JPH0669360B2 - Liquid-liquid heterophasic reactor - Google Patents

Liquid-liquid heterophasic reactor

Info

Publication number
JPH0669360B2
JPH0669360B2 JP26585587A JP26585587A JPH0669360B2 JP H0669360 B2 JPH0669360 B2 JP H0669360B2 JP 26585587 A JP26585587 A JP 26585587A JP 26585587 A JP26585587 A JP 26585587A JP H0669360 B2 JPH0669360 B2 JP H0669360B2
Authority
JP
Japan
Prior art keywords
reaction
phase
reactor
liquid phase
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26585587A
Other languages
Japanese (ja)
Other versions
JPH01108972A (en
Inventor
勝 坂田
英俊 和田
Original Assignee
生体機能利用化学品新製造技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生体機能利用化学品新製造技術研究組合 filed Critical 生体機能利用化学品新製造技術研究組合
Priority to JP26585587A priority Critical patent/JPH0669360B2/en
Publication of JPH01108972A publication Critical patent/JPH01108972A/en
Publication of JPH0669360B2 publication Critical patent/JPH0669360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液−液異相反応系において、これら異相を撹拌
混和しながら連続多段反応を行い、しかも反応と同時に
反応器内でこれら異相を連続的に分離し効率よく生成物
を得る反応装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a liquid-liquid heterophasic reaction system in which a continuous multi-stage reaction is carried out while stirring and mixing these different phases, and at the same time as the reaction, these different phases are continuously mixed in a reactor. The present invention relates to a reaction device for efficiently separating a product to efficiently obtain a product.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

化学工業における化学反応はその大部分が異相系(気−
液,気−固,液−固,液−液,固−固)での反応であ
り、その中の一つである液−液異相反応においても有用
な反応は数多くある。例えば、リパーゼによる油脂の加
水分解、油脂の改質、油脂の合成や種々のエステルの合
成反応、またプロテアーゼを利用した人工甘味料アスパ
ルテームの合成等にみられる種々のペプチド合成反応、
あるいは有機化合物のニトロ化反応、スルホン化反応や
アルキル化反応等が挙げられる。これら異相系反応は一
般には、反応効率を高めるため、通常、微細なエマルシ
ョンとして反応を行い、所定反応率に達した後、反応を
停止して、次にそれぞれの相に分離して生成物を回収す
る回分操作となる。また、原料物質を連続的に供給し、
連続反応を行うことも可能であるが、この場合反応器の
他にエマルションを分離する工程がさらに必要となる。
Most chemical reactions in the chemical industry are heterophasic (gas-
Liquid, gas-solid, liquid-solid, liquid-liquid, solid-solid), and there are many useful reactions in one of them, liquid-liquid heterophasic reaction. For example, hydrolysis of fats and oils by lipase, modification of fats and oils, synthesis reaction of fats and oils and various ester synthesis reactions, and various peptide synthesis reactions found in synthesis of artificial sweetener aspartame using protease,
Alternatively, a nitration reaction, a sulfonation reaction, an alkylation reaction and the like of an organic compound may be mentioned. In order to improve the reaction efficiency, these heterophasic reactions are generally carried out as a fine emulsion, and after reaching a predetermined reaction rate, the reaction is stopped and then the reaction product is separated into each phase to produce a product. It is a batch operation to collect. In addition, the raw material is continuously supplied,
It is possible to carry out a continuous reaction, but in this case an additional step of separating the emulsion is required in addition to the reactor.

このように、互いに溶け合わない液−液異相分散系での
反応においては、反応後再び反応系をそれぞれの相に分
離する必要があり、この方法としては、一般に静置分
離、遠心分離、あるいは膜による分離等の方法が挙げら
れるが、反応後にこれらの分離工程を組み合わせた場
合、システム的に複雑となり、またコスト的にも負担が
大きくなり工業化の際には問題がある。
Thus, in a reaction in a liquid-liquid heterophasic dispersion system that does not dissolve in each other, it is necessary to separate the reaction system into respective phases again after the reaction, and as a method, generally, stationary separation, centrifugation, or Membrane separation and the like can be mentioned. However, if these separation steps are combined after the reaction, the system becomes complicated and the cost becomes heavy, which is a problem in industrialization.

本発明者らは、すでに酵素あるいは微生物反応での液−
液異相系の反応において高反応率を維持しながら、同時
に生成物の分離をも行うことができる連続反応方法を提
案している(特願昭61-122994号公報)。しかしなが
ら、通常、化学反応や生化学反応の多くは反応率が増大
するにしたがって反応速度が減少するような反応であ
り、反応速度は反応率の減少関数で表わせる。このよう
な反応では、特に高反応率を維持しながら連続反応を行
う場合、完全混合型反応器よりも管型反応器の方が効率
的である。すなわち、特願昭61-122994号においても、
高反応率を維持するためには、反応速度がおそくなるた
め、長い滞留時間が必要となり、生産速度を確保するた
めには大きな反応容積が必要となる。また、完全混合型
反応器においても数器の反応器を直列につなぎ多段型と
することによって管型反応器に対する不利さはかなり克
服できるが、多数のリアクターが必要となりシステム的
に複雑となり、実用化には好ましくない。
The present inventors have already reported that liquids in enzyme or microbial reactions
In a liquid heterophasic system reaction, a continuous reaction method has been proposed in which a high reaction rate can be maintained while simultaneously separating products (Japanese Patent Application No. 61-122994). However, usually, most of chemical reactions and biochemical reactions are reactions in which the reaction rate decreases as the reaction rate increases, and the reaction rate can be expressed by a decreasing function of the reaction rate. In such a reaction, a tubular reactor is more efficient than a completely mixed reactor, particularly when a continuous reaction is performed while maintaining a high reaction rate. That is, even in Japanese Patent Application No. 61-122994,
In order to maintain a high reaction rate, the reaction rate becomes slow, so a long residence time is required, and a large reaction volume is required to ensure the production rate. Also, in the case of a complete mixing type reactor, by connecting several reactors in series and making it a multi-stage type, the disadvantage to the tubular reactor can be overcome considerably, but a large number of reactors are required and the system becomes complicated, and it becomes practical. It is not preferable for conversion.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の問題点を解決すべく、特願昭61−
122994号による反応方法の特徴、すなわち、反応ととも
に2相の分離をも同時に行うという特徴を失うことな
く、しかも前述のような反応器の型式の違いによるそれ
ら特性を踏まえて効率よく反応が行なえる反応器の開発
を目的として鋭意検討を重ねた結果、反応器内に軽液相
および重液相がそれぞれ適当な速度で上下に移動可能な
構造を有する仕切り板を設けることにより、1槽の反応
器で連続的に直列多段反応が行なえる効率的な反応器を
開発するに到った。
In order to solve the above problems, the inventors of the present invention have proposed Japanese Patent Application No.
The reaction can be carried out efficiently without losing the characteristic of the reaction method according to No. 122994, that is, the characteristic that two phases are separated at the same time as the reaction, and in addition, taking into account those characteristics due to the difference in the type of reactor as described above. As a result of extensive studies for the purpose of developing a reactor, one tank of reaction was obtained by providing a partition plate having a structure in which the light liquid phase and the heavy liquid phase can move up and down at appropriate speeds. We have developed an efficient reactor that can carry out a series multi-stage reaction continuously.

