JPH01108972A - Reactor for liquid-liquid different phases - Google Patents

Reactor for liquid-liquid different phases

Info

Publication number
JPH01108972A
JPH01108972A JP26585587A JP26585587A JPH01108972A JP H01108972 A JPH01108972 A JP H01108972A JP 26585587 A JP26585587 A JP 26585587A JP 26585587 A JP26585587 A JP 26585587A JP H01108972 A JPH01108972 A JP H01108972A
Authority
JP
Japan
Prior art keywords
reaction
liquid phase
reactor
phase
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26585587A
Other languages
Japanese (ja)
Other versions
JPH0669360B2 (en
Inventor
Masaru Sakata
勝 坂田
Hidetoshi Wada
和田 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Original Assignee
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI filed Critical SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority to JP26585587A priority Critical patent/JPH0669360B2/en
Publication of JPH01108972A publication Critical patent/JPH01108972A/en
Publication of JPH0669360B2 publication Critical patent/JPH0669360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To improve efficiency of reaction, by providing partition plates of a structure in which a light liquid phase and heavy liquid phase are moved at suitable speeds in the reactor and carrying out continuous series multistage reaction in one vessel of the reactor. CONSTITUTION:For example, the interior of a vessel 1 is divided into two or more compartments 3, 4 and 5 with partition plates 27 and 27 having many holes and the interiors of the respective compartments 3, 4 and 5 are divided into the interior and exterior with intermediate walls 8 to provide stirrers in the interiors in a reaction vessel for carrying out reaction in a light liquid phase and heavy liquid phase, such as hydrolysis of oils and fats with lipase, synthesis of oils and fats and various esterification reactions. An introduction port 27 for the heavy liquid phase and an overflow port 29 for the light liquid phase are provided in the upper part of the compartment 5 in the topmost layer. An introduction port 9 for the light liquid phase and outlet 30 for the heavy liquid phase are provided under the compartment 3 in the lowermost layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液−液異相反応系において、これら異相を撹拌
混和しながら連続多投反応を行い、しかも反応と同時に
同じ反応器内でこれら異相を連続的に分離し効率よく生
成物を得る反応装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a liquid-liquid heterophase reaction system in which a continuous multiple-throttle reaction is carried out while stirring and mixing these different phases, and at the same time as the reaction, these different phases are reacted simultaneously in the same reactor. This invention relates to a reaction device that continuously separates and efficiently obtains products.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

化学工業における化学反応はその大部分が異相系(気−
液、気−同、液−同、液−液、固−固)での反応であり
、その中の一つである液−液異相反応においても有用な
反応は数多くある。
Most of the chemical reactions in the chemical industry are heterophasic (gas-
There are many reactions that are useful in the liquid-liquid heterophase reaction, which is one of these reactions.

例えば、リパーゼによる油脂の加水分解、油脂の改質、
油脂の合成や種々のエステルの合成反応、またプロテア
ーゼを利用した人工甘味料アスパルテームの合成等にみ
られる種々のペプチド合成反応、あるいは有機化合物の
ニトロ化反応、スルホン化反応やアルキル化反応等が挙
げられる。これら異相系反応は一般には、反応効率を高
めるため、通常、微細なエマルションとして反応を行い
、所定反応率に達した後、反応を停止して、次にそれぞ
れの相に分離して生成物を回収する回分操作となる。ま
た、原料物質を連続的に供給し、連続反応を行うことも
可能であるが、この場合反応器の他にエマルションを分
離する工程がさらに必要となる。
For example, hydrolysis of fats and oils by lipase, modification of fats and oils,
These include the synthesis of fats and oils, the synthesis of various esters, the various peptide synthesis reactions seen in the synthesis of the artificial sweetener aspartame using protease, and the nitration, sulfonation, and alkylation reactions of organic compounds. It will be done. In these heterophasic reactions, in order to increase the reaction efficiency, the reaction is usually carried out as a fine emulsion, and after reaching a predetermined reaction rate, the reaction is stopped and then separated into each phase to separate the products. This is a batch operation for collection. It is also possible to carry out a continuous reaction by continuously supplying the raw materials, but in this case, in addition to the reactor, a step for separating the emulsion is required.

このように、互いに溶は合わない液−液異相分散系での
反応においては、反応後再び反応系をそれぞれの相に分
離する必要があり、この方法としては、一般に静置分離
、遠心分離、あるいは膜による分離等の方法が挙げられ
るが、反応後にこれらの分離工程を組み合わせた場合、
システム的に複雑となり、またコスト的にも負担が大き
くなり工業化の際には問題がある。
In this way, in a reaction in a liquid-liquid heterophasic dispersion system that does not dissolve in each other, it is necessary to separate the reaction system into each phase again after the reaction, and this method generally includes static separation, centrifugation, Alternatively, methods such as separation using a membrane can be mentioned, but if these separation steps are combined after the reaction,
The system becomes complicated and the cost burden becomes large, which poses problems in industrialization.

本発明者らは、すでに酵素あるいは微生物反応での液−
液異相系の反応において高反応率を維持しながら、同時
に生成物の分離をも行うことができる連続反応方法を提
案している(特願昭61−122994号公報)。しか
しながら、通常、化学反応や生化学反応の多くは反応率
が増大するにしたがって反応速度が減少するような反応
であり、反応速度は反応率の減少関数で表わせる。この
ような反応では、特に高反応率を維持しながら連続反応
を行う場合、完全混合型反応器よりも管型反応器の方が
効率的である。すなわち、特願昭61−122994号
においても、高反応率を維持するためには、反応速度が
おそくなるため、長い滞留時間が必要となり、生産速度
を確保するためには大きな反応容積が必要となる。
The present inventors have already discovered that liquids used in enzymatic or microbial reactions
We have proposed a continuous reaction method that can simultaneously separate products while maintaining a high reaction rate in liquid heterophase reactions (Japanese Patent Application No. 122994/1982). However, most chemical reactions and biochemical reactions are reactions in which the reaction rate decreases as the reaction rate increases, and the reaction rate can be expressed as a decreasing function of the reaction rate. In such reactions, a tubular reactor is more efficient than a complete mixing reactor, especially when continuous reactions are carried out while maintaining a high reaction rate. In other words, in Japanese Patent Application No. 122994/1982, in order to maintain a high reaction rate, a long residence time is required because the reaction rate is slow, and a large reaction volume is required to ensure a high production rate. Become.

