JPS62278988A - Process for enzymatic or microbial reaction - Google Patents

Process for enzymatic or microbial reaction

Info

Publication number
JPS62278988A
JPS62278988A JP61122994A JP12299486A JPS62278988A JP S62278988 A JPS62278988 A JP S62278988A JP 61122994 A JP61122994 A JP 61122994A JP 12299486 A JP12299486 A JP 12299486A JP S62278988 A JPS62278988 A JP S62278988A
Authority
JP
Japan
Prior art keywords
aqueous phase
reaction
water
phase
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61122994A
Other languages
Japanese (ja)
Other versions
JPH07106154B2 (en
Inventor
Masanobu Tanigaki
谷垣 雅信
Hidetoshi Wada
和田 英俊
Masaru Sakata
勝 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP61122994A priority Critical patent/JPH07106154B2/en
Publication of JPS62278988A publication Critical patent/JPS62278988A/en
Publication of JPH07106154B2 publication Critical patent/JPH07106154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To enable the separation of reaction product simultaneous to the reaction while keeping high conversion, by using a reactor wherein a non- aqueous solution phase and a water phase are separated into upper and lower layers and mixing both phases near their interface. CONSTITUTION:In a reactor 1 containing a non-aqueous solution phase and a water phase separated from each other into upper and lower layers, the non- aqueous solution phase and the water phase are mixed together near the interface remaining an unmixed part of the non-aqueous solution phase and the water phase e.g. by using a stirring blade 20 in a draft tube 3. The non-aqueous solution and water as a substrate or a substrate existing in the non-aqueous solution phase and/or the water phase is converted to the objective product with an enzyme or microorganism and the product is separated from the unmixed non-aqueous solution phase and/or the water phase. The process enables the separation of the product simultaneous to the conversion of the substrate to the product and facilitates the control of various reaction conditions and the continuous operation of the reaction.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、酵素もしくは微生物を用いて基質を生成物へ
変換せしめる方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for converting a substrate into a product using enzymes or microorganisms.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

近年、酵素あるいは微生物を触媒として用いるバイオリ
アクターの開発が盛んに行われているが、それらの反応
で取り扱われている化合物はほとんどすべて水溶性であ
り、従って水溶液系での反応が主である。しかしながら
、水に難溶か、もしくは不溶な化合物で有用な反応は数
多(ある。例えば、リパーゼによる油脂の加水分解、油
脂の改質、油脂の合成や種々のエステル合成反応、また
プロテアーゼを利用した人工甘味料アスパルテームの合
成等にみられる種々のペプチド合成反応などにおいて、
これらグリセライドや脂肪酸及びペプチドは一般に水に
難溶である。従って、通常反応は微細なエマルションと
し、所定分解率に達した後反応を停止して生成物を2相
に分離して回収する回分操作となる。また連続的に酵素
あるいは微生物反応を行わせる方法として、固定化酵素
あるいは固定化微生物をカラムに充填し、基質溶液を連
続的に供給する方法が知られているが、この場合におい
てもあらかじめ非水溶液相と水相を混和して供給するこ
とが必要であり、反応終了後には再び2相に分離する必
要がある。
In recent years, bioreactors that use enzymes or microorganisms as catalysts have been actively developed, but almost all of the compounds used in these reactions are water-soluble, and therefore reactions are primarily conducted in aqueous solutions. However, there are many reactions that are useful for compounds that are sparingly soluble or insoluble in water. In various peptide synthesis reactions such as those seen in the synthesis of the artificial sweetener aspartame,
These glycerides, fatty acids, and peptides are generally poorly soluble in water. Therefore, the reaction is usually a batch operation in which a fine emulsion is formed, the reaction is stopped after a predetermined decomposition rate is reached, and the product is separated into two phases and recovered. Furthermore, as a method for continuously carrying out enzyme or microbial reactions, it is known to fill a column with immobilized enzymes or immobilized microorganisms and continuously supply a substrate solution. It is necessary to mix and supply the phase and the aqueous phase, and after the reaction is completed, it is necessary to separate them into two phases again.

このように、互いに溶は合わない2相分散系・での反応
においては、反応後の酵素あるいは微生物の分離回収は
勿論、生成物の回収においても2相に分離する必要があ
り、この方法としては、一般に静置分離、遠心分離、あ
るいは膜による分離等の方法が挙げられるが、反応後に
これらの分離工程を組み合わせた場合システム的に複雑
となり、またコスト的にも負担が大きくなり、工業化の
際には問題がある。
In this way, in a reaction in a two-phase dispersion system that does not dissolve in each other, it is necessary to separate the two phases not only for the separation and recovery of enzymes or microorganisms after the reaction, but also for the recovery of the product. Generally, methods such as static separation, centrifugation, or membrane separation are used, but combining these separation steps after the reaction results in system complexity and high cost, making it difficult to industrialize. Sometimes there are problems.

(問題点を解決するための手段〕 本発明者らは、上記の問題点を解決すべく鋭意検討を重
ねた結果、前述のような2相系の反応においても高い反
応率を維持しながら同時に生成物の分離をも行うことが
できる画期的な反応方法を見出し本発明に到った。
(Means for Solving the Problems) As a result of intensive studies in order to solve the above problems, the present inventors have found that, even in the above-mentioned two-phase system reaction, it is possible to simultaneously maintain a high reaction rate and We have discovered an innovative reaction method that can also separate products, leading to the present invention.

即ち、本発明は、非水溶液相と水相とが上下2Nに分離
して存在する反応器において、非水溶液相と水相とが混
和しない部分を残しながら非水溶液相と水相とをその界
面近傍で混和することにより、基質としての非水溶液及
び水を、あるいは、非水溶液相及び/又は水相の中に存
、  在する基質を、酵素もしくは微生物によって生成
物に変換せしめ、混和しない部分の非水溶液相及び/又
は水相中に存在する生成物を取り出すことを特徴とする
酵素もしくは微生物反応方法を提供するものである。
That is, the present invention provides a reactor in which a non-aqueous phase and an aqueous phase are separated into upper and lower 2N parts, and the non-aqueous phase and the aqueous phase are separated at the interface while leaving a portion where the non-aqueous phase and the aqueous phase are immiscible. By mixing in close proximity, the non-aqueous solution and water as substrates, or the substrate present in the non-aqueous phase and/or the aqueous phase, are converted into products by enzymes or microorganisms, and the immiscible parts are converted into products. The present invention provides an enzymatic or microbial reaction method characterized by removing a product present in a non-aqueous phase and/or an aqueous phase.