即ち本発明は、孔を有する仕切板により上下に2以上の
隔室に仕切られており、各隔室にはそれぞれ内外に仕切
る中壁が設けられると共に、内室部に撹拌器が取付けら
れており、最上層の隔室にはその上部に重液相導入口お
よび軽液相の溢流口が設けられており、最下層の隔室に
は撹拌器の下方に、軽液相導入口が設けられ、最下層の
隔室に重液相出口が設けられてなる互いに不溶あるいは
難溶で比重の異なる2液相の液−液異相系の反応装置を
提供するものである。
That is, according to the present invention, a partition plate having a hole divides the partition into two or more compartments above and below, each compartment is provided with an inner wall for partitioning inside and outside, and an agitator is attached to the inner compartment. In the uppermost compartment, a heavy liquid phase inlet and a light liquid phase overflow outlet are provided in the upper part, and in the lowermost compartment, a light liquid phase inlet is provided below the stirrer. It is intended to provide a liquid-liquid heterophasic reactor of two liquid phases which are insoluble or hardly soluble and have different specific gravities, each having a heavy liquid phase outlet provided in a lowermost compartment.

本発明は軽液相と重液相が上下2層に分離して存在する
反応器において軽液相と重液相とが混和しない部分を残
しながら、軽液相と重液相とをその界面近傍で混和する
ことにより、反応原料としての軽液相および重液相を、
あるいは軽液相および/又は重液相の中に存在する反応
原料を生成物に変換せしめ、混和しない部分の軽液相お
よび/又は重液相に存在する生成物を取り出すことがで
きる反応器において、反応器内を軽液相および重液相が
それぞれ適当な速度で上下に移動可能な構造を有する仕
切り板により多段に区切り連続多段反応を行うことので
きる装置を提供する。
According to the present invention, in a reactor in which a light liquid phase and a heavy liquid phase are separated into upper and lower layers, the light liquid phase and the heavy liquid phase are separated from each other while leaving a portion where the light liquid phase and the heavy liquid phase are immiscible. By mixing in the vicinity, the light liquid phase and the heavy liquid phase as the reaction raw materials,
Alternatively, in a reactor capable of converting a reaction raw material existing in a light liquid phase and / or a heavy liquid phase into a product and removing a product existing in an immiscible part of the light liquid phase and / or the heavy liquid phase. Provided is an apparatus capable of performing a continuous multistage reaction by dividing a light liquid phase and a heavy liquid phase in a reactor into a plurality of stages by a partition plate having a structure capable of moving up and down at appropriate speeds.

従って、本発明により、2相異相系反応においてよりコ
ンパクトな反応器が実現でき、しかも反応とともに2相
の分離をも同時に行いうる非常にすぐれた反応方法が確
立できる。
Therefore, according to the present invention, a more compact reactor can be realized in a two-phase heterophasic system reaction, and a very excellent reaction method capable of simultaneously separating two phases together with the reaction can be established.

本発明を更に詳しく、重液相として水溶液、軽液相とし
て水より比重の小さい非水溶液相の液−液2相系反応を
一例として、本発明の好適実施態様を示した図面に基づ
いて説明する。反応例としてA+B→C+D(A,Bはそ
れぞれ反応原料、C,Dはそれぞれ生成物である。今Aお
よびCは水溶性、BおよびDは水不溶性とする。)で表
わされる液−液2相系反応について第1図を用いて説明
する。第1図は本発明の特徴を有する反応器の1例であ
る。反応器1の下から2は水相、3,4,5は反応部で孔を
有する仕切り板27により3つの隔室に区切られている。
隔室の数は多くなれば効率がよくなるが装置的に複雑に
なり高価になる。従って2〜10個が好ましい。仕切り板
に区切られたそれぞれの部分は、非水溶液相と水相を微
細なエマルションとし効率的な反応器を行うため、ここ
ではドラフトチューブ8を有するヘリカルスクリュー型
の撹拌羽根25により2相を混和する。6は非水溶液(軽
液)相である。第1図に示したように反応器の最上部と
最下部にそれぞれじゃま板10,22を設けると反応器の最
上部と最下部での液の完全混合を防止し、非水溶液相と
水相とが分離した状態の部分が形成できるので好まし
い。
The present invention will be described in more detail with reference to the drawings showing a preferred embodiment of the present invention by taking as an example a liquid-liquid two-phase system reaction of an aqueous solution as a heavy liquid phase and a non-aqueous solution phase having a smaller specific gravity than water as a light liquid phase. To do. Liquid-liquid 2 represented by A + B → C + D (A and B are reaction raw materials and C and D are products respectively. Now, A and C are water-soluble and B and D are water-insoluble) as a reaction example. The phase reaction will be described with reference to FIG. FIG. 1 is an example of a reactor having the features of the present invention. From the bottom of the reactor 1, 2 is an aqueous phase, and 3, 4 and 5 are divided into three compartments by a partition plate 27 having holes in the reaction section.
The larger the number of compartments, the more efficient it is, but the device becomes complicated and expensive. Therefore, 2 to 10 are preferable. In each part divided into partition plates, the non-aqueous solution phase and the water phase are made into a fine emulsion to perform an efficient reactor, so here, the two phases are mixed by a helical screw type stirring blade 25 having a draft tube 8. To do. 6 is a non-aqueous solution (light liquid) phase. As shown in Fig. 1, if baffles 10 and 22 are provided at the top and bottom of the reactor, respectively, the liquids at the top and bottom of the reactor are prevented from being completely mixed, and the non-aqueous phase and the water phase are prevented. It is preferable because a part in the state where and are separated can be formed.