また、完全混合型反応器においても数冊の反応器を直列
につなぎ多段型とすることによって管型反応器に対する
不利さはかなり克服できるが、多数のりアクタ−が必要
となりシステム的に複雑となり、実用化には好ましくな
い。
In addition, even in the case of a complete mixing reactor, the disadvantages of a tubular reactor can be overcome to a large extent by connecting several reactors in series to form a multi-stage reactor, but this requires a large number of glue actors, making the system complex. Not suitable for practical use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の問題点を解決すべく、特願昭61
−122994号による反応方法の特徴、すなわち、反
応とともに2相の分離をも同時に行うという特徴を失う
ことなく、しかも前述のような反応器の型式の違いによ
るそれら特性を踏まえて効率よく反応が行なえる反応器
の開発を目的として鋭意検討を重ねた結果、反応器内に
軽液相および重液相がそれぞれ適当な速度で上下に移動
可能な構造を有する仕切り板を設けることにより、1槽
の反応器で連続的に直列多段反応が行なえる効率的な反
応器を開発するに到った。
In order to solve the above problems, the inventors of the present invention filed a patent application filed in 1983.
The reaction method can be carried out efficiently without losing the characteristics of the reaction method according to No. 122994, that is, the separation of two phases is carried out at the same time as well as the reaction, and also taking into account the characteristics due to the difference in the reactor type as mentioned above. As a result of extensive research aimed at developing a reactor that would allow the light liquid phase and heavy liquid phase to move up and down at appropriate speeds, it was found that We have developed an efficient reactor that can carry out serial multi-stage reactions continuously.

即ち本発明は、孔を有する仕切板により上、下に2以上
の隔室に仕切られており、各隔室にはそれぞれ内外に仕
切る中壁が設けられると共に、内室部に撹拌器が取付け
られており、最上層の隔室にはその上部に重液相導入口
および軽液相の溢流口が設けられており、最下層の隔室
には撹拌器の下方に、軽液相導入口が設けられ、最下層
の隔室に重液相出口が設けられてなる互いに不溶あるい
は難溶で比重の異なる2液相の液−液異相系の反応装置
を提供するものである。
That is, the present invention is divided into two or more compartments at the top and bottom by a partition plate having holes, and each compartment is provided with an inner wall that partitions the inside and outside, and a stirrer is attached to the inner chamber. The top compartment has a heavy liquid phase inlet and a light liquid phase overflow port at the top, and the bottom compartment has a light liquid phase inlet below the stirrer. The present invention provides a liquid-liquid heterophase reactor having two liquid phases that are mutually insoluble or poorly soluble and have different specific gravities, in which a heavy liquid phase outlet is provided in the lowermost compartment.

本発明は軽液相と重液相が上下2層に分離して存在する
反応器において軽液相と重液相とが混和しない部分を残
しながら、軽液相と重液相とをその界面近傍で混和する
ことにより、反応原料としての軽液相および重液相を、
あるいは軽液相および/又は重液相の中に存在する反応
原料を生成物に変換せしめ、混和しない部分の軽液相お
よび/又は重液相に存在する生成物を取り出すことがで
きる反応器において、反応器内を軽液相および重液相が
それぞれ適当な速度で上下に移動可能な構造を有する仕
切り板により多段に区切り連続多段反応を行うことので
きる装置を提供する。
The present invention is a reactor in which a light liquid phase and a heavy liquid phase are separated into two layers, an upper and a lower layer. By mixing the light liquid phase and heavy liquid phase as reaction raw materials in the vicinity,
or in a reactor in which the reaction raw materials present in the light liquid phase and/or the heavy liquid phase can be converted into products and the products present in the light liquid phase and/or the heavy liquid phase in the immiscible portion can be taken out. To provide an apparatus capable of carrying out a continuous multi-stage reaction in which a light liquid phase and a heavy liquid phase are divided into multiple stages in a reactor by a partition plate having a structure in which a light liquid phase and a heavy liquid phase can each be moved up and down at appropriate speeds.

従って、本発明により、2相異相系反応においてよりコ
ンパクトな反応器が実現でき、しかも反応とともに2相
の分離をも同時に行いうる非常にすぐれた反応方法が確
立できる。
Therefore, according to the present invention, a more compact reactor can be realized in a two-phase heterophasic reaction, and an extremely excellent reaction method can be established in which separation of two phases can be carried out simultaneously with the reaction.

本発明を更に詳しく、重液相として水溶液、軽液相とし
て水より比重の小さい非水溶液相の液−液2相系反応を
一例として、本発明の好適実施態様を示した図面に基づ
いて説明する。反応例としてA+B−+C+D (A、
Bはそれぞれ反応原料、C,Dはぞれぞれ生成物である
。今AおよびCは水溶性、BおよびDは水不溶性とする
。)で表わされる液−液2相系反応について第1図を用
いて説明する。第1図は本発明の特徴を有する反応器の
1例である。反応器1の下から2は水相、3,4.5は
反応部で孔を有する仕切り板27により3つの隔室に区
切られている。隔室の数は多くなれば効率がよくなるが
装置的に複雑になり高価になる。従って2〜lO個が好
ましい。仕切り板に区切られたそれぞれの部分は、非水
溶液相と水相を微細なエマルションとし効率的な反応を
行うため、ここではドラフトチューブ8を有するヘリカ
ルスクリュー型の撹拌羽根25により2相を混和する。
The present invention will be explained in more detail based on drawings showing preferred embodiments of the present invention, taking as an example a liquid-liquid two-phase reaction in which an aqueous solution is used as a heavy liquid phase and a non-aqueous solution phase with a specific gravity smaller than water is used as a light liquid phase. do. As a reaction example, A+B-+C+D (A,
B is a reaction raw material, and C and D are products. Now assume that A and C are water-soluble, and B and D are water-insoluble. The liquid-liquid two-phase system reaction represented by ) will be explained using FIG. FIG. 1 shows an example of a reactor having the features of the present invention. From the bottom of the reactor 1, 2 is an aqueous phase, and 3, 4.5 are reaction parts, which are divided into three compartments by a partition plate 27 having holes. The greater the number of compartments, the better the efficiency, but the equipment becomes more complex and expensive. Therefore, 2 to 10 pieces is preferable. In order to form a non-aqueous solution phase and an aqueous phase into a fine emulsion in each part separated by a partition plate and perform an efficient reaction, the two phases are mixed here by a helical screw type stirring blade 25 having a draft tube 8. .