尚、本発明において非水溶液とは水に難溶もしくは不ン
容の疎水性ン容液のことである。
In the present invention, the non-aqueous solution refers to a hydrophobic liquid that is poorly soluble or insoluble in water.

本発明を更に詳しく、本発明の好適実施態様を示した図
面に基づいて説明する。
The present invention will be explained in more detail based on the drawings showing preferred embodiments of the present invention.

−例としてA+B−C+D (A、Bはそれぞれ基質で
、C,Dはそれぞれ生成物である。今A及びCは水溶性
、B及びDは水不溶性とする。
- For example, A+B-C+D (A and B are each a substrate, and C and D are each a product. Now assume that A and C are water-soluble and B and D are water-insoluble.

で表される酵素あるいは微生物反応系について第1図を
用いて説明する。1は内部にドラフトチューブを有する
反応槽である。この反応器内に基質A(水相)と基質B
(非水溶液相)をそれぞれ基質(水相)貯槽11、基質
(非水溶液相)貯槽12より一定の比率で仕込み下層に
なる水相をドラフトチューブ3内の攪拌羽根20により
巻き上げ、エマルションとして酵素あるいは微生物と効
率良く接触せしめ酵素あるいは微生物反応を行わせるも
のである。ここに4は基質(非水溶液相)供給ノズル、
6は生成物(非水溶液相)貯槽、7はせき、8は限外濾
過膜、9は水相膜処理用貯槽、10は生成物(水相)貯
槽である。
The enzyme or microbial reaction system represented by will be explained using FIG. 1 is a reaction tank having a draft tube inside. Substrate A (aqueous phase) and substrate B are present in this reactor.
(non-aqueous solution phase) is prepared at a fixed ratio from the substrate (aqueous phase) storage tank 11 and the substrate (non-aqueous solution phase) storage tank 12, respectively, and the lower aqueous phase is rolled up by the stirring blade 20 in the draft tube 3, and an enzyme or emulsion is prepared. It allows efficient contact with microorganisms to carry out enzymatic or microbial reactions. Here, 4 is a substrate (non-aqueous solution phase) supply nozzle,
6 is a product (non-aqueous phase) storage tank, 7 is a weir, 8 is an ultrafiltration membrane, 9 is a storage tank for aqueous phase membrane treatment, and 10 is a product (aqueous phase) storage tank.

第1図の場合、基質と酵素あるいは微生物の接触効率を
上げ、しかもこれら酵素あるいは微生物を吸着等により
効率良く反応器内に保持するため充填材2をドラフトチ
ューブの外側に充填しているが、充填材を用いなくても
これらの) 条件が満たされるならば特に充填材等を使
用する必要はない。
In the case of Fig. 1, a filler 2 is packed on the outside of the draft tube in order to increase the contact efficiency between the substrate and enzymes or microorganisms, and to efficiently retain these enzymes or microorganisms in the reactor by adsorption, etc. Even if no filler is used, if these conditions are met, there is no need to use a filler or the like.

また、反応器の上部、下部にそれぞれじゃま仮5,17
を設けると、液の完全混合を防止し非水?8液相と水相
とが分離した状態の部分を形成できるので好ましい。
In addition, there are obstacles 5 and 17 at the top and bottom of the reactor, respectively.
Providing a non-aqueous solution prevents complete mixing of the liquid. 8 It is preferable because it can form a part in which the liquid phase and the aqueous phase are separated.

本発明の方法を用いれば反応と同時に生成物の分離を行
うことができるので回分操作は勿論連続的に生成物を抜
き出しながら基質を供給する連続反応あるいは半連続反
応を行うことも可能である。
By using the method of the present invention, it is possible to separate the product at the same time as the reaction, so it is possible not only to perform a batch operation but also a continuous reaction or a semi-continuous reaction in which the substrate is supplied while continuously extracting the product.

本反応器の場合、反応に使用した酵素あるいは微生物の
大部分は反応器内に保持されるが、酵素あるいは微生物
を更に効率良く回収再利用するためには水相に溶解して
いる酵素あるいは微生物を濃縮回収することが好ましい
。これには限外濾過膜を用いるのが好ましい。使用する
限外濾過膜は、酵素あるいは微生物を通過させないもの
であれば材質、形状等特に限定するものではなく、例え
ば酢酸セルロース膜、ポリアクリロニトリル膜、ポリス
ルホン膜、ポリアミド膜等どのような材質のものでも使
用でき、また形状についても平膜状、管状、スパイラル
状、中空糸状等どのような形状のものでも使用できる。
In the case of this reactor, most of the enzymes or microorganisms used in the reaction are retained within the reactor, but in order to more efficiently recover and reuse the enzymes or microorganisms, it is necessary to It is preferable to concentrate and recover. Preferably, an ultrafiltration membrane is used for this purpose. The ultrafiltration membrane to be used is not particularly limited in terms of material and shape, as long as it does not allow enzymes or microorganisms to pass through. For example, it may be made of any material such as cellulose acetate membrane, polyacrylonitrile membrane, polysulfone membrane, polyamide membrane, etc. It can also be used in any shape, such as a flat membrane, a tube, a spiral, or a hollow fiber.

限外濾過膜の分画分子量については反応に使用する酵素
あるいは微生物により異なり酵素あるいは微生物の透過
が阻止できる孔径を有しておればよく特に限定するもの
ではないが、一般に3000〜50000程度のものが
好ましい。限外濾過により酵素あるいは微生物を含まな
い水相を連続的に抜き出し、酵素あるいは微生物の濃縮
液は連続的にあるいは半連続的に反応系内へ戻してやれ
ばよい。
The molecular weight cutoff of the ultrafiltration membrane varies depending on the enzyme or microorganism used in the reaction, and is not particularly limited as long as it has a pore size that can prevent passage of the enzyme or microorganism, but it is generally about 3,000 to 50,000. is preferred. An aqueous phase free of enzymes or microorganisms may be continuously extracted by ultrafiltration, and a concentrated solution of enzymes or microorganisms may be continuously or semi-continuously returned to the reaction system.