この反応器内に反応原料A(水相)と反応原料B(非水
溶液相)をそれぞれ反応原料(水相)貯槽16、反応原料
(非水溶液相)貯槽17より一定の比率でそれぞれポンプ
19,18により、水(重液相)導入口28、非水溶液(軽液
相)導入口9から仕込む。水と非水溶液は並流あるいは
向流いずれの方法で仕込んでもよいが通常は向流となる
ように仕込むことが好ましい。
The reaction raw material A (aqueous phase) and the reaction raw material B (non-aqueous solution phase) are pumped into the reactor from the reaction raw material (aqueous phase) storage tank 16 and the reaction raw material (non-aqueous solution phase) storage tank 17 at a constant ratio.
With 19,18, water (heavy liquid phase) inlet 28 and non-aqueous solution (light liquid phase) inlet 9 are charged. The water and the non-aqueous solution may be charged in either a cocurrent or countercurrent manner, but it is usually preferable to charge them in a countercurrent manner.

反応器内を区切る仕切り板としては、仕切り板を界した
上部と下部の液の混合はできるだけ少なく、一方非水溶
液と水を連続供給した場合それらの供給速度に見合うだ
けの移動速度を有するものが用いられる。すなわち、非
水溶液と水の供給速度だけそれぞれの液相が上下に移動
するものが最も好ましい。仕切り板の形状、材質として
は、上記の条件を満たすものであれば特に限定するもの
でなく、例えば蒸留、抽出等のたな段塔に使用される多
孔板トレイ、泡鐘トレイ、バブルトレイ等の形式のもの
が使用され、材質においても、ステンレス、ガラス、セ
ラミック、合成高分子等が使用される。
As a partition plate that divides the inside of the reactor, one that has as little mixing as possible of the upper and lower liquids that bound the partition plate, on the other hand, if the non-aqueous solution and water are continuously supplied, those that have a moving speed commensurate with their supply speed Used. That is, it is most preferable that the respective liquid phases move up and down by the supply rates of the non-aqueous solution and water. The shape and material of the partition plate are not particularly limited as long as they satisfy the above conditions, and for example, perforated plate trays, bubble cap trays, bubble trays, etc. used in a shelf column for distillation, extraction, etc. In this case, stainless steel, glass, ceramics, synthetic polymers, etc. are used as the material.

最上部の隔室には非水溶液(軽液相)の溢流口29、又、
最下層の隔室には水(重液相)出口30が設けられてお
り、それぞれの出口から生成したD,Cを取り出す。
In the uppermost compartment, a non-aqueous solution (light liquid phase) overflow port 29,
A water (heavy liquid phase) outlet 30 is provided in the lowermost compartment, and D and C generated from each outlet are taken out.

本発明の方法を用いれば反応と同時に生成物の分離を行
うことができるので、回分操作はもちろん、連続的に生
成物を抜き出しながら反応原料を供給する連続反応ある
いは半連続反応を行うことも可能である。また、反応器
中を仕切り板により多段に区切り、液の完全混合を防ぐ
ことにより、効率的な反応が行え、反応時間の短縮、反
応器の縮小や生成物濃度の高濃度化等が可能となる。
Since the product of the present invention can be separated at the same time as the reaction, it is possible to perform not only batch operation but also continuous reaction or semi-continuous reaction in which the reaction raw materials are continuously extracted while continuously extracting the product. Is. In addition, by partitioning the reactor in multiple stages with partition plates to prevent complete mixing of the liquid, an efficient reaction can be performed, shortening the reaction time, reducing the reactor size, and increasing the product concentration. Become.

中壁として第1図のようなドラフトチューブ8および撹
拌羽根25を用いる場合ドラフトチューブの径は特に限定
されるものではなく目的とする反応により径を決定すれ
ばよいが反応槽の径の5〜90%の径であれば好ましく用
いられる。また、撹拌羽根の回転速度は、反応器中の下
層がうまく巻き上げられて非水溶液相と水相との界面近
傍で混和が起こり、しかも反応器上部と下部に、非水溶
液相と水相とが混和しない部分が残るように設定すれば
よい。
When the draft tube 8 and the stirring blade 25 as shown in FIG. 1 are used as the inner wall, the diameter of the draft tube is not particularly limited and may be determined according to the intended reaction. A diameter of 90% is preferably used. In addition, the rotation speed of the stirring blade was such that the lower layer in the reactor was well rolled up to cause mixing in the vicinity of the interface between the non-aqueous solution phase and the aqueous phase, and the non-aqueous solution phase and the aqueous phase were formed in the upper and lower parts of the reactor. It may be set so that the part that does not mix remains.

第1図に示した如く充填材7を用いてもよい。この場
合、その充填材の形態は特に限定されるものではなく、
通常一般に充填材として用いられるラシヒリング、レツ
シングリング、ベルルサドル、インタロックスサドル、
ポールリング等の充填材や円筒状にしたネットなどを充
填してもよい。材質も特に限定されるものではなく、金
属、磁製、プラスチック製のもの等を用いることができ
る。
The filler 7 may be used as shown in FIG. In this case, the form of the filler is not particularly limited,
Raschig rings, dressing rings, berl saddles, interlocks saddles, which are commonly used as fillers,
You may fill with a filling material such as a pole ring or a cylindrical net. The material is not particularly limited, and metal, porcelain, plastic, or the like can be used.