6は非水溶液(軽液)相である。第1図に示したように
反応器の最上部と最下部にそれぞれじゃま板10、22
を設けると反応器の最上部と最下部での液の完全混合を
防止し、非水溶液相ど水相とが分離した状態の部分が形
成できるので好ましい。
6 is a non-aqueous solution (light liquid) phase. As shown in FIG. 1, there are baffle plates 10 and 22 at the top and bottom of the reactor, respectively.
Providing this is preferable because it prevents complete mixing of the liquids at the top and bottom of the reactor and forms a portion where the non-aqueous solution phase and the aqueous phase are separated.

この反応器内に反応原料A(水相)と反応原料B(非水
溶液相)をそれぞれ反応原料(水相)貯槽16、反応原
料(非水溶液相)貯槽17より一定の比率でそれぞれポ
ンプ19.18により、水(重液相)導入口28、非水
溶液(軽液相)導入口9から仕込む。水と非水溶液は並
流あるいは向流いずれの方法で仕込んでもよいが通常は
向流となるように仕込むことが好ましい。
Reaction raw material A (aqueous phase) and reaction raw material B (non-aqueous phase) are pumped into this reactor at a constant ratio from a reaction raw material (aqueous phase) storage tank 16 and a reaction raw material (non-aqueous solution phase) storage tank 17, respectively, by a pump 19. 18, water (heavy liquid phase) inlet 28 and non-aqueous solution (light liquid phase) inlet 9 are charged. Water and the non-aqueous solution may be charged either in parallel flow or in countercurrent flow, but it is usually preferable to charge them in countercurrent flow.

反応器内を区切る仕切り板としては、仕切り板を界した
上部と下部の液の混合はできるだけ少なく、一方非水溶
液と水を連続供給した場合それらの供給速度に見合うだ
けの移動速度を有するものが用いられる。すなわち、非
水溶液と水の供給速度だけそれぞれの液相が上下に移動
するものが最も好ましい。仕切り板の形状、材質として
は、上記の条件を満たすものであれば特に限定するもの
でなく、例えば蒸留、抽出等のたな段塔に使用される多
孔板トレイ、泡鐘トレイ、バブルトレイ等の形式のもの
が使用され、材質にふいても、ステンレス、ガラス、セ
ラミック、合成高分子等が使用される。
The partition plate that separates the inside of the reactor should be one that minimizes the mixing of liquids in the upper and lower parts of the partition plate, and that has a movement speed that is commensurate with the supply rate when non-aqueous solution and water are continuously supplied. used. That is, it is most preferable that the liquid phases of the non-aqueous solution and water move up and down by the same amount as the supply speed. The shape and material of the partition plate are not particularly limited as long as they meet the above conditions, such as perforated plate trays, bubble bell trays, bubble trays, etc. used in tray columns for distillation, extraction, etc. Types of materials used include stainless steel, glass, ceramics, and synthetic polymers.

最上部の隔室には非水溶液(軽液相)の溢流口29、又
、最下層の隔室には水(重液相)出口30が設けられて
おり、それぞれの出口から生成したり、 Cを取り出す
The uppermost compartment is provided with an overflow port 29 for a non-aqueous solution (light liquid phase), and the lowermost compartment is provided with an outlet 30 for water (heavy liquid phase). , take out C.

本発明の方法を用いれば反応と同時に生成物の分離を行
うことができるので、回分操作はもちろん、連続的に生
成物を抜き出しながら反応原料を供給する連続反応ある
いは半連続反応を行うことも可能である。また、反応器
中を仕切り板により多段に区切り、液の完全混合を防ぐ
ことにより、効率的な反応が行え、反応時間の短縮、反
応器の縮小や生成物濃度の高濃度化等が可能となる。
By using the method of the present invention, products can be separated at the same time as the reaction, so it is possible to perform not only batch operations but also continuous or semi-continuous reactions in which reaction raw materials are supplied while continuously extracting products. It is. In addition, by dividing the inside of the reactor into multiple stages with partition plates and preventing complete mixing of the liquids, efficient reactions can be carried out, making it possible to shorten reaction time, downsize the reactor, and increase product concentration. Become.

中壁として第、1図のようなドラフトチューブ8および
撹拌羽根25を用いる場合ドラフトチューブの径は特に
限定されるものではなく目的とする反応により径を決定
すればよいが反応槽の径の5〜90%の径であれば好ま
しく用いられる。
When using the draft tube 8 and stirring blade 25 as shown in Fig. 1 as the inner wall, the diameter of the draft tube is not particularly limited and may be determined depending on the desired reaction, but it is not limited to 50% of the diameter of the reaction tank. A diameter of ~90% is preferably used.

また、撹拌羽根の回転速度は、反応器中の下層がうまく
巻き上げられて非水溶液相と水相との界面近傍で混和が
起こり、しかも反応器上部と下部に、非水溶液相と水相
とが混和しない部分が残るように設定すればよい。
In addition, the rotational speed of the stirring blade is such that the lower layer in the reactor is well rolled up and mixing occurs near the interface between the non-aqueous phase and the aqueous phase. The setting may be made so that a part that does not mix remains.

第1図に示した如く充填材7を用いてもよい。A filler 7 may also be used as shown in FIG.

この場合、その充填材の形態は特に限定されるものでは
なく、通常一般に充填材として用いられるラシヒリング
、レッシングリング、ベルルサドル、インタロックスサ
ドル、ポールリング等の充填材や円筒状にしたネットな
どを充填してもよい。材質も特に限定されるものではな
く、金属、磁製、プラスチック製のもの等を用いること
ができる。
In this case, the form of the filler is not particularly limited, and fillers such as Raschig rings, Lessing rings, Berl saddles, Interlocks saddles, and Paul rings, which are commonly used as fillers, or cylindrical nets are used. You may. The material is not particularly limited either, and metal, porcelain, plastic, etc. can be used.