尚、酵素あるいは微生物のほとんどが反応器内に保持さ
れ水相への溶解が無視できるならば限外濾過による酵素
あるいは微生物の分離の必要はない。また、あらかじめ
種々の方法で酵素あるいは微生物を固定化した固定化酵
素あるいは固定化微生物を充填することも可能で、この
場合も限外濾過による酵素回収工程は必要ない。
Note that if most of the enzymes or microorganisms are retained within the reactor and dissolution into the aqueous phase can be ignored, there is no need to separate the enzymes or microorganisms by ultrafiltration. Furthermore, it is also possible to fill the container with an immobilized enzyme or immobilized microorganism that has been immobilized in advance using various methods, and in this case as well, the enzyme recovery step by ultrafiltration is not necessary.

あるいはまた限外濾過工程を省略して、水相に溶解した
酵素あるいは微生物分に相当するフレッシュな酵素ある
いは微生物を添加する方法も可能である。
Alternatively, it is also possible to omit the ultrafiltration step and add fresh enzymes or microorganisms corresponding to the enzymes or microorganisms dissolved in the aqueous phase.

本発明の方法を用いれば特別な前処理を行うことな(、
反応器内に酵素あるいは微生物を保持し効率良くこれら
酵素あるいは微生物の回収再利用が可能である。酵素あ
るいは微生物は、特別な前処理を行うことなく、充填材
に吸着等により保持させるか、又はあらかじめ種々の方
法で固定化処理をした固定化酵素あるいは固定化微生物
を充填するか、あるいはまたこれら充填物を用いること
なくフリーな状態で用いる等の方法があるが、何れの方
法を用いるかはf4素及び微生物の特徴、あるいは反応
条件等により適当に選択すればよい。
Using the method of the present invention, no special pretreatment is required (
Enzymes or microorganisms can be retained in the reactor and these enzymes or microorganisms can be efficiently recovered and reused. Enzymes or microorganisms can be retained in the packing material by adsorption or the like without special pretreatment, or they can be filled with immobilized enzymes or microorganisms that have been previously immobilized using various methods, or they can be There are methods such as using it in a free state without using a filler, but which method to use may be appropriately selected depending on the characteristics of the f4 element and microorganisms, reaction conditions, etc.

第1図のようなドラフトチューブ3及び攪拌羽根20を
用いる場合のドラフトチューブの径は特に限定されるも
のではな(目的とする反応により径を決定すればよいが
、反応槽の径の5〜90%の径であれば好ましく用いら
れる。また攪拌羽根の回転速度は、反応器中の下層がう
まく巻き上げられて非水溶液相と水相との界面近傍で混
和が起こり、しかも反応器上部と下部に、非水溶液相と
水相とが混和しない部分が残るように設定すればよい。
The diameter of the draft tube when using the draft tube 3 and stirring blade 20 as shown in FIG. A diameter of 90% is preferably used.Also, the rotation speed of the stirring blade is such that the lower layer in the reactor is well rolled up and mixing occurs near the interface between the non-aqueous phase and the aqueous phase, and the upper and lower parts of the reactor are It may be set so that a portion where the non-aqueous solution phase and the aqueous phase are immiscible remains.

第1図に示した如く充填材を用いる場合について、その
充填材の形態は特に限定されるものではなく、通常一般
に充填材として用いられるラシヒリング、レッシングリ
ング、ベルルサドル、インタロックスサドル、ポールリ
ング等の充填材や円筒状にしたネットなどを充填しても
よい。材質も特に限定されるものではなく、金属、石型
、プラスチック製のもの等を用いることができる。また
固定化酵素あるいは固定化微生物を充填する場合でも、
固定化方法は特に限定されるものではなく、通常使われ
ている担体結合法、架橋法、包括法あるいは、これらを
適当に組み合わせた福分法等、いずれの方法でもよく、
適当に選択すればよい。
When a filler is used as shown in Fig. 1, the form of the filler is not particularly limited, and Raschig rings, Lessing rings, Berl saddles, Interlocks saddles, Pall rings, etc., which are commonly used as fillers, are not particularly limited. It may be filled with a filler or a cylindrical net. The material is not particularly limited either, and metal, stone, plastic, etc. can be used. Also, when filling with immobilized enzymes or immobilized microorganisms,
The immobilization method is not particularly limited, and any method such as the commonly used carrier binding method, crosslinking method, entrapping method, or a combination of these methods may be used.
Just choose appropriately.

また、反応器中の下層をうまく巻き上げる方法としては
、第1図に示したドラフトチューブ方式の他に、例えば
、第2図に示した如く、反応器中の上下2層の界面近傍
の下方より窒素ガス等の不活性気体を吹き込む方法、第
1図の如きドラフトチューブ内を窒素ガス等の不活性気
体を通過させる方法、あるいはドラフトチューブを用い
ずに、界面近傍を単に攪拌してやる方法などが挙げられ
、界面近傍で上層と下層が混和される方法であればどの
ような方法でもよく、反応系に通した方法を採用すれば
よい。
In addition to the draft tube method shown in Figure 1, there are other ways to successfully roll up the lower layer in the reactor, such as from below near the interface between the upper and lower layers in the reactor, as shown in Figure 2. Methods include blowing inert gas such as nitrogen gas, passing inert gas such as nitrogen gas through a draft tube as shown in Figure 1, or simply stirring the area near the interface without using a draft tube. Any method may be used as long as the upper layer and lower layer are mixed near the interface, and a method in which the upper layer and lower layer are mixed together in the vicinity of the interface may be used.

本発明の特徴は、反応器中の上下2層を、その界面近傍
で混和させて酵素もしくは微生物反応を行わせ、反応器
中の上層部及び下層部には混和されない部分を残したま
まで反応を行わせるので、反応と同時に非水溶′液相と
水相をそれぞれ独立に取り出すことができ、生成物を分
離できることである。従って連続的に基質等を加えなが
ら同時に生成物を得ることができる。また、連続的に反
応を行えるので、反応器内の各成分の濃度を一定に維持
することができ、これは、酵素の安定性等を考慮した場
合に非常に有利である。
The feature of the present invention is that the enzyme or microbial reaction is carried out by mixing the upper and lower layers in the reactor near their interface, and the reaction is carried out while leaving unmixed parts in the upper and lower layers of the reactor. Since the reaction is carried out, the non-aqueous liquid phase and the aqueous phase can be taken out independently at the same time as the reaction, and the products can be separated. Therefore, the product can be obtained simultaneously while continuously adding the substrate and the like. Furthermore, since the reaction can be carried out continuously, the concentration of each component in the reactor can be maintained constant, which is very advantageous when considering the stability of the enzyme.

本発明の方法を用いて油脂の加水分解を行う場合につい
て以下に述べる。この場合、基質は油脂及び水、酵素は
リパーゼ、反応生成物は脂肪酸及びグリセリンである。
The case of hydrolyzing fats and oils using the method of the present invention will be described below. In this case, the substrates are oil and water, the enzyme is lipase, and the reaction products are fatty acids and glycerin.

本発明者らは、リパーゼを用いた油脂の加水分解に際し
ては、生成物であるグリセリンの濃度がリパーゼの安定
性に大きく寄与していることを見出している。
The present inventors have discovered that when hydrolyzing fats and oils using lipase, the concentration of the product glycerin greatly contributes to the stability of the lipase.

本発明者らの研究によれば、反応系内の水相中のグリセ
リン濃度が10〜40重量%の範囲内にあるとき、酵素
が安定化され、好ましく油脂の加水分解が進行する。本
発明の方法は、反応器内の各種成分の濃度を一定に保つ
ことが容易であり、従ってリパーゼによる油脂の加水分
解に好ましく適用される。
According to research by the present inventors, when the glycerin concentration in the aqueous phase in the reaction system is within the range of 10 to 40% by weight, the enzyme is stabilized and hydrolysis of fats and oils preferably progresses. The method of the present invention makes it easy to keep the concentrations of various components in the reactor constant, and is therefore preferably applied to the hydrolysis of fats and oils by lipase.

本発明の方法をリパーゼによる油脂の加水分解に適用す
る場合には、油脂及び水の供給比率は以下の方法により
計算して決定しグリセリン濃度を最適条件に推持するこ
とができる。例えば、反応系内の水相中のグリセリン濃
度を20w t%に維持しようとする場合、 連続あるいは半連続供給する油脂m = X(kg/h
r)〃     〃     水量= Y(kg/hr
)油脂分解率=77(%)、油脂の分子量=1水の分子
量= 18.グリセリンの分子量=92とすると、 の式が成立し、0式よりXとYの比を決定できる。仮に
、M =900 、η=95%とすると■弐より X  /  Y=1.84 となる。このようにして、油脂/水の連、涜あるいは半
連続供給比率を決定する。
When the method of the present invention is applied to the hydrolysis of fats and oils by lipase, the supply ratio of fats and oils and water can be calculated and determined by the following method to maintain the glycerin concentration at an optimal condition. For example, when trying to maintain the glycerin concentration in the aqueous phase in the reaction system at 20 wt%, the amount of oil m = X (kg/h) supplied continuously or semi-continuously is
r) 〃 〃 Water amount = Y (kg/hr
) Oil decomposition rate = 77 (%), molecular weight of oil = 1, molecular weight of water = 18. When the molecular weight of glycerin is 92, the following formula is established, and the ratio of X and Y can be determined from the formula 0. If M = 900 and η = 95%, then X/Y = 1.84 from ■2. In this way, the continuous, continuous or semi-continuous feed ratio of fat/water is determined.

本発明の方法は、非水溶液相と水相の2相系で反応を行
う種々の酵素反応、微生物反応に適用でき、前述のリパ
ーゼによる油脂の加水分解反応以外にも、リパーゼによ
るトリグリセリド合成、トリグリセリドのエステル交換
反応、あるいはサーモライシンによるカルボベンジルオ
キシ−1−アスパラギン酸とT−フェニルアラニンメチ
ルエステルからの人工甘味料アスパルテーム(アスパル
チルフェニルアラニンメチルエステル)の合成などのよ
うなプロテアーゼによるペプチドの合成反応等に適用で
きるが、これらに限定されるものではない。
The method of the present invention can be applied to various enzymatic reactions and microbial reactions in which reactions occur in a two-phase system of a non-aqueous solution phase and an aqueous phase. Applicable to peptide synthesis reactions using proteases, such as the transesterification reaction of thermolysin, or the synthesis of the artificial sweetener aspartame (aspartyl phenylalanine methyl ester) from carbobenzyloxy-1-aspartic acid and T-phenylalanine methyl ester using thermolysin. Yes, but not limited to these.

本発明のもう1つの特徴は、使用する酵素あるいは微生
物の形態として、あらかじめ種々の方法で固定化したい
わゆる固定化酵素あるいは固定化微生物を用いてもよい
が、特別な固定化処理を行わなくても適当な充填材を充
填すること、あるいはこれら充填材を用いなくても酵素
あるいは微生物をある程度反応器内に保持することがで
きることである。また水相に溶解した酵素あるいは微生
物も限外濾過膜により容易に回収できるので特に複雑な
固定化処理を行わなくても効率良く回収再利用ができる
Another feature of the present invention is that the form of the enzyme or microorganism used may be a so-called immobilized enzyme or immobilized microorganism that has been immobilized in advance by various methods, but no special immobilization treatment is required. It is also possible to fill the reactor with a suitable filler, or to retain enzymes or microorganisms to some extent in the reactor without using these fillers. In addition, since enzymes or microorganisms dissolved in the aqueous phase can be easily recovered using an ultrafiltration membrane, they can be efficiently recovered and reused without any particularly complicated immobilization treatment.

本発明で用いる酵素あるいは微生物は必ずしも高度に精
製されているものである必要はなく、抽出液や部分精製
品、またあるいは醗酵液も用いることができる。
The enzyme or microorganism used in the present invention does not necessarily have to be highly purified, and an extract, a partially purified product, or a fermentation solution can also be used.

本発明によるバイオリアクターは、第1図あるいは第2
図で示したように1槽のみで使用してもよいがさらに効
率的に反応を行うためには多段反応としてもよい。
The bioreactor according to the present invention is shown in FIG. 1 or 2.
As shown in the figure, only one tank may be used, but in order to carry out the reaction more efficiently, a multi-stage reaction may be used.

〔実施例〕〔Example〕

以下、本発明の実施例について説明するが、本発明はこ
れら実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these Examples.

実施例−1 第1図に示した反応システムによりリパーゼによる大豆
油の加水分解を行った。リパーゼによる油脂の加水分解
では、第1図、第2図において4は油脂供給ノズル、6
は脂肪酸溶液貯槽、9はグリセリン水溶液膜処理用貯槽
、loはグリセリン水貯槽、11は水貯槽、12は油脂
貯槽となる。
Example 1 Soybean oil was hydrolyzed by lipase using the reaction system shown in FIG. In the hydrolysis of fats and oils by lipase, in Figures 1 and 2, 4 is the oil supply nozzle, 6
9 is a fatty acid solution storage tank, 9 is a glycerin aqueous solution membrane treatment storage tank, lo is a glycerin water storage tank, 11 is a water storage tank, and 12 is an oil storage tank.

反応槽1に予め大豆油を酵素分解した分解脂肪酸(脂肪
酸含有率85%)1kg、20−t%グリセリン水1 
kg及びキャンディダシリンドラセより生産したリパー
ゼ(320000単位/g)2gを加えて反応槽を30
℃に保ちながら反応を行った。
In reaction tank 1, 1 kg of decomposed fatty acids (fatty acid content 85%) obtained by enzymatically decomposing soybean oil and 1 kg of 20-t% glycerin water were placed.
kg and 2 g of lipase (320,000 units/g) produced from Candida cylindriase to make the reaction tank 30
The reaction was carried out while maintaining the temperature at °C.

反応槽の径とドラフトチューブ3の径の比率はlO:6
である。また攪拌羽根は第1図に示したようなリボン型
羽根20を用い周速は約0.5m/秒として攪拌を行っ
た。
The ratio of the diameter of the reaction tank and the diameter of the draft tube 3 is lO:6
It is. Further, the stirring blade was a ribbon-type blade 20 as shown in FIG. 1, and stirring was performed at a circumferential speed of about 0.5 m/sec.

この反応槽1に油脂貯槽12からポンプ13により50
 g /HRの流量で大豆油(脂肪酸含有率0%)を反
応槽下部から連続供給し、また水貯槽11よリボンプ1
4を用いて25g/IIRの流量で水を反応槽上部から
連続的に供給した。即ち反応槽内での大豆油の平均滞留
時間が20時間、そして水相中のグリセリン濃度が約2
0%に保つことができるようにそれぞれ反応槽内へ供給
した。反応槽内では下層の水がドラフトチューブにより
一旦巻き上げられ、ドラフトチューブ外側の充填層を水
滴が通過する間にリパーゼと油と水が接触し加水分解反
応が行われる。
This reaction tank 1 is supplied with 500 ml of
Soybean oil (fatty acid content 0%) was continuously supplied from the bottom of the reaction tank at a flow rate of g/HR, and from the water storage tank 11 to the ribbon pump 1.
Water was continuously supplied from the top of the reaction tank at a flow rate of 25 g/IIR using 4. That is, the average residence time of soybean oil in the reaction tank was 20 hours, and the glycerin concentration in the aqueous phase was approximately 2.
Each was supplied into the reaction tank so that it could be maintained at 0%. In the reaction tank, the water in the lower layer is once rolled up by the draft tube, and while the water droplets pass through the packed layer outside the draft tube, the lipase, oil, and water come into contact and a hydrolysis reaction takes place.

一方、反応槽の上部と下部にそれぞれじゃま板5.17
を設けることにより、その上側と下側ではほとんど水を
含まない脂肪酸あるいはほとんど油を含まない甘木が得
られる。この様にして脂肪酸は供給した大豆油の量だけ
連続的にオーバーフローにより抜き出し、甘木は反応槽
下部からポンプ15により連続的に抜き出し、一旦貯槽
9に貯めた後、限外濾過膜8により水相に溶解している
酵素を濃縮回収し、グリセリン水の抜き出し量が25g
/IIRとなるように調製しながら反応を行った。本実
施例では限外濾過膜としてポリアクリロニトリル膜(分
画分子130000)を用いて半連続的に酵素の濃縮を
行い再び反応槽へもどした。
On the other hand, there are baffle plates 5.17 at the top and bottom of the reaction tank, respectively.
By providing the upper and lower sides thereof, sweet wood containing almost no water or fatty acids or almost no oil can be obtained. In this way, fatty acids are continuously extracted by the amount of soybean oil supplied by overflow, and Amagi is continuously extracted from the lower part of the reaction tank by the pump 15, and once stored in the storage tank 9, the aqueous phase is filtered through the ultrafiltration membrane 8. The enzyme dissolved in the water was concentrated and recovered, and the amount of glycerin water extracted was 25g.
/IIR. In this example, a polyacrylonitrile membrane (fraction molecule: 130,000) was used as an ultrafiltration membrane to semi-continuously concentrate the enzyme and return it to the reaction tank.

このような反応装置を用いて大豆油、水の連続供給及び
脂肪酸溶液、グリセリン水溶液の連続抜き出しを行いな
がら反応を継続した。
Using such a reaction apparatus, the reaction was continued while continuously supplying soybean oil and water and continuously withdrawing the fatty acid solution and the aqueous glycerin solution.

20時間(反応槽内での平均滞留時間に等しい)後、脂
肪酸溶液貯槽6から脂肪酸溶液を採取して酸価及びけん
化価を測定したところ、酸価=170、けん化価=19
4が得られた。下式より加水分解率を計算したところ8
6%であった。
After 20 hours (equal to the average residence time in the reaction tank), the fatty acid solution was collected from the fatty acid solution storage tank 6 and the acid value and saponification value were measured.Acid value = 170, saponification value = 19
4 was obtained. The hydrolysis rate was calculated from the formula below: 8
It was 6%.

けん化価 尚、グリセリン水?8液貯槽10のグリセリン水のグリ
セリン濃度は20−t%であった。
Saponification value, glycerin water? The glycerin concentration of the glycerin water in the 8-liquid storage tank 10 was 20-t%.

同様に大豆油の供給開始後40時間後、60時間後、8
0時間後、100時間後の分解率及びグリセリン濃度を
測定したところ第1表の如くであった。
Similarly, 40 hours, 60 hours, and 8 hours after the start of soybean oil supply.
The decomposition rate and glycerin concentration were measured after 0 hours and 100 hours, and the results were as shown in Table 1.

第   1   表 このように100時間の連続反応を行っても酵素は全く
失活せず、大豆油の分解率も85〜86%を維持し、水
相中のグリセリン濃度も18〜20%に維持できた。
Table 1: Even after 100 hours of continuous reaction, the enzyme did not deactivate at all, the soybean oil decomposition rate remained at 85-86%, and the glycerin concentration in the aqueous phase remained at 18-20%. did it.

一方、脂肪酸溶液貯槽6に得られる脂肪酸溶液中の水分
は0.5%以下であった。また、限外濾過膜を透過した
グリセリン水は品質的にも良好なグリセリン水が得られ
た。このように本反応システムを用いることにより、反
応と生成吻の分離を同時に行いながらしかも効率良く酵
素を回収再利用し高分解率を維持できることがわかった
On the other hand, the water content in the fatty acid solution obtained in the fatty acid solution storage tank 6 was 0.5% or less. In addition, the glycerin water that passed through the ultrafiltration membrane was of good quality. As described above, it was found that by using this reaction system, it is possible to simultaneously perform the reaction and separation of the produced proboscis, while efficiently recovering and reusing the enzyme and maintaining a high decomposition rate.

実施例−2 実施例−1と同様の装置を用い、初期仕込み大豆油分解
液、20wt%グリセリン水溶液及び酵素仕込量も実施
例−1と同じにし、ポンプ13及び14による大豆油及
び水の連続添加量を以下のように変更し、大豆油の平均
滞留時間を40時間とした。
Example 2 Using the same equipment as in Example 1, with the initially charged soybean oil decomposition solution, 20 wt% glycerin aqueous solution, and the same amount of enzyme as in Example 1, soybean oil and water were continuously pumped by pumps 13 and 14. The amount added was changed as follows, and the average residence time of soybean oil was 40 hours.

大豆油添加量25g/llR1水添加量12.5g/H
R脂肪酸溶液の抜き出しはオーバーフローでグリセリン
水の抜き出し量は12.5 g /l(Rとなるように
調製しながら連続分解を行った。反応時間毎の大豆油の
加水分解率及びグリセリン濃度を測定したところ第2表
のようになった。
Soybean oil addition amount 25g/ll R1 water addition amount 12.5g/H
Continuous decomposition was performed while adjusting the R fatty acid solution to overflow and the amount of glycerin water extracted to be 12.5 g/l (R).The soybean oil hydrolysis rate and glycerin concentration were measured for each reaction time. The result is as shown in Table 2.

第   2   表 このように滞留時間を40時間とすると約90%の分解
率が得られることがわかった。
Table 2 As shown in Table 2, it was found that when the residence time was 40 hours, a decomposition rate of about 90% was obtained.

実施例−3 実施例−1では反応槽内の水をドラフトチューブ内の攪
拌羽根により水を巻き上げて加水分解反応を行わせたが
、本実施例では攪拌の代わりに第2図に示した如く、反
応槽の下部より窒素ガス吹き込みノズル22から窒素を
吹き込み水滴を油相内に巻き上げ、充填層に保持されて
いるリパーゼと油と水を接触させて加水分解反応を行わ
せた。反応槽上部にはロート状のじゃま板を設け、窒素
を捕集し、じゃま板の上側では液の混合が起こらないよ
うに配慮しである。
Example 3 In Example 1, the water in the reaction tank was stirred up by the stirring blade in the draft tube to cause a hydrolysis reaction, but in this example, instead of stirring, the water was stirred as shown in Figure 2. Nitrogen was blown from the lower part of the reaction tank from the nitrogen gas blowing nozzle 22 to raise water droplets into the oil phase, and the lipase held in the packed bed was brought into contact with the oil and water to cause a hydrolysis reaction. A funnel-shaped baffle plate is provided at the top of the reaction tank to collect nitrogen, and care is taken to prevent mixing of liquids above the baffle plate.

初期仕込み大豆油分解液、20v L%グリセリン水溶
液及び酵素仕込み量及び大豆油の平均滞留時間は実施例
−1と同様にし、窒素吹込み量は100 m7/win
で大豆油の連続加水分解を行った。
The initial charged soybean oil decomposition solution, 20v L% glycerin aqueous solution, the amount of enzyme charged, and the average residence time of soybean oil were the same as in Example-1, and the nitrogen blowing amount was 100 m7/win.
Continuous hydrolysis of soybean oil was carried out.

反応時間毎の大豆油の加水分解率及びグリセリン濃度を
測定したところ第3表のようになった。
The hydrolysis rate and glycerin concentration of soybean oil for each reaction time were measured and the results are shown in Table 3.

第   3   表 このように、反応の下部から窒素を吹き込む方法でも第
1図に示した様な攪拌方法と同様の攪拌効果が得られ、
85〜86%の分解率が維持でき、実施例−1の場合と
同様効率良く脂肪酸溶液相とグリセリン水相の分離が行
えることがわかった。
Table 3 As shown above, the method of blowing nitrogen from the bottom of the reaction can also achieve the same stirring effect as the stirring method shown in Figure 1.
It was found that a decomposition rate of 85 to 86% could be maintained, and that the fatty acid solution phase and the glycerin aqueous phase could be efficiently separated as in Example-1.

実施例−4 実施例−1,2,3では、反応器1槽のみでの連続加水
分解であるが、本実施例では、効率良く高分解率を得る
ため、第1図に示した反応器を2槽用いて2段の連続加
水分解を行った。
Example 4 In Examples 1, 2, and 3, continuous hydrolysis was performed using only one reactor tank, but in this example, in order to efficiently obtain a high decomposition rate, the reactor shown in Figure 1 was used. Two stages of continuous hydrolysis were carried out using two tanks.

この場合、大豆油と水は向流となる様に供給した。即ち
、大豆油は先ず1段目の反応器から供給し、得られた脂
肪酸溶液を再び2段目の反応器に供給し、−力水は反応
器内のグリセリン濃度が約20%となる様に配慮しなが
ら供給した。
In this case, soybean oil and water were supplied in countercurrent flow. That is, soybean oil is first supplied from the first stage reactor, the obtained fatty acid solution is again supplied to the second stage reactor, and the water is supplied so that the glycerin concentration in the reactor is approximately 20%. Supplied with due consideration.

大豆油は50 g /IIRで供給し、水は1段目の反
応器にはフレッシュ水と2段目の反応器から回収したグ
リセリン水を混合し約15%としたグリセリン水を3g
/HRの流量で供給し、2段目には1段目の反応器から
回収したグリセリン水と新たにフレッシュな水を混合し
て20 g /IIRの流量で供給した。
Soybean oil was supplied at a rate of 50 g/IIR, and 3 g of glycerin water, which was made by mixing fresh water and glycerin water recovered from the second reactor to approximately 15%, was added to the first reactor.
/HR, and to the second stage, the glycerin water recovered from the first stage reactor and fresh water were mixed and supplied at a flow rate of 20 g/IIR.

反応時間毎の大豆油の加水分解率及びグリセリン濃度を
測定したところ第4表のようになった。
The hydrolysis rate and glycerin concentration of soybean oil for each reaction time were measured and the results are shown in Table 4.

第   4   表 このように多段反応とすることにより効率よく油脂の加
水分解が行えることがわかった。
Table 4 It was found that oils and fats could be efficiently hydrolyzed by performing the multi-stage reaction as described above.

〔発明の効果〕〔Effect of the invention〕

本発明の酵素もしくは微生物反応方法は、基質を生成物
に変換せしめながら同時に生成物を取り出す操作を行い
得る方法であり、各種反応条件をコントロールしたり、
反応を連続化することが極めて容易であり、工業化に有
利である。
The enzyme or microbial reaction method of the present invention is a method that can convert a substrate into a product and simultaneously take out the product, and can control various reaction conditions,
It is extremely easy to carry out the reaction continuously, which is advantageous for industrialization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の反応システムの例の
模式図である。 1・・・反応槽 2・・・充填材 3・・・ドラフトチューブ 4・・・基質(非水溶液相)供給ノズル5・・・上部じ
ゃま板 6・・・生成物(非水溶液相)貯槽 7・・・せき 8・・・限外濾過膜 9・・・水相膜処理用貯槽 10・・・生成物(水相)貯槽 11・・・基質(水相)貯槽 12・・・基質(非水溶液相)貯槽 13〜16・・・ポンプ 17・・・下部じゃま板 18〜19・・・パルプ 20・・・攪拌羽根 21・・・攪拌用モーター
FIGS. 1 and 2 are schematic diagrams of examples of the reaction system of the present invention, respectively. 1... Reaction tank 2... Filler 3... Draft tube 4... Substrate (non-aqueous phase) supply nozzle 5... Upper baffle plate 6... Product (non-aqueous phase) storage tank 7 ...Weir 8...Ultrafiltration membrane 9...Aqueous phase membrane treatment storage tank 10...Product (aqueous phase) storage tank 11...Substrate (aqueous phase) storage tank 12...Substrate (non-substrate) Aqueous solution phase) Storage tanks 13 to 16... Pump 17... Lower baffle plates 18 to 19... Pulp 20... Stirring blades 21... Stirring motor

Claims (1)

【特許請求の範囲】 1 非水溶液相と水相とが上下2層に分離して存在する
反応器において、非水溶液相と水相とが混和しない部分
を残しながら非水溶液相と水相とをその界面近傍で混和
することにより、基質としての非水溶液及び水を、ある
いは、非水溶液相及び/又は水相の中に存在する基質を
、酵素もしくは微生物によって生成物に変換せしめ、混
和しない部分の非水溶液相及び/又は水相中に存在する
生成物を取り出すことを特徴とする酵素もしくは微生物
反応方法。 2 酵素もしくは微生物が、特別な前処理を行うことな
く充填材に吸着もしくは保持され、あるいは、予め種々
の固定化方法により固定化担体に固定化されて反応器中
の非水溶液相と水相との界面近傍に設置されている特許
請求の範囲第1項に記載の方法。 3 界面近傍での混和をドラフトチューブ内の攪拌羽根
を用いて行う特許請求の範囲第1項に記載の方法。 4 界面近傍での混和を、該界面近傍下方より不活性気
体を吹き込み、下層を巻き上げることによって行う特許
請求の範囲第1項に記載の方法。 5 基質が水及び油脂であり、酵素がリパーゼである特
許請求の範囲第1項に記載の方法。 6 反応系内の水相中のグリセリン濃度を10〜40重
量%の範囲内に維持して反応を行うことを特徴とする特
許請求の範囲第5項に記載の方法。
[Claims] 1. In a reactor in which the non-aqueous phase and the aqueous phase exist separately into two layers, upper and lower, the non-aqueous phase and the aqueous phase are separated while leaving a portion where the non-aqueous phase and the aqueous phase are immiscible. By mixing near the interface, the non-aqueous solution and water as substrates, or the substrate present in the non-aqueous solution phase and/or the aqueous phase, are converted into products by enzymes or microorganisms, and the immiscible parts are converted into products. An enzymatic or microbial reaction method characterized in that a product present in a non-aqueous phase and/or an aqueous phase is removed. 2 Enzymes or microorganisms are adsorbed or retained on the filler without special pretreatment, or are immobilized on immobilization carriers by various immobilization methods and separated between the non-aqueous phase and the aqueous phase in the reactor. The method according to claim 1, wherein the method is installed near an interface of. 3. The method according to claim 1, wherein mixing near the interface is performed using a stirring blade in a draft tube. 4. The method according to claim 1, wherein the mixing near the interface is performed by blowing an inert gas from below near the interface and rolling up the lower layer. 5. The method according to claim 1, wherein the substrate is water and fat, and the enzyme is lipase. 6. The method according to claim 5, wherein the reaction is carried out while maintaining the glycerin concentration in the aqueous phase in the reaction system within a range of 10 to 40% by weight.
JP61122994A 1986-05-28 1986-05-28 Enzyme or microbial reaction method Expired - Lifetime JPH07106154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122994A JPH07106154B2 (en) 1986-05-28 1986-05-28 Enzyme or microbial reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122994A JPH07106154B2 (en) 1986-05-28 1986-05-28 Enzyme or microbial reaction method

Publications (2)

Publication Number Publication Date
JPS62278988A true JPS62278988A (en) 1987-12-03
JPH07106154B2 JPH07106154B2 (en) 1995-11-15

Family

ID=14849652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122994A Expired - Lifetime JPH07106154B2 (en) 1986-05-28 1986-05-28 Enzyme or microbial reaction method

Country Status (1)

Country Link
JP (1) JPH07106154B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017476A (en) * 1988-05-06 1991-05-21 Degussa Aktiengesellschaft Method for the biocatalytic reaction of organic substances
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses
US5137660A (en) * 1991-03-15 1992-08-11 The Procter & Gamble Company Regioselective synthesis of 1,3-disubstituted glycerides
US5153126A (en) * 1987-05-29 1992-10-06 Lion Corporation Method for continuous preparation of highly pure monoglyceride
JP2016185130A (en) * 2015-03-27 2016-10-27 株式会社豊田中央研究所 Structure for exposing cells to non-hydrophilic substance and assessment method of effect of non-hydrophilic substance on cells
US11072770B2 (en) 2014-10-07 2021-07-27 Nuas Tecnology As Compact reactor for enzymatic treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154999A (en) * 1983-02-21 1984-09-04 Shoichi Shimizu Method for biochemical reaction and biochemical reactor
JPS6185195A (en) * 1984-10-02 1986-04-30 Agency Of Ind Science & Technol Continuous hydrolysis of lipid
JPS61141897A (en) * 1984-12-17 1986-06-28 Shoichi Shimizu Process for biochemical reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154999A (en) * 1983-02-21 1984-09-04 Shoichi Shimizu Method for biochemical reaction and biochemical reactor
JPS6185195A (en) * 1984-10-02 1986-04-30 Agency Of Ind Science & Technol Continuous hydrolysis of lipid
JPS61141897A (en) * 1984-12-17 1986-06-28 Shoichi Shimizu Process for biochemical reaction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153126A (en) * 1987-05-29 1992-10-06 Lion Corporation Method for continuous preparation of highly pure monoglyceride
US5017476A (en) * 1988-05-06 1991-05-21 Degussa Aktiengesellschaft Method for the biocatalytic reaction of organic substances
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses
US5137660A (en) * 1991-03-15 1992-08-11 The Procter & Gamble Company Regioselective synthesis of 1,3-disubstituted glycerides
US11072770B2 (en) 2014-10-07 2021-07-27 Nuas Tecnology As Compact reactor for enzymatic treatment
JP2016185130A (en) * 2015-03-27 2016-10-27 株式会社豊田中央研究所 Structure for exposing cells to non-hydrophilic substance and assessment method of effect of non-hydrophilic substance on cells

Also Published As

Publication number Publication date
JPH07106154B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
EP2440670B1 (en) Process for extracting fatty acids from aqueous biomass in a membrane contactor module
Giorno et al. Performance of a biphasic organic/aqueous hollow fibre reactor using immobilized lipase
EP0168095A1 (en) Process for the extraction of poly-beta-hydroxybutyrates with a solvent from an aqueous suspension of microorganisms
Patnaik Liquid emulsion membranes: principles, problems and applications in fermentation processes
US5032515A (en) Hydrolysis process of fat or oil
US6258575B1 (en) Hydrolyzing fats and oils using an immobilized enzyme column and substrate-feeding chamber that separates phases
JP3439675B2 (en) Method of hydrolysis of fats and oils
JPS62278988A (en) Process for enzymatic or microbial reaction
EP0914195B1 (en) Method for separating a catalyst by membrane electrodialysis
JPH0365946B2 (en)
JPH0669360B2 (en) Liquid-liquid heterophasic reactor
EP0265409A1 (en) Process for the production of lactic acid by fermentation of whey
US20060191848A1 (en) Integrated separation of organic substances from an aqueous bio-process mixture
JP2520155B2 (en) Reaction method using biocatalyst and reaction apparatus thereof
CN105992753B (en) For the method from aqueous mixture separation dicarboxylic acids
JP2564147B2 (en) High-concentration bacterial acetic acid fermentation method
JPS60118190A (en) Method for enzymic reaction
JP2804247B2 (en) Reaction method using immobilized biocatalyst
DE102015218955B4 (en) Process for the preparation of epoxides with the aid of enzymes having perhydrolase activity
WO2023244525A1 (en) A liquid-liquid-solid extraction process for isolating natural products from a feedstock stream
CN112625885A (en) System and method for preparing rhamnolipid by utilizing tail gas of butanol and octanol production device
JPH0665294B2 (en) Continuous fermentation method
Hemavathi et al. 14 Reverse Micellar
JPH0638778A (en) Production of fatty acid
VLADISAVLJEVIC Biocatalytic membrane reactors. IN: Saha, B.(ed.) Catalytic Reactors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term