充填材を用いることによって水相および非水溶液相の接
触効率が高められ、また、触媒あるいは、酵素、微生物
等の生体触媒を用いた系においては、それら触媒と反応
原料の接触効率が高められ効率的な反応が行なえる。し
かし、充填材を用いなくともこれらの条件が満たされる
ならば特に充填材を使用する必要はない。
The use of the filler enhances the contact efficiency between the aqueous phase and the non-aqueous solution phase, and in a system using a catalyst or a biocatalyst such as an enzyme or a microorganism, the contact efficiency between the catalyst and the reaction raw material is increased. Reaction can be performed. However, if these conditions are satisfied without using the filler, it is not necessary to use the filler in particular.

本反応器を用いて、通常の化学触媒、あるいは酵素、微
生物等の生体触媒を使った反応を行う場合、これら反応
に使用した触媒は効率よく反応器内に保持されるが、水
相あるいは非水溶液相に若干溶解してくることがある。
したがってこれら触媒の効率的な利用、あるいはまた生
成物の品質への影響等を考慮するとこれら触媒を濃縮回
収することが好ましい。
When using this reactor to carry out reactions using ordinary chemical catalysts or biocatalysts such as enzymes and microorganisms, the catalysts used for these reactions are efficiently retained in the reactor, but the water phase or May dissolve slightly in the aqueous phase.
Therefore, it is preferable to concentrate and recover these catalysts in consideration of efficient use of these catalysts and influence on the quality of products.

尚、本発明において、触媒とは通常の化学触媒はもちろ
ん酵素、微生物等の生体触媒を含めたすべての触媒のこ
とである。
In the present invention, the term "catalyst" means not only ordinary chemical catalysts but also all catalysts including biocatalysts such as enzymes and microorganisms.

触媒を効率的に濃縮回収するには静置分離、遠心分離、
膜分離等の方法が挙げられるが、連続的に分離するには
限外濾過膜を用いるのが好ましい。使用する限外濾過膜
は、反応に使用する触媒を通過させないものであれば材
質、形状等特に限定するものではなく、水相側に溶解し
たものを回収するには酢酸セルロース膜、ポリアクリロ
ニトリル膜、ポリスルホン膜、ポリアミド膜等のような
親水性材質のものが好ましく使用でき、また非水溶液相
に溶解したものを回収するにはポリプロピレン膜、ポリ
エチレン膜、テフロン膜等のような疎水性材質のものが
好ましく使用できる。さらに多孔質ガラス、多孔質セラ
ミック等の無機材質の膜は水相、非水溶液相のいずれの
相の膜分離にも好ましく使用できる。また、形状につい
ても平膜状、管状、スパイラル状、中空糸状等どのよう
な形状のものでも使用できる。限外濾過膜の分画分子量
については反応に使用する触媒により異なり、これら触
媒の透過が阻止できる孔径を有しておればよく、特に限
定するものではないが、一般に3000〜50000程度のもの
が好ましい。限外濾過により触媒を含まない水相あるい
は非水溶液相を連続的に抜き出し、触媒の濃縮液は連続
的、あるいは半連続的に反応系内へ戻してやればよい。
In order to efficiently concentrate and recover the catalyst, static separation, centrifugation,
A method such as membrane separation can be used, but it is preferable to use an ultrafiltration membrane for continuous separation. The ultrafiltration membrane to be used is not particularly limited in terms of material, shape, etc. as long as it does not pass the catalyst used in the reaction, and cellulose acetate membrane, polyacrylonitrile membrane is used for recovering the one dissolved in the aqueous phase side. A hydrophilic material such as a polysulfone membrane or a polyamide membrane can be preferably used, and a polypropylene material, a polyethylene membrane, a Teflon membrane or the like having a hydrophobic material can be used to collect the material dissolved in the non-aqueous phase. Can be preferably used. Furthermore, a membrane made of an inorganic material such as porous glass or porous ceramic can be preferably used for membrane separation of any of a water phase and a non-aqueous solution phase. Further, regarding the shape, any shape such as a flat film shape, a tubular shape, a spiral shape, a hollow fiber shape can be used. The molecular weight cut-off of the ultrafiltration membrane depends on the catalyst used in the reaction, as long as it has a pore size that can prevent the permeation of these catalysts, and is not particularly limited, but generally about 3000 to 50,000. preferable. The aqueous phase or non-aqueous solution phase containing no catalyst may be continuously extracted by ultrafiltration, and the concentrated solution of the catalyst may be continuously or semi-continuously returned to the reaction system.

尚、触媒のほとんどが反応器内に保持され水相あるいは
非水溶液相への溶解が無視できるならば限外濾過による
これら触媒の分離の必要はない。またあらかじめ種々の
方法で不溶性担体に固定化した触媒を充填することも可
能で、この場合も限外濾過による触媒回収工程は必要な
い。あるいはまた、限外濾過工程を省略して、水相ある
いは非水溶液相に溶解した触媒分に相当するフレッシュ
な触媒を添加する方法も可能である。
If most of the catalyst is retained in the reactor and its dissolution in the aqueous phase or non-aqueous solution phase can be ignored, it is not necessary to separate these catalysts by ultrafiltration. It is also possible to fill the catalyst immobilized on the insoluble carrier in advance by various methods, and in this case also, the catalyst recovery step by ultrafiltration is not necessary. Alternatively, it is also possible to omit the ultrafiltration step and add a fresh catalyst corresponding to the catalyst component dissolved in the aqueous phase or the non-aqueous solution phase.

このような方法を用いれば特別な前処理を行うことな
く、反応器内に触媒を保持し効率よくこれら触媒の回収
再利用が可能である。触媒は特別な前処理を行うことな
く、充填材に吸着等により保持させるか、又はあらかじ
め種々の方法で不溶化処理をした触媒(担持触媒、固定
化生体触媒等)を充填するか、あるいはまたこれら充填
物を用いることなくフリーな状態で用いる等の方法があ
るが、何れの方法を用いるかは触媒の特徴、あるいは反
応条件等により適当に選択すればよい。
By using such a method, it is possible to retain the catalyst in the reactor and efficiently recover and reuse the catalyst without performing a special pretreatment. The catalyst may be retained by adsorption or the like without any special pretreatment, or may be filled with a catalyst (supported catalyst, immobilized biocatalyst, etc.) that has been insolubilized in advance by various methods, or There is a method such as using in a free state without using a packing, and which method is to be used may be appropriately selected depending on the characteristics of the catalyst, reaction conditions and the like.