充填材を用いることによって水相および非水溶液相の接
触効率が高められ、また、触媒あるいは、酵素、微生物
等の生体触媒を用いた系においては、それら触媒と反応
原料の接触効率が高められ効率的な反応が行なえる。し
かし、充填材を用いなくともこれらの条件が満たされる
ならば特に充填材を使用する必要はない。
By using a filler, the contact efficiency between the aqueous phase and the non-aqueous solution phase is increased, and in systems using catalysts or biocatalysts such as enzymes and microorganisms, the contact efficiency between the catalyst and the reaction raw materials is increased, increasing the efficiency. reactions can be made. However, if these conditions are satisfied even without using a filler, there is no need to use a filler.

本反応器を用いて、通常の化学触媒、あるいは酵素、微
生物等の生体触媒を使った反応を行う場合、これら反応
に使用した触媒は効率よく反応器内に保持されるが、水
相あるいは非水溶液相に若干溶解してくることがある。
When using this reactor to carry out reactions using ordinary chemical catalysts or biocatalysts such as enzymes or microorganisms, the catalysts used for these reactions are efficiently retained in the reactor, but the aqueous phase or It may dissolve slightly in the aqueous solution phase.

したがってこれら触媒の効率的な利用、あるいはまた生
成物の品質への影響等を考慮するとこれら触媒を濃縮回
収することが好ましい。
Therefore, in consideration of the efficient use of these catalysts or the influence on product quality, it is preferable to concentrate and recover these catalysts.

尚、本発明において、触媒とは通常の化学触媒はもちろ
ん酵素、微生物等の生体触媒を含めたすべての触媒のこ
とである。
In the present invention, the term "catalyst" refers to all catalysts including not only ordinary chemical catalysts but also biocatalysts such as enzymes and microorganisms.

触媒を効率的に濃縮回収するには静置分離、遠心分離、
膜分離等の方法が挙げられるが、連続的に分離するには
限外濾過膜を用いるのが好ましい。使用する限外濾過膜
は、反応に使用する触媒を通過させないものであれば材
質、形状等特に限定するものではなく、水相側に溶解し
たものを回収するには酢酸セルロース膜、ポリアクリロ
ニトリル膜、ポリスルホン膜、ポリアミド膜等のような
親水性材質のものが好ましく使用でき、また非水溶液相
に溶解したものを回収するにはポリプロピレン膜、ポリ
エチレン膜、テフロン膜等のような疎水性材質のものが
好ましく使用できる。さらに多孔質ガラス、多孔質セラ
ミック等の無機材質の膜は水相、非水溶液相のいずれの
相の膜分離にも好ましく使用できる。また、形状につい
ても平膜状、管状、スパイラル状、中空糸状等どのよう
な形状のものでも使用できる。限外濾過膜の分画分子量
については反応に使用する触媒により異なり、これら触
媒の透過が阻止できる孔径を有しておればよく、特に限
定するものではないが、一般に3000〜50000程
度のものが好ましい。限外濾過により触媒を含まない水
相あるいは非水溶液相を連続的に抜き出し、触媒の濃縮
液は連続的、あるいは半連続的に反応系内へ戻してやれ
ばよい。
Static separation, centrifugation,
Methods such as membrane separation may be used, but it is preferable to use an ultrafiltration membrane for continuous separation. The ultrafiltration membrane to be used is not particularly limited in terms of material and shape, as long as it does not allow the catalyst used in the reaction to pass through. Cellulose acetate membranes and polyacrylonitrile membranes can be used to recover what is dissolved in the aqueous phase. Hydrophilic materials such as , polysulfone membranes, polyamide membranes, etc. are preferably used, and hydrophobic materials such as polypropylene membranes, polyethylene membranes, Teflon membranes, etc. are preferably used to recover dissolved materials in the non-aqueous solution phase. can be preferably used. Furthermore, membranes made of inorganic materials such as porous glass and porous ceramics can be preferably used for membrane separation of either the aqueous phase or the non-aqueous phase. Furthermore, any shape can be used, such as a flat membrane, a tube, a spiral, and a hollow fiber. The molecular weight cutoff of the ultrafiltration membrane varies depending on the catalyst used in the reaction, and it is sufficient as long as it has a pore size that can prevent the permeation of these catalysts.Although it is not particularly limited, it is generally about 3,000 to 50,000. preferable. The aqueous phase or non-aqueous phase not containing the catalyst may be continuously extracted by ultrafiltration, and the concentrated catalyst solution may be continuously or semi-continuously returned to the reaction system.

尚、触媒のほとんどが反応器内に保持され水相あるいは
非水溶液相への溶解が無視できるならば限外濾過による
これら触媒の分離の必要はない。またあらかじめ種々の
方法で不溶性担体に固定化した触媒を充填することも可
能で、この場合も限界濾過による触媒回収工程は必要な
い。あるいはまた、限外濾過工程を省略して、水相あい
は非水溶液相に溶解した触媒分に相当するフレッシュな
触媒を添加する方法も可能である。
Note that if most of the catalyst is retained within the reactor and dissolution in the aqueous phase or non-aqueous phase can be ignored, there is no need to separate these catalysts by ultrafiltration. It is also possible to fill the insoluble carrier with a catalyst that has been immobilized in advance by various methods, and in this case as well, the catalyst recovery step by ultrafiltration is not necessary. Alternatively, it is also possible to omit the ultrafiltration step and add fresh catalyst corresponding to the amount of catalyst dissolved in the aqueous phase or non-aqueous phase.

このような方法を用いれば特別な前処理を行うことなく
、反応器内に触媒を保持し効率よくこれら触媒の回収再
利用が可能である。触媒は特別な前処理を行うことなく
、充填材に吸着等により保持させるか、又はあらかじめ
種々の方法で不溶化処理をした触媒(担持触媒、固定化
生体触媒等)を充填するか、あるいはまたこれら充填物
を用いることなくフリーな状態で用いる等の方法がある
が、何れの方法を用いるかは触媒の特徴、あるいは反応
条件等により適当に選択すればよい。
If such a method is used, the catalysts can be retained in the reactor and efficiently recovered and reused without any special pretreatment. The catalyst can be retained in the packing material by adsorption without any special pretreatment, or it can be filled with a catalyst that has been insolubilized by various methods (supported catalyst, immobilized biocatalyst, etc.), or alternatively, There are methods such as using it in a free state without using a filler, but which method to use may be appropriately selected depending on the characteristics of the catalyst, reaction conditions, etc.

本発明の特徴は、反応器中の上下2層を界面近傍で混和
させて反応を行わせ、反応器中の上層部および下層部に
は混和されない部分を残したままで反応を行い、反応と
同時に軽液相と重液相をそれぞれ独立にとり出せる反応
器において、反応器内に反応器内の液の完全混合を防ぎ
、しかも、軽液相と重液相がそれぞれの供給速度と同じ
速度で移動できる構造をもつ仕切り板を設けることによ
り効率的な反応即ち、1槽の反応器で連続的に直列多段
反応が行なえることである。したがって連続的に反応原
料を加えながら、同時に生成物を得ることができる。ま
た、連続的に反応が行なえるので反応器内の各生成物の
濃度を一定に維持することもできる。
The characteristics of the present invention are that the reaction is carried out by mixing the upper and lower layers in the reactor near the interface, and the reaction is carried out while leaving unmixed parts in the upper and lower parts of the reactor, and the reaction is carried out at the same time. In a reactor where the light and heavy liquid phases can be taken out independently, complete mixing of the liquids in the reactor is prevented, and the light and heavy liquid phases move at the same speed as their respective feed rates. By providing a partition plate with a structure that allows efficient reactions, that is, continuous series multi-stage reactions can be performed in a single reactor. Therefore, the reaction raw materials can be added continuously and the product can be obtained at the same time. Furthermore, since the reaction can be carried out continuously, the concentration of each product in the reactor can be maintained constant.

本発明の方法は、軽液相と重液相の液−液異相系での種
々の反応に適用でき、前述のリパーゼによる油脂の加水
分解反応、リパーゼによるトリグリセリドの合成、トリ
グリセリドのエステル交換反応、あるいはサーモライシ
ンによるカルボベンジルオキシ−1−アスパラギン酸と
γ−フェニルアラニンメチルエステルからの人工甘味料
アスパルテーム(アスパルチルフェニルアラニンメチル
エステル)の合成などのようなプロテアーゼによるづプ
チドの合成反応、あるいはまた、これら生化的な反応の
他に、有機化合物のニトロ化反応、スルホン化反応やア
ルキル化反応等の液−液2相系での反応に広く応用可能
であるが、これらに限定されるものではない。
The method of the present invention can be applied to various reactions in a liquid-liquid heterophase system of a light liquid phase and a heavy liquid phase, including the above-mentioned hydrolysis reaction of fats and oils by lipase, synthesis of triglyceride by lipase, transesterification reaction of triglyceride, Alternatively, the synthetic reaction of duputide using a protease, such as the synthesis of the artificial sweetener aspartame (aspartyl phenylalanine methyl ester) from carbobenzyloxy-1-aspartic acid and γ-phenylalanine methyl ester using thermolysin, or alternatively, these biochemical reactions. In addition to these reactions, the present invention can be widely applied to reactions in a liquid-liquid two-phase system such as nitration reactions, sulfonation reactions, and alkylation reactions of organic compounds, but is not limited thereto.

〔実施例〕〔Example〕

以下、本発明の実施例について説明するが、本発明はこ
れら実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these Examples.

実施例−1 本発明の方法を用いて酵素により油脂の加水分解を行う
場合について述べる。この場合、反応物質は油脂および
水、酵素はリパーゼ、反応生成物は脂肪酸およびグリセ
リンである。本発明者らはリパーゼを用いた油脂の加水
分解に際しては、生成物であるグリセリンがリパーゼの
安定性に大きく寄与していることをすてに寛出している
。本発明者らの研究によれば反応系内の水相中のグリセ
リン濃度が10〜40重量%の範囲内にあるとき酵素が
安定化され好ましく油脂の加水分解が進行する。本発明
の方法は、反応器内の仕切り板に区切られた各段それぞ
れにおいて各種成分の濃度を一定に保つことが容易であ
り、従ってリパーゼによる油脂の加水分解に好ましく適
用される。つまり、油脂と水相の供給比率を適当に調節
することにより、高い油脂分解率を維持したままで水相
中のグリセリン濃度を制御できる。
Example 1 A case will be described in which the method of the present invention is used to hydrolyze fats and oils with enzymes. In this case, the reactants are oil and water, the enzyme is lipase, and the reaction products are fatty acids and glycerin. The present inventors have already discovered that when hydrolyzing fats and oils using lipase, the product glycerin greatly contributes to the stability of the lipase. According to research conducted by the present inventors, when the glycerin concentration in the aqueous phase in the reaction system is within the range of 10 to 40% by weight, the enzyme is stabilized and hydrolysis of fats and oils preferably proceeds. The method of the present invention makes it easy to keep the concentrations of various components constant in each stage divided by partition plates in the reactor, and is therefore preferably applied to the hydrolysis of fats and oils by lipase. That is, by appropriately adjusting the supply ratio of oil and fat to the aqueous phase, the glycerin concentration in the aqueous phase can be controlled while maintaining a high oil and fat decomposition rate.

第1図は本発明の好適実施システムの一例を示したもの
であり、まず、第1図に示した反応システムによりリパ
ーゼによる大豆油の加水分解を行った。リパーゼによる
油脂の加水分解では第1図において9は油脂供給ノズル
、11は脂肪酸溶液貯槽、14はグリセリン水溶液膜処
理用貯槽、15はグリセリン水貯槽、16は水貯槽、1
7は油脂貯槽となる。
FIG. 1 shows an example of a preferred implementation system of the present invention. First, soybean oil was hydrolyzed by lipase using the reaction system shown in FIG. In the hydrolysis of fats and oils by lipase, in FIG. 1, 9 is an oil supply nozzle, 11 is a fatty acid solution storage tank, 14 is a glycerin aqueous solution membrane treatment storage tank, 15 is a glycerin water storage tank, 16 is a water storage tank, 1
7 is an oil storage tank.

反応槽1に予め大豆油を酵素分解した分解脂肪酸く脂肪
酸含有率85%)  1kg、 15wt%グリセリン
水1kgおよびキャンディダシリンドラセより生産した
リパーゼ(320000単位/g) 2 gを加えた反
応槽を30℃に保ちながら反応を行った。
In reaction tank 1, 1 kg of decomposed fatty acids (fatty acid content: 85%) obtained by enzymatically decomposing soybean oil, 1 kg of 15 wt% glycerin water, and 2 g of lipase (320,000 units/g) produced from Candida cylindriase was added. The reaction was carried out while maintaining the temperature at 30°C.

反応槽の径とドラフトチニーブ8の径の比率は10:6
である。また撹拌羽根は第1図に示したようなリボン型
羽根25を用い周速は約0.5m/秒として撹拌を行っ
た。この反応槽1に油脂貯槽17からポンプ18により
50g/HRの流量で大豆油(脂肪酸含有率0%)を反
応槽下部のノズル9から連続供給し、また、水貯槽16
にはあらかじめ15wt%グリセリン水を仕込んでおき
、ポンプ19を用いて50g/HRの流量で15wt%
グリセリン水を反応器上部から連続的に供給した。即ち
反応槽内での油相および水相の平均滞留時間が20時間
となるようにそれぞれ反応器内へ供給した。
The ratio of the diameter of the reaction tank and the diameter of the draft chinive 8 is 10:6.
It is. Further, the stirring blade was a ribbon-type blade 25 as shown in FIG. 1, and stirring was performed at a circumferential speed of about 0.5 m/sec. Soybean oil (fatty acid content: 0%) is continuously supplied to this reaction tank 1 from a nozzle 9 at the bottom of the reaction tank at a flow rate of 50 g/HR by a pump 18 from an oil storage tank 17, and a water storage tank 16
15 wt% glycerin water was charged in advance, and 15 wt% was added at a flow rate of 50 g/HR using the pump 19.
Glycerol water was continuously supplied from the top of the reactor. That is, the oil phase and the aqueous phase were each supplied into the reactor so that the average residence time in the reactor was 20 hours.

反応槽を仕切り板により3段に区切ることにより完全混
合することなく効率のよい加水分解反応が行われる。ま
た反応槽の上部と下部にそれぞれじゃま板10と22を
設けることによりその上側6と下側2ではほとんど水を
含まない脂肪酸、あるいはほとんど油を含まないグリセ
リン水が得られる。このようにして脂肪酸は供給した大
豆油の量だけ連続的に軽液相の溢流口29よりオーバー
フローにより抜き出し、グリセリン水は反応槽下部の出
口30からポンプ20により連続的に抜き出し、−旦貯
槽14に貯めた後、限外濾過膜13により水相に溶解し
ている酵素を濃縮回収し、グリセリン水の抜き出し量が
50g/HRとなるように調整しながら反応を行った。
By dividing the reaction tank into three stages using partition plates, efficient hydrolysis reaction can be carried out without complete mixing. Further, by providing the baffle plates 10 and 22 at the upper and lower parts of the reaction tank, respectively, the upper side 6 and the lower side 2 can obtain fatty acid containing almost no water or glycerin water containing almost no oil. In this way, fatty acids are continuously extracted by the amount of soybean oil supplied by overflow from the overflow port 29 of the light liquid phase, and glycerin water is continuously extracted from the outlet 30 at the bottom of the reaction tank by the pump 20. 14, the enzyme dissolved in the aqueous phase was concentrated and recovered using an ultrafiltration membrane 13, and the reaction was carried out while adjusting the amount of glycerin water extracted to be 50 g/HR.

本実施例では限外濾過膜としてポリアクリロニトリル膜
(分画分子量30000)を用いて半連続的に酵素の濃
縮を行い再び反応槽へもどした。
In this example, a polyacrylonitrile membrane (molecular weight cut off: 30,000) was used as an ultrafiltration membrane to semi-continuously concentrate the enzyme and return it to the reaction tank.

このような反応装置を用いて大豆油、グリセリン水溶液
の連続供給及び脂肪酸溶液、グリセリン水溶液の連続抜
き出しを行いながら反応を継続した。
Using such a reaction apparatus, the reaction was continued while continuously supplying soybean oil and an aqueous glycerin solution and continuously withdrawing a fatty acid solution and an aqueous glycerin solution.

20時間後(反応槽内での平均滞留時間に等しい)、反
応槽1の3の部分、4の部分、5の部分から反応液を採
取し、それぞれの油相の酸価及び鹸化価を測定し、また
それぞれの水相のグリセリン濃度を測定した。30部分
の酸価= 155゜鹸化価=198.4の部分の酸価=
181 、鹸化価=199.5の部分の酸価=190 
、鹸化価=200が得られた。下式より加水分解率を計
算したところ、3. 4. 5の部分の加水分解率はそ
れぞれ78%、91%、95%であった。
After 20 hours (equal to the average residence time in the reaction tank), the reaction liquid was collected from parts 3, 4, and 5 of reaction tank 1, and the acid value and saponification value of each oil phase were measured. In addition, the glycerin concentration of each aqueous phase was measured. Acid value of 30 parts = 155° Saponification value = Acid value of 198.4 parts =
181, saponification value = 199.5 part acid value = 190
, saponification value=200 was obtained. When the hydrolysis rate was calculated from the following formula, 3. 4. The hydrolysis rates of portion 5 were 78%, 91%, and 95%, respectively.

また、3.4.5の部分のグリセリン濃度は、それぞれ
24%、16.4%、15.4%であった。尚、5の部
分の分解率は脂肪酸溶液貯槽11に得られる脂肪酸溶液
の分解率に等しく、3の部分の水相中のグリセリン濃度
はグリセリン水溶液貯槽15のグリセリン水溶液のグリ
セリン濃度に等しい。
Furthermore, the glycerin concentrations in the portions 3, 4, and 5 were 24%, 16.4%, and 15.4%, respectively. The decomposition rate of the portion 5 is equal to the decomposition rate of the fatty acid solution obtained in the fatty acid solution storage tank 11, and the glycerin concentration in the aqueous phase of the portion 3 is equal to the glycerin concentration of the aqueous glycerin solution in the aqueous glycerin solution storage tank 15.

同様に大豆油の供給開始40時間後、60時間後、80
時間後、100時間後の反応槽の各部分の分解率及びグ
リセリン濃度を測定したところ、第1表の如くであった
Similarly, 40 hours after starting the supply of soybean oil, 60 hours after starting, 80 hours after starting the supply of soybean oil,
After 100 hours, the decomposition rate and glycerin concentration in each part of the reaction tank were measured, and the results were as shown in Table 1.

第1表 このように100時間の連続反応を行っても酵素は全く
失活せず、大豆油の分解率も92〜95%が得られ、水
相中のグリセリン濃度も23〜24%に維持できた。
Table 1 Even after 100 hours of continuous reaction, the enzyme did not deactivate at all, the decomposition rate of soybean oil was 92-95%, and the glycerin concentration in the aqueous phase was maintained at 23-24%. did it.

一方、脂肪酸溶液貯槽11に得られる脂肪酸溶解中の水
分は0.5%以下であった。また、限外濾過膜を透過し
たグリセリン水は品質的にも良好なグリセリン水が得ら
れた。このように本反応システムを用いることにより、
反応と生成物の分離を同時に行いながらしかも効率よく
酵素を回収再利用し、高分解率を維持できることがわか
った。
On the other hand, the water content in the fatty acid solution obtained in the fatty acid solution storage tank 11 was 0.5% or less. In addition, the glycerin water that passed through the ultrafiltration membrane was of good quality. By using this reaction system in this way,
It has been found that it is possible to efficiently recover and reuse enzymes while simultaneously performing reaction and product separation, and maintaining a high decomposition rate.

比較例−1 ここでは、反応槽内に実施例−1で用いたような反応槽
を多段に区切る仕切り板を有しない反応槽を用いて大豆
油の連続加水分解を行った。
Comparative Example-1 Here, continuous hydrolysis of soybean oil was carried out using a reaction tank that did not have a partition plate for partitioning the reaction tank into multiple stages as used in Example-1.

反応槽に予め大豆油を酵素分解した分解脂肪酸(脂肪酸
含有率85%)1kg、2ht%グリセリン水1kg及
びキャンディダシリンドラセより生産したリパーゼ(3
20000単位/g) 2 gを加えて反応槽を30℃
に保ちながら反応を行った。・反応槽の径とドラフトチ
ャーブの径の比率は10:6である。また撹拌羽根はリ
ボン型羽根を用い周速は0.5m/秒として撹拌を行っ
た。
In a reaction tank, 1 kg of decomposed fatty acids (85% fatty acid content) obtained by enzymatically decomposing soybean oil, 1 kg of 2ht% glycerin water, and lipase (3
20000 units/g) was added and the reaction tank was heated to 30°C.
The reaction was carried out while maintaining the - The ratio of the diameter of the reaction tank to the diameter of the draft chive is 10:6. Further, stirring was performed using a ribbon-type stirring blade at a circumferential speed of 0.5 m/sec.

反応槽の下部から50g/HRの流量で大豆油を供給上
部から25g/HRの流量で水を供給し連続反応を行っ
た。即ち反応槽内での大豆油の平均滞留時間が20時間
、モして水相中のグリセリン濃度が約20%に保つこと
ができるようにそれぞれ反応槽内へ供給した。
Soybean oil was supplied from the lower part of the reaction tank at a flow rate of 50 g/HR, and water was supplied from the upper part at a flow rate of 25 g/HR to carry out a continuous reaction. That is, soybean oil was supplied into the reaction tank so that the average residence time in the reaction tank was 20 hours, and the glycerin concentration in the aqueous phase could be maintained at about 20%.

このようにして、実施例−1と同様に生成した脂肪酸は
連続的にオーバーフローにより抜き出し、甘木は限外濾
過膜により水相に溶解している酵素を回収した後、連続
的に系外に抜き出した。
In this way, the fatty acids produced in the same manner as in Example 1 are continuously extracted by overflow, and after Amagi collects the enzyme dissolved in the aqueous phase using an ultrafiltration membrane, it is continuously extracted from the system. Ta.

反応時間毎の大豆油の加水分解率およびグリセリン濃度
を測定したところ第2表のようになった。
The hydrolysis rate and glycerin concentration of soybean oil for each reaction time were measured and the results are shown in Table 2.

第2表 このように100時間の連続反応を行っても、酵素の失
活は認められなかったが、大豆油の分解率は85〜86
%であり、実施例−1に比べて低いことがわかる。
Table 2: Even after 100 hours of continuous reaction, no deactivation of the enzyme was observed, but the decomposition rate of soybean oil was 85-86.
%, which is lower than that of Example-1.

実施例−2 実施例−1と同様の装置を用い、初期仕込み大豆油分解
液、15wt%グリセリン水溶液および酵素仕込み量も
実施例−1と同じにし、大豆油供給量は実施例−1と同
じ50g/HRとし、15wt%グリセリン水溶液供給
量を25g/HRに変更した。
Example-2 Using the same equipment as in Example-1, the initially charged soybean oil decomposition solution, 15 wt% glycerin aqueous solution, and enzyme preparation amounts were also the same as in Example-1, and the soybean oil supply amount was the same as in Example-1. 50 g/HR, and the amount of 15 wt% glycerin aqueous solution supplied was changed to 25 g/HR.

即ち水相の平均滞留時間を40時間とした。このように
して大豆油の連続加水分解を行った。反応時間毎の反応
槽各部の油脂分解率およびグリセリン濃度は第3表のよ
うになった。
That is, the average residence time of the aqueous phase was 40 hours. In this way, continuous hydrolysis of soybean oil was carried out. Table 3 shows the fat and oil decomposition rate and glycerin concentration in each part of the reaction tank for each reaction time.

第3表 このように水相の供給スピードを調整することにより高
分解率を維持しながら、しかも高濃度グリセリン水が得
られることがわかった。
Table 3 It was found that by adjusting the supply speed of the aqueous phase as described above, high concentration glycerin water could be obtained while maintaining a high decomposition rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の反応装置の1例を示す模式%式% 10・・・上部じゃま板 11・・・生成物(軽液相)貯槽 12・・・せき 13・・・限外濾過膜 14・・・生成物(重液相)膜処理用貯槽15・・・生
成物(重液相)貯槽 16・・・反応原料(重液相)貯槽 17・・・反応原料(軽液相)貯槽 18〜21・・・ポンプ 22・・・下部じゃま板 23〜24・・・バルブ 25・・・撹拌羽根 26・・・撹拌用モーター 27・・・反応槽内仕切り板 28・・・重液相導入口 29・・・生成物(軽液相)溢流口 30・・・生成物(重液相)出口
FIG. 1 is a schematic diagram showing one example of the reaction apparatus of the present invention. 14... Product (heavy liquid phase) storage tank for membrane treatment 15... Product (heavy liquid phase) storage tank 16... Reaction raw material (heavy liquid phase) storage tank 17... Reaction raw material (light liquid phase) Storage tanks 18-21... Pump 22... Lower baffle plates 23-24... Valve 25... Stirring blades 26... Stirring motor 27... Reaction tank internal partition plate 28... Heavy liquid Phase inlet 29...product (light liquid phase) overflow port 30...product (heavy liquid phase) outlet

Claims (1)

【特許請求の範囲】[Claims] 1 孔を有する仕切板により上下に2以上の隔室に仕切
られており、各隔室にはそれぞれ内外に仕切る中壁が設
けられると共に、内室部に撹拌器が取付けられており、
最上層の隔室にはその上部に重液相導入口および軽液相
の溢流口が設けられており、最下層の隔室には撹拌器の
下方に、軽液相導入口が設けられ、最下層の隔室に重液
相出口が設けられてなる互いに不溶あるいは難溶で比重
の異なる2液相の液−液異相系の反応装置。
1 It is partitioned vertically into two or more compartments by a partition plate with holes, and each compartment is provided with an inner wall that partitions the inside and outside, and a stirrer is installed in the inner chamber,
The topmost compartment has a heavy liquid phase inlet and a light liquid phase overflow port above it, and the bottom compartment has a light liquid phase inlet below the stirrer. , a liquid-liquid heterophase reactor having two liquid phases that are mutually insoluble or poorly soluble and have different specific gravities, in which a heavy liquid phase outlet is provided in the lowest compartment.
JP26585587A 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor Expired - Fee Related JPH0669360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26585587A JPH0669360B2 (en) 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26585587A JPH0669360B2 (en) 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor

Publications (2)

Publication Number Publication Date
JPH01108972A true JPH01108972A (en) 1989-04-26
JPH0669360B2 JPH0669360B2 (en) 1994-09-07

Family

ID=17423016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26585587A Expired - Fee Related JPH0669360B2 (en) 1987-10-21 1987-10-21 Liquid-liquid heterophasic reactor

Country Status (1)

Country Link
JP (1) JPH0669360B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110601A2 (en) * 1999-12-22 2001-06-27 Bayer Inc. Modular reactor system allowing control of particle size during chemical precipitation
WO2006003790A1 (en) * 2004-06-30 2006-01-12 Bussan Nanotech Research Institute, Inc. Reaction apparatus for hydrophobic compound and method of reaction therewith
JP2006042827A (en) * 2005-10-14 2006-02-16 Saga Prefecture Bioreactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110601A2 (en) * 1999-12-22 2001-06-27 Bayer Inc. Modular reactor system allowing control of particle size during chemical precipitation
EP1110601A3 (en) * 1999-12-22 2002-02-06 Bayer Inc. Modular reactor system allowing control of particle size during chemical precipitation
WO2006003790A1 (en) * 2004-06-30 2006-01-12 Bussan Nanotech Research Institute, Inc. Reaction apparatus for hydrophobic compound and method of reaction therewith
JP2006042827A (en) * 2005-10-14 2006-02-16 Saga Prefecture Bioreactor

Also Published As

Publication number Publication date
JPH0669360B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
Giorno et al. Performance of a biphasic organic/aqueous hollow fibre reactor using immobilized lipase
JPS59154999A (en) Method for biochemical reaction and biochemical reactor
CA2671879A1 (en) Recovery of volatile products from fermentation broth
Patnaik Liquid emulsion membranes: principles, problems and applications in fermentation processes
US5032515A (en) Hydrolysis process of fat or oil
EP1004662A2 (en) A process for hydrolyzing fats and oils
JP2000160188A (en) Hydrolysis of oil and fat
WO2009078290A1 (en) Continuous production of biodiesel fuel by enzymatic method
JPH01108972A (en) Reactor for liquid-liquid different phases
US20080167486A1 (en) Methods and systems for alkyl ester production
JPS62278988A (en) Process for enzymatic or microbial reaction
WO2019229365A1 (en) Method for purifying a bis(fluorosulfonyl)imide lithium salt
EP0605173A2 (en) Hollow fibre reactor
EP3110930B1 (en) Process for the recovery of lipids or hydrocarbons
JPH0365946B2 (en)
JP2563502B2 (en) Liquid-liquid heterophasic reactor
US20060191848A1 (en) Integrated separation of organic substances from an aqueous bio-process mixture
Hossain Mass transfer studies of amino acids and dipeptides in AOT–oleyl alcohol solution using a hollow fiber module
WO2021037672A1 (en) A process for producing 4,4'-dichlorodiphenyl sulfone
US4140704A (en) Process for producing cyclic ether
KR101697863B1 (en) Oil-water separator for production of organic acid through organic acid fermentation by microorganism having improved oil-water separation efficiency by having specific three dimensional structure, and a device for production of organic acid including the same
Liddell Solvent extraction processes for biological products
KR101697860B1 (en) Oil-water separator for a device for production of organic acid through organic acid fermentation by microorganism having improved extraction efficiency by using porous separator membrane, and the device for production of organic acid including the same
WO2023244525A1 (en) A liquid-liquid-solid extraction process for isolating natural products from a feedstock stream
CN112625885A (en) System and method for preparing rhamnolipid by utilizing tail gas of butanol and octanol production device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees