the sample holder 4 and converted by the D / A converter 5 is guided to the parallel circuit of the resistor 11 and the capacitor 17, and according to the equations (1) and (2). I 1 and i 2 required,

【0020】[0020]

【数4】 [Equation 4]

【0021】により求められるi2 ’との和である、 i4 =i1 +i2 +i2 ’ (8) が積分器に入力される。この積分器出力Uは、次式にて
与えられる。
I 4 = i 1 + i 2 + i 2 '(8), which is the sum of i 2 ' determined by, is input to the integrator. This integrator output U is given by the following equation.

【0022】[0022]

【数5】 [Equation 5]

【0023】この(9)式における定数項U0 ’が図1
1(a)における補償電圧V0 ,V0’に相当する。但
し、(9)式では比例ゲインは“1”として与えられ
る。以上のように補償電圧を求め、これを積分器の出力
に加えアナログ信号波形を補償する。アナログ信号波形
が改善されると、積分器をスルーレートの遅いOPアン
プで構成した場合でも、A/D変換後、図11(b)に
示すPDM出力波形を得る。
The constant term U 0 'in equation (9) is shown in FIG.
This corresponds to the compensation voltage V 0 , V 0 ′ in 1 (a). However, in the equation (9), the proportional gain is given as "1". The compensation voltage is obtained as described above, and this is added to the output of the integrator to compensate the analog signal waveform. When the analog signal waveform is improved, the PDM output waveform shown in FIG. 11B is obtained after A / D conversion even when the integrator is configured by an OP amplifier having a slow slew rate.

【0024】[0024]

【発明の効果】本発明によると、積分器の出力信号に補
償電圧を加え補償を行うことにより、スルーレートの遅
いOPアンプを用いた積分器でも、正常なPDM変換を
行うことができ、ディジタルフィルタを接続することに
より本装置をA/D変換器として使用した場合でも、高
価な高速のOPアンプを使用する必要なくA/D変換器
としての出力リプルを抑え、装置全体のコストを抑える
ことができる。
According to the present invention, a compensation voltage is applied to the output signal of the integrator to perform compensation, so that even an integrator using an OP amplifier having a slow slew rate can perform normal PDM conversion. Even if this device is used as an A / D converter by connecting a filter, the output ripple as an A / D converter is suppressed without using an expensive high-speed OP amplifier, and the cost of the entire device is suppressed. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例によるPDM変換装置のブ
ロック図
FIG. 1 is a block diagram of a PDM conversion device according to a first embodiment of the present invention.

【図2】本発明の第2実施例によるPDM変換装置のブ
ロック図
FIG. 2 is a block diagram of a PDM conversion device according to a second embodiment of the present invention.

【図3】第1発明による調節器の構成図FIG. 3 is a block diagram of a regulator according to the first invention.

【図4】第2発明による調節器の構成図FIG. 4 is a block diagram of a controller according to a second invention.

【図5】第3発明による積分器周辺の構成図FIG. 5 is a block diagram of the periphery of an integrator according to the third invention.

【図6】従来技術によるPDM変換装置の構成図FIG. 6 is a block diagram of a PDM conversion device according to a conventional technique.

【図7】従来技術による積分器の構成図FIG. 7 is a block diagram of an integrator according to the related art.

【図8】PDM信号波形比較図FIG. 8 is a PDM signal waveform comparison diagram.

【図9】PDM信号波形比較図FIG. 9 is a PDM signal waveform comparison diagram.

【図10】従来技術によるPDM変換の説明図FIG. 10 is an explanatory diagram of PDM conversion according to the related art.

【図11】本発明によるPDM変換の説明図FIG. 11 is an explanatory diagram of PDM conversion according to the present invention.

【符号の説明】[Explanation of symbols]

1 加算器 2 積分器 3 比較器 4 サンプル・ホルダ 5 1ビットD/A変換器 6 比例ゲイン 7 調節器 8 加算器 11 抵抗 12 コンデンサ 13 OPアンプ 14 抵抗 15 ダイオード 16 ツェナーダイオード 17 コンデンサ 1 adder 2 integrator 3 comparator 4 sample holder 5 1-bit D / A converter 6 proportional gain 7 regulator 8 adder 11 resistor 12 capacitor 13 OP amplifier 14 resistor 15 diode 16 zener diode 17 capacitor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アナログ入力信号が加算器を介して入力さ
れる比例積分器によって構成される調節器と、前記調節
器に接続され、その出力を所定しきい値と比較して2値
信号を出力する比較器と、前記比較器に接続されたサン
プル・ホルダと、前記サンプル・ホルダから出力される
PDM信号をアナログ信号に変換し、前記加算器にフィ
ードバックする1ビットD/A変換器とから構成するこ
とを特徴とするPDM変換装置。
1. An adjuster configured by a proportional integrator to which an analog input signal is input via an adder, and an output connected to the adjuster, the output of which is compared with a predetermined threshold value to output a binary signal. From a comparator for outputting, a sample holder connected to the comparator, and a 1-bit D / A converter for converting the PDM signal output from the sample holder into an analog signal and feeding it back to the adder A PDM conversion device characterized by being configured.
【請求項2】アナログ入力信号を加算器を介して入力
し、積分器と入力信号の極性に対応した定電圧を出力す
る定電圧素子とで構成され、積分器出力と定電圧素子出
力の和を出力とする調節器と、前記調節器の出力を所定
しきい値と比較して2値信号を出力する比較器と、前記
比較器に接続されたサンプル・ホルダと、前記サンプル
・ホルダから出力されるPDM信号をアナログ信号に変
換し、前記加算器にフィードバックする1ビットD/A
変換器とから構成することを特徴とするPDM変換装
置。
2. A sum of an integrator output and a constant voltage element output, which is composed of an integrator and a constant voltage element which outputs a constant voltage corresponding to the polarity of the input signal, by inputting an analog input signal through an adder. , A comparator for comparing the output of the controller with a predetermined threshold value to output a binary signal, a sample holder connected to the comparator, and an output from the sample holder. 1-bit D / A for converting the PDM signal to be converted into an analog signal and feeding it back to the adder
A PDM conversion device comprising a converter.
【請求項3】アナログ入力信号が第1の加算器を介して
入力される積分器と、第2の加算器を介して前記積分器
に接続され、その出力を所定しきい値と比較して2値信
号を出力する比較器と、前記比較器に接続されたサンプ
ル・ホルダと、前記サンプル・ホルダから出力されるP
DM信号をアナログ信号に変換し、前記第1および第2
の加算器にフィードバックする1ビットD/A変換器
と、前記1ビットD/A変換器と第2の加算器との間に
挿入され、前記1ビットD/A変換器により変換された
アナログ信号に比例定数を掛ける比例ゲインとから構成
することを特徴とするPDM変換装置。
3. An integrator, to which an analog input signal is input via a first adder, and an integrator connected to the integrator via a second adder, the output of which is compared with a predetermined threshold value. A comparator that outputs a binary signal, a sample holder connected to the comparator, and a P output from the sample holder.
The DM signal is converted into an analog signal, and the first and second signals are converted.
1-bit D / A converter for feeding back to the adder, and an analog signal inserted between the 1-bit D / A converter and the second adder and converted by the 1-bit D / A converter And a proportional gain obtained by multiplying by a proportional constant.
【請求項4】請求項3に記載のPDM変換装置におい
て、前記比例ゲインと第2の加算器を、前記1ビットD
/A変換器により変換されたアナログ信号が入力される
前記積分器の抵抗に並列接続されるコンデンサにて構成
することを特徴とするPDM変換装置。
4. The PDM conversion device according to claim 3, wherein the proportional gain and the second adder are connected to the 1-bit D
A PDM conversion device comprising a capacitor connected in parallel to the resistance of the integrator to which the analog signal converted by the / A converter is input.
JP04218042A 1992-08-18 1992-08-18 PDM converter Expired - Lifetime JP3092340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04218042A JP3092340B2 (en) 1992-08-18 1992-08-18 PDM converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04218042A JP3092340B2 (en) 1992-08-18 1992-08-18 PDM converter

Publications (2)

Publication Number Publication Date
JPH0669802A true JPH0669802A (en) 1994-03-11
JP3092340B2 JP3092340B2 (en) 2000-09-25

Family

ID=16713741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04218042A Expired - Lifetime JP3092340B2 (en) 1992-08-18 1992-08-18 PDM converter

Country Status (1)

Country Link
JP (1) JP3092340B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032497A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Temperature detection circuit and its correction method
JP2008051775A (en) * 2006-08-28 2008-03-06 Toyota Motor Corp Temperature detecting apparatus for semiconductor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032497A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Temperature detection circuit and its correction method
JP2008051775A (en) * 2006-08-28 2008-03-06 Toyota Motor Corp Temperature detecting apparatus for semiconductor module

Also Published As

Publication number Publication date
JP3092340B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
Van de Plassche A sigma-delta modulator as an A/D converter
US6385067B2 (en) Analog/digital PWM control circuit of a winding
US5196853A (en) Sigma delta converter insensitive to asymmetrical switching times
JP3433655B2 (en) Waveform shaping device and ΣΔ type D / A converter
JPH057154A (en) A/d converter circuit
US6407603B2 (en) Analog voltage isolation circuit
JP2000009409A (en) Circuit for detecting variation of inductance
US20220196437A1 (en) Inductive sensing methods, devices and systems
JPH0669802A (en) Pdm converting device
KR20150106845A (en) CIRCUIT ARRANGEMENT, ANALOG/DIGITAL CONVERTER, GRADIENT AMPLIFIER AND METHOD FOR SUPPRESSING OFFSET, OFFSET DRIFT AND 1/f NOISE DURING ANALOG/DIGITAL CONVERSION
US8531223B2 (en) Signal generator
US4924226A (en) Signal error compensation
JP2675455B2 (en) Variable delay device
JPH0595287A (en) Subtractor circuit and a/d converter provided with the subtractor
JPH09181604A (en) Semiconductor integrated circuit device and its noise reduction method
JPH04317213A (en) Waveform shaping device
JPH10308671A (en) Pwm circuit/weighing circuit shared type delta/sigma type d/a converting device
US4470019A (en) Rate multiplier square root extractor with increased accuracy for transmitter applications
JP3519487B2 (en) DAC amplifier
JPH0481128A (en) A/d converter
JP2008160367A (en) Signal conversion circuit
JPH03207114A (en) Level identifying circuit
JPH08213910A (en) D/a converter
JPS5994919A (en) Signal processor
JPS6094527A (en) Rectangular pulse generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080728

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080728

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090728

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100728

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120728

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120728

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130728