本発明の特徴は、反応器中の上下2層を界面近傍で混和
させて反応を行わせ、反応器中の上層部および下層部に
は混和されない部分を残したままで反応を行い、反応と
同時に軽液相と重液相をそれぞれ独立にとり出せる反応
器において、反応器内に反応器内の液の完全混合を防
ぎ、しかも、軽液相と重液相がそれぞれの供給速度と同
じ速度で移動できる構造をもつ仕切り板を設けることに
より効率的な反応即ち、1槽の反応器で連続的に直列多
段反応が行なえることである。したがって連続的に反応
原料を加えながら、同時に生成物を得ることができる。
また、連続的に反応が行なえるので反応器内の各生成物
の濃度を一定に維持することもできる。
The feature of the present invention is that the upper and lower two layers in the reactor are mixed in the vicinity of the interface to carry out the reaction, and the reaction is performed while leaving the immiscible parts in the upper layer part and the lower layer part in the reactor. In a reactor that can take out the light liquid phase and the heavy liquid phase independently, it prevents the liquid in the reactor from being completely mixed in the reactor, and the light liquid phase and the heavy liquid phase move at the same speed as each supply speed. By providing a partition plate having a possible structure, it is possible to carry out an efficient reaction, that is, a series multi-stage reaction can be continuously performed in a single tank reactor. Therefore, the products can be simultaneously obtained while continuously adding the reaction raw materials.
Further, since the reaction can be continuously performed, the concentration of each product in the reactor can be kept constant.

本発明の方法は、軽液相と重液相の液−液異相系での種
々の反応に適用でき、前述のリパーゼによる油脂の加水
分解反応、リパーゼによるトリグリセリドの合成、トリ
グリセリドのエステル交換反応、あるいはサーモライシ
ンによるカルボベンジルオキシ−1−アスパラギン酸と
γ−フェニルアラニンメチルエステルからの人工甘味料
アスパルテーム(アスパルチルフェニルアラニンメチル
エステル)の合成などのようなプロテアーゼによるペプ
チドの合成反応、あるいはまた、これら生化的な反応の
他に、有機化合物のニトロ化反応、スルホン化反応やア
ルキル化反応等の液−液2相系での反応に広く応用可能
であるが、これらに限定されるものではない。
The method of the present invention can be applied to various reactions in a liquid-liquid heterophasic system of a light liquid phase and a heavy liquid phase, the hydrolysis reaction of fats and oils by the above lipase, the synthesis of triglyceride by lipase, the transesterification reaction of triglyceride, Alternatively, a synthetic reaction of a peptide with a protease such as the synthesis of artificial sweetener aspartame (aspartyl phenylalanine methyl ester) from carbobenzyloxy-1-aspartic acid and γ-phenylalanine methyl ester by thermolysin, or these biosynthesis In addition to the reaction, it is widely applicable to reactions in a liquid-liquid two-phase system such as nitration reaction of organic compounds, sulfonation reaction and alkylation reaction, but is not limited thereto.

〔実施例〕〔Example〕

以下、本発明の実施例について説明するが、本発明はこ
れら実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these examples.

実施例−1 本発明の方法を用いて酵素により油脂の加水分解を行う
場合について述べる。この場合、反応物質は油脂および
水、酵素はリパーゼ、反応生成物は脂肪酸およびグリセ
リンである。本発明者らはリパーゼを用いた油脂の加水
分解に際しては、生成物であるグリセリンがリパーゼの
安定性に大きく寄与していることをすでに見出してい
る。本発明者らの研究によれば反応系内の水相中のグリ
セリン濃度が10〜40重量%の範囲内にあるとき酵素が安
定化され好ましく油脂の加水分解が進行する。本発明の
方法は、反応器内の仕切り板に区切られた各段それぞれ
において各種成分の濃度を一定に保つことが容易であ
り、従ってリパーゼによる油脂の加水分解に好ましく適
用される。つまり、油脂と水相の供給比率を適当に調節
することにより、高い油脂分解率を維持したままで水相
中のグリセリン濃度を制御できる。
Example-1 The case of hydrolyzing fats and oils with an enzyme using the method of the present invention will be described. In this case, the reaction substances are fat and water, the enzyme is lipase, and the reaction products are fatty acid and glycerin. The present inventors have already found that when hydrolyzing fats and oils using lipase, the product glycerin greatly contributes to the stability of lipase. According to the research conducted by the present inventors, when the glycerin concentration in the aqueous phase in the reaction system is within the range of 10 to 40% by weight, the enzyme is stabilized and the hydrolysis of fats and oils preferably proceeds. The method of the present invention makes it easy to keep the concentrations of various components constant in each stage divided into partition plates in the reactor, and therefore is preferably applied to hydrolysis of fats and oils by lipase. That is, the glycerin concentration in the water phase can be controlled while maintaining a high oil and fat decomposition rate by appropriately adjusting the supply ratio of the oil and fat and the water phase.

第1図は本発明の好適実施システムの一例を示したもの
であり、まず、第1図に示した反応システムによりリパ
ーゼによる大豆油の加水分解を行った。リパーゼによる
油脂の加水分解では第1図において9は油脂供給ノズ
ル、11は脂肪酸溶液貯槽、14はグリセリン水溶液膜処理
用貯槽、15はグリセリン水貯槽、16は水貯槽、17は油脂
貯槽となる。
FIG. 1 shows an example of a preferred embodiment system of the present invention. First, soybean oil was hydrolyzed by lipase by the reaction system shown in FIG. In the hydrolysis of fats and oils with lipase, in FIG. 1, 9 is a fats and oils supply nozzle, 11 is a fatty acid solution storage tank, 14 is a glycerol aqueous solution membrane treatment storage tank, 15 is a glycerin water storage tank, 16 is a water storage tank, and 17 is a fats and oils storage tank.

反応槽1に予め大豆油を酵素分解した分解脂肪酸(脂肪
酸含有率85%)1kg、15wt%グリセリン水1kgおよびキャ
ンディダシリンドラセより生産したリパーゼ(320000単
位/g)2gを加えた反応槽を30℃に保ちながら反応を行
った。反応槽の径とドラフトチューブ8の径の比率は1
0:6である。また撹拌羽根は第1図に示したようなリボ
ン型羽根25を用い周速は約0.5m/秒として撹拌を行っ
た。この反応槽1に油脂貯槽17からポンプ18により50g
/HRの流量で大豆油(脂肪酸含有率0%)を反応槽下部
のノズル9から連続供給し、また、水貯槽16にはあらか
じめ15wt%グリセリン水を仕込んでおき、ポンプ19を用
いて50g/HRの流量で15wt%グリセリン水を反応器上部
から連続的に供給した。即ち反応槽内での油相および水
相の平均滞留時間が20時間となるようにそれぞれ反応器
内へ供給した。反応槽を仕切り板により3段に区切るこ
とにより完全混合することなく効率のよい加水分解反応
が行われる。また反応槽の上部と下部にそれぞれじゃま
板10と22を設けることによりその上側6と下側2ではほ
とんど水を含まない脂肪酸、あるいはほとんど油を含ま
ないグリセリン水が得られる。このようにして脂肪酸は
供給した大豆油の量だけ連続的に軽液相の溢流口29より
オーバーフローにより抜き出し、グリセリン水は反応槽
下部の出口30からポンプ20により連続的に抜き出し、一
旦貯槽14に貯めた後、限外濾過膜13により水相に溶解し
ている酵素を濃縮回収し、グリセリン水の抜き出し量が
50g/HRとなるように調整しながら反応を行った。本実
施例では限外濾過膜としてポリアクリロニトリル膜(分
画分子量30000)を用いて半連続的に酵素の濃縮を行い
再び反応槽へもどした。
1 reaction mixture of 1kg of decomposed fatty acid (fatty acid content 85%) of enzymatically decomposed soybean oil, 1kg of 15wt% glycerin water and 2g of lipase (320000 units / g) produced from Candida cylindracee was added to the reaction vessel 30 The reaction was carried out while maintaining the temperature at ℃. The ratio of the diameter of the reaction tank and the diameter of the draft tube 8 is 1
It is 0: 6. As the stirring blade, a ribbon type blade 25 as shown in FIG. 1 was used, and stirring was performed at a peripheral speed of about 0.5 m / sec. 50 g from the oil / fat storage tank 17 to the reaction tank 1 by the pump 18.
The soybean oil (fatty acid content 0%) was continuously supplied from the nozzle 9 at the bottom of the reaction tank at a flow rate of / HR, and the water storage tank 16 was preliminarily charged with 15 wt% glycerin water. 15 wt% glycerin water was continuously supplied from the upper part of the reactor at a flow rate of HR. That is, the oil phase and the water phase were fed into the reactor respectively so that the average residence time of the oil phase and the water phase was 20 hours. By dividing the reaction tank into three stages with partition plates, an efficient hydrolysis reaction can be performed without complete mixing. Further, by providing baffle plates 10 and 22 at the upper and lower portions of the reaction tank, respectively, fatty acid containing almost no water or glycerin water containing almost no oil can be obtained on the upper side 6 and the lower side 2. In this way, the fatty acid is continuously extracted by overflow from the light liquid phase overflow port 29 by the amount of the soybean oil supplied, and the glycerin water is continuously extracted from the outlet 30 at the bottom of the reaction tank by the pump 20 and once stored in the storage tank 14 After being stored in, the enzyme dissolved in the aqueous phase was concentrated and recovered by the ultrafiltration membrane 13, and the amount of glycerin water extracted was
The reaction was carried out while adjusting so as to be 50 g / HR. In this example, a polyacrylonitrile membrane (molecular weight cut-off of 30,000) was used as an ultrafiltration membrane to semi-continuously concentrate the enzyme and then returned to the reaction tank.

このような反応装置を用いて大豆油、グリセリン水溶液
の連続供給及び脂肪酸溶液、グリセリン水溶液の連続抜
き出しを行いながら反応を継続した。
The reaction was continued while continuously supplying soybean oil and an aqueous glycerin solution and continuously extracting a fatty acid solution and an aqueous glycerin solution using such a reactor.

20時間後(反応槽内での平均滞留時間に等しい)、反応
槽1の3の部分、4の部分、5の部分から反応液を採取
し、それぞれの油相の酸価及び鹸化価を測定し、またそ
れぞれの水相のグリセリン濃度を測定した。3の部分の
酸価=155,鹸化価=198,4の部分の酸価=181,鹸化価=1
99,5の部分の酸価=190,鹸化価=200が得られた。下式
より加水分解率を計算したところ、3,4,5の部分の加水
分解率はそれぞれ78%,91%,95%であった。
After 20 hours (equal to the average residence time in the reaction tank), the reaction solution was sampled from the 3rd part, 4th part and 5th part of the reaction tank 1, and the acid value and saponification value of each oil phase were measured. Moreover, the glycerin concentration of each aqueous phase was measured. Acid value of part 3 = 155, saponification value = 198, Acid value of part 4 = 181, saponification value = 1
An acid value = 190 and a saponification value = 200 in the 99,5 portion were obtained. When the hydrolysis rate was calculated from the following formula, the hydrolysis rates of the 3,4,5 parts were 78%, 91%, and 95%, respectively.

また、3,4,5の部分のグリセリン濃度は、それぞれ24%,
16.4%,15.4%であった。尚、5の部分の分解率は脂肪
酸溶液貯槽11に得られる脂肪酸溶液の分解率に等しく、
3の部分の水相中のグリセリン濃度はグリセリン水溶液
貯槽15のグリセリン水溶液のグリセリン濃度に等しい。
In addition, the glycerin concentration in the 3,4,5 part is 24%,
It was 16.4% and 15.4%. The decomposition rate of the portion 5 is equal to the decomposition rate of the fatty acid solution obtained in the fatty acid solution storage tank 11,
The glycerin concentration in the aqueous phase of the portion 3 is equal to the glycerin concentration of the glycerin aqueous solution in the glycerin aqueous solution storage tank 15.

同様に大豆油の供給開始40時間後、60時間後、80時間
後、100時間後の反応槽の各部分の分解率及びグリセリ
ン濃度を測定したところ、第1表の如くであった。
Similarly, when the decomposition rate and glycerin concentration of each part of the reaction vessel were measured 40 hours, 60 hours, 80 hours, and 100 hours after the start of soybean oil supply, it was as shown in Table 1.

このように100時間の連続反応を行っても酵素は全く失
活せず、大豆油の分解率も92〜95%が得られ、水相中の
グリセリン濃度も23〜24%に維持できた。
Even after 100 hours of continuous reaction, the enzyme was not inactivated at all, the decomposition rate of soybean oil was 92 to 95%, and the glycerin concentration in the aqueous phase was 23 to 24%.

一方、脂肪酸溶液貯槽11に得られる脂肪酸溶解中の水分
は0.5%以下であった。また、限外濾過膜を透過したグ
リセリン水は品質的にも良好なグリセリン水が得られ
た。このように本反応システムを用いることにより、反
応と生成物の分離を同時に行いながらしかも効率よく酵
素を回収再利用し、高分解率を維持できることがわかっ
た。
On the other hand, the water content in the fatty acid solution storage tank 11 during dissolution of the fatty acid was 0.5% or less. In addition, the glycerin water that passed through the ultrafiltration membrane was glycerin water with good quality. Thus, it was found that by using this reaction system, the reaction and the product can be separated at the same time, and the enzyme can be efficiently recovered and reused to maintain a high decomposition rate.

比較例−1 ここでは、反応槽内に実施例−1で用いたような反応槽
を多段に区切る仕切り板を有しない反応槽を用いて大豆
油の連続加水分解を行った。
Comparative Example-1 Here, soybean oil was continuously hydrolyzed using a reaction tank having no partition plate for dividing the reaction tank used in Example-1 into multiple stages in the reaction tank.

反応槽に予め大豆油を酵素分解した分解脂肪酸(脂肪酸
含有率85%)1kg、20wt%グリセリン水1kg及びキャンデ
ィダシリンドラセより生産したリパーゼ(320000単位/
g)2gを加えて反応槽を30℃に保ちながら反応を行っ
た。反応槽の径とドラフトチャーブの径の比率は10:6で
ある。また撹拌羽根はリボン型羽根を用い周速は0.5m/
秒として撹拌を行った。
1 kg of decomposed fatty acid (85% fatty acid content) obtained by enzymatically decomposing soybean oil in a reaction tank in advance, 1 kg of 20 wt% glycerin water, and lipase produced from Candida cylindracee (320000 units /
g) 2 g was added and the reaction was carried out while maintaining the reaction tank at 30 ° C. The ratio of the diameter of the reaction tank to the diameter of the draft chirp is 10: 6. Ribbon type blades are used for the stirring blades and the peripheral speed is 0.5m /
Stirring was performed for seconds.

反応槽の下部から50g/HRの流量で大豆油を供給上部か
ら25g/HRの流量で水を供給し連続反応を行った。即ち
反応槽内での大豆油の平均滞留時間が20時間、そして水
相中のグリセリン濃度が約20%に保つことができるよう
にそれぞれ反応槽内へ供給した。
Soybean oil was supplied from the lower part of the reaction tank at a flow rate of 50 g / HR, and water was supplied from the upper part at a flow rate of 25 g / HR to carry out a continuous reaction. That is, the soybean oil was fed into the reaction vessel so that the average residence time of the soybean oil was 20 hours and the glycerin concentration in the aqueous phase was maintained at about 20%.

このようにして、実施例−1と同様に生成した脂肪酸は
連続的にオーバーフローにより抜き出し、甘水は限外濾
過膜により水相に溶解している酵素を回収した後、連続
的に系外に抜き出した。
In this way, the fatty acid produced in the same manner as in Example-1 was continuously withdrawn by overflow, and the sweet water was continuously removed from the system after the enzyme dissolved in the aqueous phase was recovered by the ultrafiltration membrane. I pulled it out.

反応時間毎の大豆油の加水分解率およびグリセリン濃度
を測定したところ第2表のようになった。
The hydrolysis rate of soybean oil and the glycerin concentration at each reaction time were measured and the results are shown in Table 2.

このように100時間の連続反応を行っても、酵素の失活
は認められなかったが、大豆油の分解率は85〜86%であ
り、実施例−1に比べて低いことがわかる。
Thus, the enzyme was not deactivated even after the continuous reaction for 100 hours, but the decomposition rate of soybean oil was 85 to 86%, which is lower than that of Example-1.

実施例−2 実施例−1と同様の装置を用い、初期仕込み大豆油分解
液、15wt%グリセリン水溶液および酵素仕込み量も実施
例−1と同じにし、大豆油供給量は実施例−1と同じ50
g/HRとし、15wt%グリセリン水溶液供給量を25g/HRに
変更した。即ち水相の平均滞留時間を40時間とした。こ
のようにして大豆油の連続加水分解を行った。反応時間
毎の反応槽各部の脂肪分解率およびグリセリン濃度は第
3表のようになった。
Example-2 Using the same apparatus as in Example-1, the initially charged soybean oil decomposition solution, the 15 wt% glycerin aqueous solution and the enzyme charge were also the same as in Example-1, and the soybean oil supply was the same as in Example-1. 50
g / HR, and changed the supply amount of the 15 wt% glycerin aqueous solution to 25 g / HR. That is, the average residence time of the aqueous phase was 40 hours. In this way, soybean oil was continuously hydrolyzed. The lipolysis rate and glycerin concentration in each part of the reaction tank for each reaction time are shown in Table 3.

このように水相の供給スピードを調整することにより高
分解率を維持しながら、しかも高濃度グリセリン水が得
られることがわかった。
It was found that by adjusting the supply speed of the aqueous phase in this way, high-concentration glycerin water can be obtained while maintaining a high decomposition rate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の反応装置の1例を示す模式図である。 1…反応槽 2…重液相部 3〜5…反応部、6…軽液相部、7…充填材 8…ドラフトチューブ 9…反応原料(軽液相)導入口 10…上部じゃま板 11…生成物(軽液相)貯槽 12…せき 13…限外濾過膜 14…生成物(重液相)膜処理用貯槽 15…生成物(重液相)貯槽 16…反応原料(重液相)貯槽 17…反応原料(軽液相)貯槽 18〜21…ポンプ 22…下部じゃま板 23〜24…バルブ 25…撹拌羽根 26…撹拌用モーター 27…反応槽内仕切り板 28…重液相導入口 29…生成物(軽液相)溢流口 30…生成物(重液相)出口 FIG. 1 is a schematic diagram showing an example of the reaction apparatus of the present invention. DESCRIPTION OF SYMBOLS 1 ... Reaction tank 2 ... Heavy liquid phase part 3-5 ... Reaction part, 6 ... Light liquid phase part, 7 ... Filler 8 ... Draft tube 9 ... Reaction raw material (light liquid phase) inlet 10 ... Upper baffle plate 11 ... Product (light liquid phase) storage tank 12 Cough 13 Ultrafiltration membrane 14 Product (heavy liquid phase) membrane processing storage tank 15 Product (heavy liquid phase) storage tank 16 Reaction raw material (heavy liquid phase) storage tank 17 ... Reactant (light liquid phase) storage tank 18-21 ... Pump 22 ... Lower baffle plate 23-24 ... Valve 25 ... Stirring blade 26 ... Stirring motor 27 ... Reaction tank partition plate 28 ... Heavy liquid phase inlet 29 ... Product (light liquid phase) overflow port 30 ... Product (heavy liquid phase) outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】孔を有する仕切板により上下に2以上の隔
室に仕切られており、各隔室にはそれぞれ内外に仕切る
中壁が設けられると共に、内室部に撹拌器が取付けられ
ており、最上層の隔室にはその上部に重液相導入口およ
び軽液相の溢流口が設けられており、最下層の隔室には
撹拌器の下方に、軽液相導入口が設けられ、最下層の隔
室に重液相出口が設けられてなる互いに不溶あるいは難
溶で比重の異なる2液相の液−液異相系の反応装置。
1. A partition plate having a hole divides the partition into two or more compartments above and below. Each compartment is provided with an inner wall for partitioning the inside and the outside, and an agitator is attached to the inner compartment. In the uppermost compartment, a heavy liquid phase inlet and a light liquid phase overflow outlet are provided in the upper part, and in the lowermost compartment, a light liquid phase inlet is provided below the stirrer. A liquid-liquid heterophasic reactor of two liquid phases having different specific gravities, which are insoluble or hardly soluble in each other, provided with a heavy liquid phase outlet in a lowermost compartment.
JP26585587A 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor Expired - Fee Related JPH0669360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26585587A JPH0669360B2 (en) 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26585587A JPH0669360B2 (en) 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor

Publications (2)

Publication Number Publication Date
JPH01108972A JPH01108972A (en) 1989-04-26
JPH0669360B2 true JPH0669360B2 (en) 1994-09-07

Family

ID=17423016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26585587A Expired - Fee Related JPH0669360B2 (en) 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor

Country Status (1)

Country Link
JP (1) JPH0669360B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2292862A1 (en) * 1999-12-22 2001-06-22 Bayer Inc. Modular reactor system allowing control of particle size during chemical precipitation
JP2007275689A (en) * 2004-06-30 2007-10-25 Bussan Nanotech Research Institute Inc Hydrophobic compound-reacting device and reacting method
JP2006042827A (en) * 2005-10-14 2006-02-16 Saga Prefecture Bioreactor

Also Published As

Publication number Publication date
JPH01108972A (en) 1989-04-26

Similar Documents

Publication Publication Date Title
US4865973A (en) Process for extractive fermentation
US6933139B2 (en) Method for enzymatic splitting of oils and fats
Giorno et al. Performance of a biphasic organic/aqueous hollow fibre reactor using immobilized lipase
CN101255346A (en) Production of biodiesel and glycerin from high free fatty acid feedstocks
CN104245075B (en) Extraction column and process for use thereof
Patnaik Liquid emulsion membranes: principles, problems and applications in fermentation processes
US5032515A (en) Hydrolysis process of fat or oil
CA1280705C (en) Solvents and process for extractive fermentation
US6258575B1 (en) Hydrolyzing fats and oils using an immobilized enzyme column and substrate-feeding chamber that separates phases
JP2000160188A (en) Hydrolysis of oil and fat
JPH0669360B2 (en) Liquid-liquid heterophasic reactor
JPS62278988A (en) Process for enzymatic or microbial reaction
WO2019229365A1 (en) Method for purifying a bis(fluorosulfonyl)imide lithium salt
JP6611136B2 (en) Method for the recovery of lipids or hydrocarbons
JP2563502B2 (en) Liquid-liquid heterophasic reactor
JPH0365946B2 (en)
KR100557009B1 (en) Method for extracting organic acid continuously
US20060191848A1 (en) Integrated separation of organic substances from an aqueous bio-process mixture
EP0058074A1 (en) Liquid-liquid contacting process
CN112625885A (en) System and method for preparing rhamnolipid by utilizing tail gas of butanol and octanol production device
WO2023244525A1 (en) A liquid-liquid-solid extraction process for isolating natural products from a feedstock stream
JPH0320398A (en) Deacidifying process
JPH11267405A (en) Separating method of oil phase and water phase and separating device
MX2009013602A (en) Device for the continuous recovery of bioparticles by means of aqueous two-phase systems and operation method thereof.
JPS5679634A (en) Separation of methacrylic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees