WO2006003790A1 - Reaction apparatus for hydrophobic compound and method of reaction therewith - Google Patents

Reaction apparatus for hydrophobic compound and method of reaction therewith Download PDF

Info

Publication number
WO2006003790A1
WO2006003790A1 PCT/JP2005/010952 JP2005010952W WO2006003790A1 WO 2006003790 A1 WO2006003790 A1 WO 2006003790A1 JP 2005010952 W JP2005010952 W JP 2005010952W WO 2006003790 A1 WO2006003790 A1 WO 2006003790A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
reaction
hydrophobic
liquid substance
hydrophobic compound
Prior art date
Application number
PCT/JP2005/010952
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Noda
Shiro Irisa
Tomonari Kogure
Minoru Sakata
Akihiko Tokida
Original Assignee
Bussan Nanotech Research Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute, Inc. filed Critical Bussan Nanotech Research Institute, Inc.
Publication of WO2006003790A1 publication Critical patent/WO2006003790A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation

Definitions

  • the present invention relates to a hydrophobic compound reaction apparatus and reaction method using a biocatalyst.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-296499
  • Patent Document 2 Japanese Translation of Special Publication 2002-527073
  • lipase functions as a catalyst only in a relatively simple reaction such as hydrolysis, and in organically important reactions such as oxidation-reduction reaction, transfer reaction, substitution reaction, elimination reaction, etc. As a result, I got enough results.
  • the present invention has been made in view of the above circumstances, and has been made hydrophobic by a wide variety of reactions. It is an object of the present invention to propose a reaction apparatus and a reaction method for a hydrophobic compound that can sufficiently increase the reaction efficiency of the compound and reduce the cost required for the reaction.
  • the reason why the reaction efficiency of the hydrophobic compound is not sufficient as described above is due to the following reason. That is, in general, when a hydrophobic compound is reacted using a biocatalyst as described above, the hydrophobic compound and the biocatalyst are in sufficient contact, and the reaction of the hydrophobic compound proceeds sufficiently in the presence of the biocatalyst. It is considered a thing. However, in reality, the reaction has not progressed sufficiently, and the reason is not clear. As a result of intensive studies, the present inventors have thought that the low reaction efficiency of the hydrophobic compound as described above may be caused by a reaction vessel such as a flask.
  • the present inventors considered that the reaction efficiency may be lowered in the above reaction vessel due to insufficient contact area between the hydrophobic compound and the biocatalyst. As a result of intensive studies, the present inventors have found that the above problems can be solved by the following invention, and have completed the present invention.
  • the present invention is a reaction apparatus for a hydrophobic compound that reacts a hydrophobic compound with a biocatalyst, and includes a first channel that circulates a hydrophobic liquid substance containing the hydrophobic compound, and the biocatalyst.
  • a microchannel chip having a second channel through which an aqueous liquid material flows, and a third channel connected to the first channel and the second channel and through which the hydrophobic liquid material and the aqueous liquid material flow is provided.
  • a hydrophobic liquid substance containing a hydrophobic compound and an aqueous liquid substance containing a biocatalyst are transferred from the first channel and the second channel to the third channel in the microchannel chip. Since it is distributed, the distributed hydrophobic liquid substance and aqueous liquid substance come into contact in the third channel. Then, the surface area of the interface between the hydrophobic liquid substance and the aqueous liquid substance increases, so that the contact efficiency between the hydrophobic compound and the biocatalyst can be greatly improved.
  • the reaction efficiency of the hydrophobic compound can be increased, and as a result, the reaction can be performed at a reaction rate several tens of times higher.
  • the ability to react quickly and efficiently with hydrophobic fluids with poor compatibility and aqueous fluids allows the application to various variations of hydrophobic compounds and biocatalysts. You can. Further, since addition of an extra surfactant or the like is unnecessary, the reaction of the hydrophobic compound can be performed at a low cost, and the reaction product can be obtained with high purity.
  • the channel width of the channel is preferably lmm or less.
  • the channel width is 1 mm or less, the effect of reducing the diffusion rate can be obtained, and the surface area of the interface between the hydrophobic fluid and the biocatalyst can be increased. Therefore, in the presence of the biocatalyst, the hydrophobic compound The reaction of can be dramatically promoted.
  • the reaction method of the present invention is a reaction method of a hydrophobic compound in which a hydrophobic compound is reacted using a biocatalyst, and is an aqueous liquid containing a hydrophobic liquid substance containing a hydrophobic compound and a biocatalyst. The substance is contacted in a channel having a channel width of 1 mm or less.
  • a hydrophobic liquid substance containing a hydrophobic compound and an aqueous liquid substance containing a biocatalyst are circulated in a channel having a channel width of 1 mm or less.
  • the surface area at each interface further increases. For this reason, it is possible to greatly improve the contact efficiency between the hydrophobic compound and the biocatalyst.
  • the reaction efficiency of the hydrophobic compound can be increased in the presence of the biocatalyst, and as a result, the reaction can be performed at a reaction rate several tens of times higher.
  • hydrophobic fluid having poor compatibility and an aqueous fluid can be reacted quickly and efficiently, it can be applied to hydrophobic compounds and biocatalysts of various types. Further, since addition of an extra surfactant or the like is unnecessary, the reaction of the hydrophobic compound can be performed at a low cost, and the reaction product can be obtained with high purity.
  • the hydrophobic liquid substance and the aqueous liquid substance are circulated in the third channel, and the phases of the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other in a separated state.
  • the contact efficiency can be greatly improved.
  • droplets of the hydrophobic liquid substance and aqueous liquid substance droplets are formed in the third channel, and are alternately circulated and brought into contact with each other. As described above, when the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other, the contact efficiency can be greatly improved.
  • the third channel is composed of a hydrophobic liquid substance and an aqueous liquid substance. It is preferable that a hydrophobic liquid substance and an aqueous liquid substance are brought into contact with each other by forming a liquid. As described above, when the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other, the contact efficiency can be greatly improved.
  • the biocatalyst is a microorganism having an ability to incorporate a hydrophobic compound into a cell.
  • Microorganisms that have the ability to take up hydrophobic compounds into cells effectively take up hydrophobic substances into cells at the contact interface between hydrophobic liquid substances and aqueous liquid substances, increasing the efficiency of contact with enzymes in the microorganisms, Promote the reaction.
  • the microorganism may be a Pichia yeast, Candida yeast, Pseudomonas bacterium, Rhodococcus bacterium, Mycobacterium bacterium, Bacillus bacterium, Brevibacillus bacterium, or Diobacillus bacterium. I like it. Since these microorganisms have a high ability to take various hydrophobic substances into the body, the reaction is further promoted.
  • the reaction efficiency of the hydrophobic compound can be sufficiently increased in a wide variety of reactions in the presence of the biocatalyst. Therefore, according to the reaction apparatus and reaction method of the hydrophobic compound of the present invention, hydrolysis reaction, oxidation reduction reaction, transfer reaction, substitution reaction, elimination reaction, condensation reaction, addition reaction, It can be applied to isomerization reactions, asymmetric synthesis reactions, etc., and progress can be expected in the field of biocatalytic reactions of hydrophobic compounds in the future.
  • FIG. 1 is a plan view showing a microchannel chip according to this embodiment of a hydrophobic compound reaction apparatus according to the present invention.
  • FIG. 2 is a partial cross-sectional view taken along the thickness direction of a main body portion constituting the microchannel chip of FIG.
  • FIG. 3 is a cross-sectional view showing first and second modes of a first channel, a second channel, and a third channel.
  • FIG. 4 is a partial plan view showing a microchannel chip according to another embodiment of the hydrophobic compound reactor according to the present invention.
  • FIG. 6 is a partial front view showing a dispersion unit 31.
  • FIG. 6 is a graph showing reaction rate measurement results according to Examples:! To 3 and Comparative Example 1.
  • FIG. 7 is a graph showing the reaction rate measurement results of Examples 4 and 5 and Comparative Example 2.
  • FIG. 1 is a plan view showing a microchannel chip according to this embodiment of the hydrophobic compound reactor according to the present invention.
  • the microchannel chip 10 has a substrate 5 made of an inert material, and a first channel 1 for allowing a hydrophobic liquid substance to flow through one surface 5a of the substrate 5; A second channel 2 is formed to distribute the aqueous liquid material.
  • the third channel 3 is formed on the first surface 5a of the substrate 5 to distribute the hydrophobic liquid substance and the aqueous liquid material.
  • the third channel 3 is formed by meandering on the first surface 5a of the substrate 5.
  • One end of the third channel 3 is connected to the first channel 1 and the second channel 2, and the other end of the third channel 3 extends to the edge of the entire surface 5a.
  • the hydrophobic liquid material circulated in the first channel 1 and the aqueous liquid material circulated in the second channel 2 come into contact in the third channel 3.
  • the other end of the third channel 3 is connected to the receiver 4 via the third tube 6.
  • a branch channel 3 a is connected to the third channel 3, and the branch channel 3 a is connected to the receiver 7 via the fourth tube 8.
  • the reaction products are accommodated in separate receivers 4 and 7, and multiple analyzes necessary for identifying compounds can be simultaneously performed in each of them.
  • a reaction product can be taken out as necessary, or a device for detecting the reaction product can be connected.
  • FIG. 2 is a partial cross-sectional view along the thickness direction of the substrate 5.
  • the cross-sectional shape of the third channel 3 is a quadrangle, and the channel width d of the third channel 3 is preferably lmm or less. It is. Since the channel width d is in the above range, when the hydrophobic liquid substance and the aqueous liquid substance are in contact with each other in the third channel 3, the contact area at the interface increases, and thus the reaction is more fully promoted. be able to. At the same time, it is possible to react quickly by utilizing the effect of shortening the diffusion time of molecules, that is, the effect of minimizing diffusion rate control.
  • the channel width d exceeds lmm, the effect of increasing the interfacial surface area per unit volume and the effect of minimizing the diffusion rate can be sufficiently obtained as compared with the case where the channel width d is 1 mm or less. Tend to become impossible.
  • the channel width d is more preferably 0.:! To 500 xm.
  • the length of the third channel 3 can be arbitrarily determined in accordance with the convenience of the apparatus and reaction.
  • “Channel width” refers to the length in the direction perpendicular to the thickness direction of the substrate.
  • the cross-sectional shape of the third channel 3 is a square, it means the horizontal length, and when it is a trapezoid or a triangle, it means the longest length in the above direction.
  • the length of the diameter and the length of the diameter in the case of an ellipse are the longest in the direction.
  • the cross-sectional shapes of the first channel 1 and the second channel 2 are the same as those of the third channel 3, and the channel width d is the same as that of the third channel 3.
  • the first channel 1 is connected to the first syringe 21 via the first tube 11, and the second channel 2 is connected to the second syringe 22 via the second tube 12.
  • the hydrophobic liquid substance is accommodated in the first syringe 21 and further the aqueous liquid substance is accommodated in the second syringe 22, so that the hydrophobic liquid substance passes through the first tube 11 and enters the first channel 1.
  • the aqueous liquid substance can be injected into the second channel 2 via the second tube 12. Therefore, the hydrophobic liquid substance and the aqueous liquid substance are contacted in the third channel 3, and the reaction that is the object of the present invention is performed.
  • the hydrophobic liquid substance containing the hydrophobic compound is injected from the first syringe 21 into the first channel 1 via the first tube 11.
  • an aqueous liquid substance containing a biocatalyst is injected into the second channel 2 from the second syringe 22 through the second tube 12.
  • the hydrophobic liquid material flows from the first channel 1 to the third channel 3, and the aqueous liquid material flows from the second channel 2 to the third channel 3.
  • the hydrophobic liquid material and the aqueous liquid are circulated. Substance Contact.
  • the third channel 3 is a channel in the microchannel chip 10
  • the reaction efficiency of the hydrophobic compound can be sufficiently increased in the presence of the biocatalyst, and as a result, the reaction can be performed at a reaction rate several tens of times higher.
  • the reaction efficiency of the hydrophobic compound can be sufficiently increased as described above, the hydrolysis reaction, oxidation-reduction reaction, transfer reaction of the hydrophobic compound in the presence of the biocatalyst is organically important.
  • Substitution reactions, elimination reactions, condensation reactions, addition reactions, isomerization reactions, asymmetric synthesis reactions, and the like can also be performed. Furthermore, since the reaction efficiency of the hydrophobic compound can be sufficiently increased without using a surfactant as described above, the hydrophobic compound can be reacted at a low cost.
  • the hydrophobic liquid substance and the aqueous liquid substance circulate separately in the first channel 1 and the second channel 2, so that the hydrophobic liquid substance and the aqueous liquid substance are separated from each other.
  • the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other by the following method because the contact efficiency is improved.
  • A a method of forming and flowing phases in the third channel and bringing them into contact with each other in a separated state
  • B a method of forming droplets in the third channel and alternating the droplets
  • C a method of forming an emulsion in the third channel and bringing it into contact.
  • the shape of the third channel 3, the contact angle of each of the hydrophobic liquid substance and the aqueous liquid substance with respect to the material of the third channel 3, the viscosity, the amount of the flowing liquid, and Each can be realized by controlling the speed of distribution and the like.
  • the method (C) can be realized by, for example, another embodiment described later.
  • the biocatalyst used for the reaction of the hydrophobic reactant can be reused. That is, it is injected from the second syringe 22 and passes through the second tube 12 and the third channel 3. After reaching the receiver 4, the biocatalyst may be removed from the receiver 4 and reinjected into the second syringe 22. Since this reaction is a biocatalytic reaction, it can be used repeatedly until the catalyst is deactivated.
  • the hydrophobic compound may be a solid or liquid or a volatile compound. However, if it is a solid, it must be dissolved or dispersed in some hydrophobic solvent.
  • hydrophobic compounds include toluene, naphthalene, phenol, benzaldehyde, anisole, catechol, hydroxybenzoic acid and other aromatic compounds or derivatives thereof, thiophene, benzothiophene, dibenzothiophene, furan, imidazole, thiazole, Heterocyclic compounds such as pyridine, pyrazine, indole or derivatives thereof, C5-C20 aliphatic hydrocarbons such as pentane, hexane, pentadecane, octadecane, arachidonic acid, linoleic acid, or derivatives thereof, ⁇ -vinene, limonene Terpenes such as menthol, ketones, diketones, polyketone
  • hydrophobic solvent examples include aromatic solvents such as toluene, aliphatic solvents such as heptane, hexane, cyclohexane, ⁇ tetradecane, and isooctane; dimethyl ether, tetrahydroxyfuran, t-butyl methyl ether, diisopropyl ether, and the like.
  • aromatic solvents such as toluene
  • aliphatic solvents such as heptane, hexane, cyclohexane, ⁇ tetradecane, and isooctane
  • dimethyl ether tetrahydroxyfuran
  • t-butyl methyl ether diisopropyl ether
  • Ether solvents ester solvents such as ethyl acetate
  • halogen solvents such as methylene chloride.
  • biocatalyst examples include, for example, enzymes such as lipase, esterase, protease, amylase, isomerase, dehydrogenase, lyase, transferase, kinase, anoredolase, ligase, Schizosaccharomyces yeast, Pichia yeast , Candida yeast, Pseudomonas bacteria, Sphingomonas bacteria, Alkagenes bacteria, Burkholderia bacteria, Acinetopacter bacteria, Corynebacterium bacteria, Bacillus bacteria, Brevibacillus bacteria, Giobacillus bacteria, Nocardia Microbial power S such as genus bacteria, Rhodococcus bacteria, Gordonia bacteria, or Mycobacterium bacteria. These can be used by dissolving or dispersing in water or the like.
  • enzymes such as lipase, esterase, protease, amylase, isomerase, dehydrogenase, lyase, transferase, kin
  • FIG. 3 is a cross-sectional view showing the second to third aspects of the third channel 3.
  • the channel 21a of the second embodiment shown in (a) of FIG. 3 is a channel formed by laminating two base materials. In other words, grooves are provided in the lower part of one base material 23a and the upper part of the other base material 23b, Channel 21a is formed by shelling.
  • the channel 21b of the third embodiment shown in (b) of FIG. 3 is formed by laminating three base materials. That is, a through groove is provided in the base material 24b which is an intermediate layer, and the base material 24a and 24c are laminated so as to sandwich the base material 24b between the upper part and the lower part, thereby forming the channel 21b. Note that channel 21a and channel 2 lb are equivalent to channel 3.
  • These base materials 23a, 23b, 24a to 24c can be arbitrarily determined, glass such as quartz glass or Pyrex (registered trademark) glass, polymers such as PDMS, polycarbonate or polyimide, iron, stainless steel, aluminum In addition, metals such as nickel or copper, silicon, or the like can be used, and the respective base materials in the case of stacking may be of the same type or different types.
  • FIG. 4 is a partial plan view showing a microchannel chip according to another embodiment of the hydrophobic compound reactor according to the present invention.
  • the microchannel chip 200 of the present embodiment is the first implementation except that the tip portion la of the first channel 1 is opposed to the end portion of the third channel 3 via the dispersion portion 31.
  • the configuration is the same as that of the microchannel chip 10 of the embodiment.
  • the dispersing portion 31 is, for example, plate-shaped and has a plurality of through holes 32 as shown in FIG. Therefore, the first channel 1 is connected to the third channel 3 through the through hole 32 of the dispersion part 31.
  • FIG. 5 is a partial front view showing the dispersion portion 31 as viewed from the direction of the force from the tip end portion la of the first channel 1 to the end portion of the third channel 3.
  • the hydrophobic liquid substance flowing through the first channel 1 is The first channel 1 reaches the tip la.
  • the aqueous liquid material flowing through the second channel 2 flows into the third channel 3.
  • the hydrophobic liquid material that has reached the tip portion la of the first channel 1 flows into the third channel 3 through the through hole 32 of the dispersion portion 31, and the hydrophobic liquid material and the aqueous liquid material are mixed.
  • the hydrophobic liquid substance has a microsphere shape.
  • the emulsion is formed by mixing the hydrophobic liquid substance and the aqueous liquid substance, and the hydrophobic liquid substance and the aqueous liquid substance come into contact with each other.
  • Tactile efficiency can be greatly improved.
  • the present invention is not limited to the above embodiment.
  • a diaphragm pump or the like may be used instead of the force syringes 21 and 22 that use the syringes 21 and 22 to distribute the hydrophobic liquid substance and the aqueous liquid substance.
  • the chemical reaction includes an exothermic reaction and an endothermic reaction. Therefore, if a device capable of adjusting the temperature is provided, the reaction can be promoted more reliably.
  • the fluid force S expands, which may cause unnecessary bubbles, which may cause clogging of the channel. For this reason, it is useful to provide a device capable of adjusting the temperature from this point.
  • the force branch channel 3 a in which the branch channel 3 a is branched and connected to the fourth tube 8 on the other end side of the third channel 3 is not necessarily required. Or conversely, there may be two or more branch channels 3a.
  • Dibenzothiophene has the property of being oxidized to 2-hydroxybiphenyl and releasing sulfate ions into an aqueous solution in the presence of the nocardiochrome bacterium Rhodococcus sp.
  • the reaction apparatus shown in Fig. 1 was prepared. Then, the cell suspension A is transferred to the second syringe 2 2 (opening diameter ⁇ 4.5 mm), and the hydrophobic liquid A was injected into the first syringe 21 having the same opening diameter as the second syringe 22. Then, the hydrophobic liquid A is circulated from the first syringe 21 via the first tube 21 to the first channel 1 and the cell suspension A is passed from the second syringe 22 via the second tube 12 to the second channel 2. Circulated. Then, the hydrophobic liquid A and the cell suspension A were brought into contact in the third channel having a channel width of 100 zm, and the reaction of dibenzothiophene was performed.
  • reaction A the result of this example is indicated by “Reaction A”.
  • Mycobacterium sp. Having the ability to oxidize carbon-carbon double bonds was cultured in a culture vessel sealed with ethylene gas and sealed. Using this bacterium, a cell suspension B, which is an aqueous liquid, was prepared so that the cell concentration was OD 17. Meanwhile, to n—
  • a hydrophobic liquid B in which styrene was dissolved in xadecane at a ratio of 2 wt% (174 mM) was prepared.
  • Styrene a raw material, has the property of being oxidized to R-styrene oxide (R_l, 2_epoxyethylbenzene) in the presence of Mycobacterium sp.
  • the cell suspension B is used instead of the cell suspension A, the hydrophobic liquid B is used instead of the hydrophobic liquid A, and the reaction time is 0.1 hour (6 minutes). Except for this, the production amount (/ ig) of R-styrene oxide as a reaction product was measured in the same manner as in Example 1. In this case, R— The optical purity of styrene oxide was 99% or more.
  • Figure 7 shows the results of converting these measured values per hour. In FIG. 7, the result of this example is indicated by “Reaction D”.
  • reaction E The production amount (z g) of R-styrene oxide as a reaction product was measured in the same manner as in Example 4 except that the reaction time was 0.2 hour (12 minutes). The optical purity at this time was 99% or more.
  • Figure 7 shows the result of converting this measured value per hour. In FIG. 7, the result of this example is indicated by “Reaction E”.
  • the concentration of 2-hydroxybiphenyl as a reaction product was measured in the same manner as in Example 1 except that a 100 ml Erlenmeyer flask was used without using a microchannel chip, and the reaction time was 1 hour.
  • Figure 6 shows the conversion results per minute. In FIG. 6, the result of this comparative example is indicated by “control”.
  • the reaction efficiency of the hydrophobic compound can be sufficiently increased in a wide variety of reactions.
  • it is applied to hydrolysis reactions, oxidation-reduction reactions, transfer reactions, substitution reactions, elimination reactions, condensation reactions, addition reactions, isomerization reactions, asymmetric synthesis reactions, etc. that are important in organic chemistry. It is possible to make progress in the field of biocatalytic reactions of hydrophobic compounds in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A reaction apparatus for hydrophobic compound for carrying out reaction of hydrophobic compounds with the use of a biocatalyst, characterized by having a microchannel chip comprising a first channel for circulation of a hydrophobic liquid material containing a hydrophobic compound, a second channel for circulation of a water base liquid material containing a biocatalyst and a third channel for circulation of the hydrophobic liquid material and water base liquid material which is connected to the first channel and second channel. By virtue of this reaction apparatus, the reaction efficiency of hydrophobic compound can be satisfactorily enhanced in a wide variety of reactions conducted in the presence of a biocatalyst. Accordingly, the provided reaction apparatus for hydrophobic compound and method of reaction therewith are applicable to, being important in organic chemistry, a hydrolysis reaction, redox reaction, transition reaction, substitution reaction, elimination reaction, condensation reaction, addition reaction, isomerization reaction, asymmetric synthesis reaction, etc., and future progress is promising in the field of biocatalytic reaction for hydrophobic compounds.

Description

明 細 書  Specification
疎水性化合物の反応装置及び反応方法  Hydrophobic compound reactor and reaction method
技術分野  Technical field
[0001] 本発明は、生体触媒を用いた疎水性化合物の反応装置及び反応方法に関する。  The present invention relates to a hydrophobic compound reaction apparatus and reaction method using a biocatalyst.
背景技術  Background art
[0002] 細胞または酵素等の生体触媒により常温常圧下で化学反応を行う過程は、種々の 発酵食品製造、抗生物質をはじめとする各種医薬品の生産等、広範囲に使用されて いる。また、化成品の生産においても、燃料用エタノール、アクリルアミド生産等につ いて、生体触媒の利用が進展している。  [0002] Processes in which chemical reactions are carried out under normal temperature and pressure using biocatalysts such as cells or enzymes are widely used in the production of various fermented foods and various pharmaceuticals including antibiotics. In the production of chemical products, the use of biocatalysts is progressing for the production of ethanol and acrylamide for fuels.
[0003] し力しながら、これらの反応の対象は全て水溶性化合物であり、化学工業的に重要 な疎水性化合物について生体触媒を利用する場合には、親水性の生体触媒の存在 下における疎水性化合物の反応効率の低さから進展が遅れている。現在これらの対 策としては、比較的疎水性の高レ、リパーゼ等の加水分解酵素を利用する力 ^例えば 下記特許文献 1参照)、疎水性化合物を水溶液中に分散添加するための界面活性 剤の添加等が試みられている(例えば下記特許文献 2参照)。  [0003] However, the targets of these reactions are all water-soluble compounds. When biocatalysts are used for hydrophobic compounds that are important in the chemical industry, hydrophobic reactions in the presence of hydrophilic biocatalysts are necessary. Progress has been delayed due to the low reaction efficiency of organic compounds. Currently, these measures include the ability to use hydrolyzing enzymes such as relatively high hydrophobicity and lipase (see, for example, Patent Document 1 below), and surfactants for dispersing and adding hydrophobic compounds in aqueous solutions. Has been attempted (for example, see Patent Document 2 below).
特許文献 1 :特開平 06— 296499号公報  Patent Document 1: Japanese Patent Laid-Open No. 06-296499
特許文献 2:特表 2002— 527073号公報  Patent Document 2: Japanese Translation of Special Publication 2002-527073
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、前述した特許文献 1, 2に記載の疎水性化合物の反応方法は、以下 に示す課題を有していた。 [0004] However, the method for reacting a hydrophobic compound described in Patent Documents 1 and 2 described above has the following problems.
[0005] 即ち、リパーゼは加水分解のような比較的単純な反応でのみ触媒として機能し、酸 化還元反応、転移反応、置換反応、脱離反応等の有機化学的に重要な反応では触 媒として十分な成果を得るに至ってレ、なレ、。 [0005] That is, lipase functions as a catalyst only in a relatively simple reaction such as hydrolysis, and in organically important reactions such as oxidation-reduction reaction, transfer reaction, substitution reaction, elimination reaction, etc. As a result, I got enough results.
[0006] また界面活性剤の添加は、反応にかかる費用が高い上に、発泡等、反応効率を高 める上で好ましくない現象を喚起する。 [0006] The addition of a surfactant is not only expensive for the reaction but also causes a phenomenon such as foaming, which is undesirable for increasing the reaction efficiency.
[0007] 本発明は、上記事情に鑑みてなされたものであり、幅広い種類の反応で疎水性化 合物の反応効率を十分に高くでき、反応に要する費用を低減できる疎水性化合物の 反応装置及び反応方法を提案することを目的とする。 [0007] The present invention has been made in view of the above circumstances, and has been made hydrophobic by a wide variety of reactions. It is an object of the present invention to propose a reaction apparatus and a reaction method for a hydrophobic compound that can sufficiently increase the reaction efficiency of the compound and reduce the cost required for the reaction.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題を解決するため鋭意検討した結果、上記のように疎水性 化合物の反応効率が十分でないのは以下の理由によるものではないかと考えた。即 ち一般には上記のように生体触媒を用いて疎水性化合物を反応させれば、疎水性 化合物と生体触媒とが十分に接触し、生体触媒の存在下、疎水性化合物の反応が 十分に進むものと考えられている。しかし、実際には反応は十分には進んでおらず、 その理由も明らかにはなっていない。本発明者らは、鋭意検討を重ねた結果、上記 のような疎水性化合物の反応効率の低さが、フラスコ等の反応容器で行われることに 起因するのではないかと考えた。即ち本発明者らは、上記のような反応容器では疎 水性化合物と生体触媒との接触面積が不十分であることにより反応効率が低くなつ ているのではないかと考えた。そして、本発明者らは鋭意研究を重ねた結果、以下の 発明により上記課題を解決し得ることを見出し、本発明を完成するに至った。  [0008] As a result of intensive studies to solve the above problems, the present inventors have thought that the reason why the reaction efficiency of the hydrophobic compound is not sufficient as described above is due to the following reason. That is, in general, when a hydrophobic compound is reacted using a biocatalyst as described above, the hydrophobic compound and the biocatalyst are in sufficient contact, and the reaction of the hydrophobic compound proceeds sufficiently in the presence of the biocatalyst. It is considered a thing. However, in reality, the reaction has not progressed sufficiently, and the reason is not clear. As a result of intensive studies, the present inventors have thought that the low reaction efficiency of the hydrophobic compound as described above may be caused by a reaction vessel such as a flask. That is, the present inventors considered that the reaction efficiency may be lowered in the above reaction vessel due to insufficient contact area between the hydrophobic compound and the biocatalyst. As a result of intensive studies, the present inventors have found that the above problems can be solved by the following invention, and have completed the present invention.
[0009] すなわち本発明は、生体触媒を用いて疎水性化合物を反応させる疎水性化合物 の反応装置であって、疎水性化合物を含む疎水性液状物質を流通させる第 1チヤネ ル、生体触媒を含む水性液状物質を流通させる第 2チャネル、及び第 1チャネル及 び第 2チャネルに接続され、疎水性液状物質および水性液状物質を流通させる第 3 チャネルを有するマイクロチャネルチップを備えることを特徴とする。 That is, the present invention is a reaction apparatus for a hydrophobic compound that reacts a hydrophobic compound with a biocatalyst, and includes a first channel that circulates a hydrophobic liquid substance containing the hydrophobic compound, and the biocatalyst. A microchannel chip having a second channel through which an aqueous liquid material flows, and a third channel connected to the first channel and the second channel and through which the hydrophobic liquid material and the aqueous liquid material flow is provided.
[0010] この疎水性化合物の反応装置によれば、疎水性化合物を含む疎水性液状物質と 生体触媒を含む水性液状物質とがマイクロチャネルチップ内において第 1チャネル 及び第 2チャネルから第 3チャネルに流通されるため、流通した疎水性液状物質と水 性液状物質とが第 3チャネル内で接触することとなる。そうすると、疎水性液状物質と 水性液状物質との界面の表面積が増加するため、疎水性化合物と生体触媒との接 触効率を大幅に向上させることができる。このため、生体触媒の存在下、疎水性化合 物の反応効率を高めることができ、ひいては数十倍の反応速度で反応させることも可 能となる。また相溶性に劣る疎水性流体と水性流体とを迅速かつ効率的に反応させ ること力 Sできるため、様々なバリエーションの疎水性化合物と生体触媒とに適用するこ とができる。更に、余分な界面活性剤等の添加も不要であることから、低コストで疎水 性化合物の反応を行わせることができ、反応生成物も高純度で得ることができる。 [0010] According to this hydrophobic compound reactor, a hydrophobic liquid substance containing a hydrophobic compound and an aqueous liquid substance containing a biocatalyst are transferred from the first channel and the second channel to the third channel in the microchannel chip. Since it is distributed, the distributed hydrophobic liquid substance and aqueous liquid substance come into contact in the third channel. Then, the surface area of the interface between the hydrophobic liquid substance and the aqueous liquid substance increases, so that the contact efficiency between the hydrophobic compound and the biocatalyst can be greatly improved. For this reason, in the presence of the biocatalyst, the reaction efficiency of the hydrophobic compound can be increased, and as a result, the reaction can be performed at a reaction rate several tens of times higher. In addition, the ability to react quickly and efficiently with hydrophobic fluids with poor compatibility and aqueous fluids allows the application to various variations of hydrophobic compounds and biocatalysts. You can. Further, since addition of an extra surfactant or the like is unnecessary, the reaction of the hydrophobic compound can be performed at a low cost, and the reaction product can be obtained with high purity.
[0011] また、チャネルのチャネル幅が lmm以下であることが好ましレ、。チャネル幅が lmm 以下であると、拡散律速を低減する効果を得ることができ、且つ疎水性流体及び生 体触媒の界面の表面積を増大させることができるため、生体触媒の存在下、疎水性 化合物の反応を飛躍的に促進させることができる。  [0011] Further, the channel width of the channel is preferably lmm or less. When the channel width is 1 mm or less, the effect of reducing the diffusion rate can be obtained, and the surface area of the interface between the hydrophobic fluid and the biocatalyst can be increased. Therefore, in the presence of the biocatalyst, the hydrophobic compound The reaction of can be dramatically promoted.
[0012] また、本発明の反応方法は、生体触媒を用いて疎水性化合物を反応させる疎水性 化合物の反応方法であって、疎水性化合物を含む疎水性液状物質と、生体触媒を 含む水性液状物質とを、 lmm以下のチャネル幅を有するチャネル内で接触させるこ とを特徴とする。 [0012] The reaction method of the present invention is a reaction method of a hydrophobic compound in which a hydrophobic compound is reacted using a biocatalyst, and is an aqueous liquid containing a hydrophobic liquid substance containing a hydrophobic compound and a biocatalyst. The substance is contacted in a channel having a channel width of 1 mm or less.
[0013] この反応方法によれば、疎水性化合物を含む疎水性液状物質と生体触媒を含む 水性液状物質とが lmm以下のチャネル幅のチャネル内に流通されるため、流通した 疎水性液状物質と水性液状物質とが接触すると、それぞれの界面での表面積が更 に増加する。このため、疎水性化合物と生体触媒との接触効率を大幅に向上させる こと力 Sできる。また、生体触媒の存在下、疎水性化合物の反応効率を高めることがで き、ひいては数十倍の反応速度で反応させることも可能となる。更に、相溶性に劣る 疎水性流体と水性流体とを迅速かつ効率的に反応させることができるため、様々な ノ リエーシヨンの疎水性化合物と生体触媒とに適用することができる。更に、余分な 界面活性剤等の添加も不要であることから、低コストで疎水性化合物の反応を行わ せることができ、反応生成物も高純度で得ることができる。  [0013] According to this reaction method, a hydrophobic liquid substance containing a hydrophobic compound and an aqueous liquid substance containing a biocatalyst are circulated in a channel having a channel width of 1 mm or less. When in contact with an aqueous liquid material, the surface area at each interface further increases. For this reason, it is possible to greatly improve the contact efficiency between the hydrophobic compound and the biocatalyst. In addition, the reaction efficiency of the hydrophobic compound can be increased in the presence of the biocatalyst, and as a result, the reaction can be performed at a reaction rate several tens of times higher. Furthermore, since a hydrophobic fluid having poor compatibility and an aqueous fluid can be reacted quickly and efficiently, it can be applied to hydrophobic compounds and biocatalysts of various types. Further, since addition of an extra surfactant or the like is unnecessary, the reaction of the hydrophobic compound can be performed at a low cost, and the reaction product can be obtained with high purity.
[0014] また第 3チャネル内で疎水性液状物質及び水性液状物質を流通させ、疎水性液状 物質及び水性液状物質の相が互いに分離した状態で接触させることが好ましい。こ のように疎水性液状物質及び水性液状物質を接触させると接触効率を大幅に向上さ せること力 Sできる。 [0014] Preferably, the hydrophobic liquid substance and the aqueous liquid substance are circulated in the third channel, and the phases of the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other in a separated state. As described above, when the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other, the contact efficiency can be greatly improved.
[0015] さらに第 3チャネル内で疎水性液状物質の液滴と、水性液状物質の液滴とをそれ ぞれ形成し、交互に流通させて接触させることが好ましい。このように疎水性液状物 質及び水性液状物質を接触させると接触効率を大幅に向上させることができる。  [0015] Further, it is preferable that droplets of the hydrophobic liquid substance and aqueous liquid substance droplets are formed in the third channel, and are alternately circulated and brought into contact with each other. As described above, when the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other, the contact efficiency can be greatly improved.
[0016] さらにまた第 3チャネル内で疎水性液状物質及び水性液状物質からなるェマルジョ ンを形成させて、疎水性液状物質と水性液状物質とを接触させることが好ましい。こ のように疎水性液状物質及び水性液状物質を接触させると接触効率を大幅に向上さ せること力 Sできる。 [0016] Furthermore, the third channel is composed of a hydrophobic liquid substance and an aqueous liquid substance. It is preferable that a hydrophobic liquid substance and an aqueous liquid substance are brought into contact with each other by forming a liquid. As described above, when the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other, the contact efficiency can be greatly improved.
[0017] 生体触媒が、疎水性化合物を細胞内に取り込む能力を有する微生物であることが 好ましい。疎水性化合物を細胞内に取り込む能力を有する微生物は、疎水性液状物 質と水性液状物質の接触界面で、疎水性物質を有効に細胞内に取り込み、微生物 内の酵素との接触効率を高め、反応を促進する。  [0017] It is preferable that the biocatalyst is a microorganism having an ability to incorporate a hydrophobic compound into a cell. Microorganisms that have the ability to take up hydrophobic compounds into cells effectively take up hydrophobic substances into cells at the contact interface between hydrophobic liquid substances and aqueous liquid substances, increasing the efficiency of contact with enzymes in the microorganisms, Promote the reaction.
[0018] また、この微生物は、ピチア属酵母、キャンディダ属酵母、シユードモナス属細菌、 ロドコッカス属細菌、マイコバクテリゥム属細菌、バチルス属細菌、ブレビバチルス属 細菌、又はジォバチルス属細菌であることが好ましレ、。これらの微生物は種々の疎水 性物質を体内に取り込む能力が高いため、さらに反応が促進される。  [0018] In addition, the microorganism may be a Pichia yeast, Candida yeast, Pseudomonas bacterium, Rhodococcus bacterium, Mycobacterium bacterium, Bacillus bacterium, Brevibacillus bacterium, or Diobacillus bacterium. I like it. Since these microorganisms have a high ability to take various hydrophobic substances into the body, the reaction is further promoted.
発明の効果  The invention's effect
[0019] 本発明の疎水性化合物の反応装置及び反応方法によれば、生体触媒の存在下、 幅広い種類の反応で疎水性化合物の反応効率を十分に高くすることができる。従つ て、本発明の疎水性化合物の反応装置及び反応方法によれば、有機化学的に重要 な加水分解反応、酸化還元反応、転移反応、置換反応、脱離反応、縮合反応、付加 反応、異性化反応、不斉合成反応等への応用が可能であり、今後の疎水性化合物 の生体触媒反応の分野について進展が期待できる。  [0019] According to the reaction apparatus and the reaction method of the hydrophobic compound of the present invention, the reaction efficiency of the hydrophobic compound can be sufficiently increased in a wide variety of reactions in the presence of the biocatalyst. Therefore, according to the reaction apparatus and reaction method of the hydrophobic compound of the present invention, hydrolysis reaction, oxidation reduction reaction, transfer reaction, substitution reaction, elimination reaction, condensation reaction, addition reaction, It can be applied to isomerization reactions, asymmetric synthesis reactions, etc., and progress can be expected in the field of biocatalytic reactions of hydrophobic compounds in the future.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は本発明による疎水性化合物の反応装置の本実施形態に係るマイクロチヤ ネルチップを示す平面図である。  FIG. 1 is a plan view showing a microchannel chip according to this embodiment of a hydrophobic compound reaction apparatus according to the present invention.
[図 2]図 1のマイクロチャネルチップを構成する本体部の厚さ方向に沿った部分断面 図である。  2 is a partial cross-sectional view taken along the thickness direction of a main body portion constituting the microchannel chip of FIG.
[図 3]図 3は、第 1チャネル、第 2チャネル及び第 3チャネルの第 1及び第 2の態様を示 す断面図である。  FIG. 3 is a cross-sectional view showing first and second modes of a first channel, a second channel, and a third channel.
[図 4]図 4は本発明による疎水性化合物の反応装置の他の実施形態に係るマイクロ チャネルチップを示す部分平面図である。  FIG. 4 is a partial plan view showing a microchannel chip according to another embodiment of the hydrophobic compound reactor according to the present invention.
[図 5]図 5は第 1チャネル 1の先端部 laから第 3チャネル 3の端部に向力う方向から見 た分散部 31を示す部分正面図である。 [FIG. 5] FIG. FIG. 6 is a partial front view showing a dispersion unit 31.
[図 6]実施例:!〜 3及び比較例 1による反応速度測定結果を示すグラフである。  FIG. 6 is a graph showing reaction rate measurement results according to Examples:! To 3 and Comparative Example 1.
[図 7]実施例 4, 5及び比較例 2による反応速度測定結果を示すグラフである。  FIG. 7 is a graph showing the reaction rate measurement results of Examples 4 and 5 and Comparative Example 2.
符号の説明  Explanation of symbols
[0021] 1…第 1チャネル、 2…第 2チャネル、 3…第 3チャネル、 4, 7…受器、 5…基板、 6〜 第 3チューブ、 8 · · ·第 4チューブ、 10…マイクロチャネルチップ、 11…第 1チューブ、 12· · ·第 2チューブ、 21 · · ·第 1シリンジ、 22· · ·第 2シリンジ、 31 · · ·分散咅、 32 · · ·貫 通孑し、 d…チャネル幅。  [0021] 1 ... 1st channel, 2 ... 2nd channel, 3 ... 3rd channel, 4, 7 ... Receiver, 5 ... Substrate, 6 to 3rd tube, 8 ... 4th tube, 10 ... Microchannel Tip, 11… First tube, 12 ··· Second tube, 21 ··· First syringe, 22 ··· Second syringe, 31 ··· Dispersing rod, 32 ················· Channel width.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0023] 図 1は、本発明による疎水性化合物の反応装置の本実施形態に係るマイクロチヤ ネルチップを示す平面図である。図 1に示すように、マイクロチャネルチップ 10は、不 活性材料からなる基板 5を有しており、基板 5の一面 5aには、疎水性液状物質を流 通させるための第 1チャネル 1と、水性液状物質を流通させるための第 2チャネル 2が 形成されている。一方、基板 5の一面 5a上には、疎水性液状物質及び水性液状物 質を流通させるための第 3チャネル 3が形成され、第 3チャネル 3は、基板 5の一面 5a 上に蛇行して形成されている。第 3チャネル 3の一端は第 1チャネル 1及び第 2チヤネ ル 2に接続され、第 3チャネル 3の他端は一面 5aの縁部まで延びている。  FIG. 1 is a plan view showing a microchannel chip according to this embodiment of the hydrophobic compound reactor according to the present invention. As shown in FIG. 1, the microchannel chip 10 has a substrate 5 made of an inert material, and a first channel 1 for allowing a hydrophobic liquid substance to flow through one surface 5a of the substrate 5; A second channel 2 is formed to distribute the aqueous liquid material. On the other hand, the third channel 3 is formed on the first surface 5a of the substrate 5 to distribute the hydrophobic liquid substance and the aqueous liquid material. The third channel 3 is formed by meandering on the first surface 5a of the substrate 5. Has been. One end of the third channel 3 is connected to the first channel 1 and the second channel 2, and the other end of the third channel 3 extends to the edge of the entire surface 5a.
[0024] このため、第 1チャネル 1に流通された疎水性液状物質と第 2チャネル 2に流通され た水性液状物質とは、第 3チャネル 3内で接触することとなる。第 3チャネル 3の他端 は、第 3チューブ 6を介して受器 4に接続されている。なお、第 3チャネル 3には分岐 チャネル 3aが接続されており、分岐チャネル 3aは、第 4チューブ 8を介して受器 7に 接続されている。この場合、反応生成物が別々の受器 4、 7に収容されることとなり、 それぞれにおいて化合物の特定のために必要な複数の分析を同時に行うことができ る。あるいは受器 4において、必要に応じて反応生成物を外部に取り出したり、反応 生成物を検出する装置等を接続することができる。  For this reason, the hydrophobic liquid material circulated in the first channel 1 and the aqueous liquid material circulated in the second channel 2 come into contact in the third channel 3. The other end of the third channel 3 is connected to the receiver 4 via the third tube 6. A branch channel 3 a is connected to the third channel 3, and the branch channel 3 a is connected to the receiver 7 via the fourth tube 8. In this case, the reaction products are accommodated in separate receivers 4 and 7, and multiple analyzes necessary for identifying compounds can be simultaneously performed in each of them. Alternatively, in the receiver 4, a reaction product can be taken out as necessary, or a device for detecting the reaction product can be connected.
[0025] 図 2は、基板 5の厚さ方向に沿った部分断面図である。図 2において、第 3チャネル 3の断面形状は四角形であり、第 3チャネル 3のチャネル幅 dは好ましくは lmm以下 である。チャネル幅 dが上記の範囲であるため、この第 3チャネル 3内で疎水性液状 物質及び水性液状物質が接触した場合には、界面における接触面積が増加するた め、反応をより十分に促進することができる。同時に、分子の拡散時間の短縮効果、 すなわち、拡散律速を最小にする効果を利用し迅速に反応させることができる。一方 、チャネル幅 dが lmmを超えると、チャネル幅 dが lmm以下である場合に比べて、単 位体積当たりの界面表面積の増大効果と、拡散律速を最小にする効果とを充分に得 ることができなくなる傾向がある。チャネル幅 dは更に好ましくは 0. :!〜 500 x mであ る。 FIG. 2 is a partial cross-sectional view along the thickness direction of the substrate 5. In FIG. 2, the cross-sectional shape of the third channel 3 is a quadrangle, and the channel width d of the third channel 3 is preferably lmm or less. It is. Since the channel width d is in the above range, when the hydrophobic liquid substance and the aqueous liquid substance are in contact with each other in the third channel 3, the contact area at the interface increases, and thus the reaction is more fully promoted. be able to. At the same time, it is possible to react quickly by utilizing the effect of shortening the diffusion time of molecules, that is, the effect of minimizing diffusion rate control. On the other hand, when the channel width d exceeds lmm, the effect of increasing the interfacial surface area per unit volume and the effect of minimizing the diffusion rate can be sufficiently obtained as compared with the case where the channel width d is 1 mm or less. Tend to become impossible. The channel width d is more preferably 0.:! To 500 xm.
[0026] 第 3チャネル 3の長さは装置や反応等の都合にあわせて任意に定めることができる 。また「チャネル幅」とは、基板の厚さ方向に対して垂直の方向の長さをいう。第 3チヤ ネル 3の断面形状が四角形の場合は横の長さをいい、台形や三角形の場合は前記 方向に対して最も長い長さをいう。また、円形や半円形の場合は直径の長さ、楕円形 の場合は前記方向に対して最も長レ、径の長さをレ、う。  [0026] The length of the third channel 3 can be arbitrarily determined in accordance with the convenience of the apparatus and reaction. “Channel width” refers to the length in the direction perpendicular to the thickness direction of the substrate. When the cross-sectional shape of the third channel 3 is a square, it means the horizontal length, and when it is a trapezoid or a triangle, it means the longest length in the above direction. In the case of a circular or semi-circular shape, the length of the diameter and the length of the diameter in the case of an ellipse are the longest in the direction.
[0027] なお、図示しないが、第 1チャネル 1及び第 2チャネル 2の断面形状も第 3チャネル 3 と同様であり、チャネル幅 dも第 3チャネル 3と同様である。  Although not shown, the cross-sectional shapes of the first channel 1 and the second channel 2 are the same as those of the third channel 3, and the channel width d is the same as that of the third channel 3.
[0028] また第 1チャネル 1は第 1チューブ 11を介して第 1シリンジ 21に接続され、第 2チヤ ネル 2は第 2チューブ 12を介して第 2シリンジ 22に接続されている。  The first channel 1 is connected to the first syringe 21 via the first tube 11, and the second channel 2 is connected to the second syringe 22 via the second tube 12.
[0029] 従って、疎水性液状物質を第 1シリンジ 21に収容し、更に水性液状物質を第 2シリ ンジ 22に収容することにより、疎水性液状物質は第 1チューブ 11を経て第 1チャネル 1に注入することが可能となり、水性液状物質は第 2チューブ 12を経て第 2チャネル 2 に注入することが可能である。よって疎水性液状物質と水性液状物質は第 3チャネル 3内で接触し、本発明の目的である反応が行われる。  Accordingly, the hydrophobic liquid substance is accommodated in the first syringe 21 and further the aqueous liquid substance is accommodated in the second syringe 22, so that the hydrophobic liquid substance passes through the first tube 11 and enters the first channel 1. The aqueous liquid substance can be injected into the second channel 2 via the second tube 12. Therefore, the hydrophobic liquid substance and the aqueous liquid substance are contacted in the third channel 3, and the reaction that is the object of the present invention is performed.
[0030] 上記反応装置によれば、第 1シリンジ 21を作動させると、疎水性化合物を含む疎水 性液状物質は第 1シリンジ 21から第 1チューブ 11を経て第 1チャネル 1に注入される 。一方、第 2シリンジ 22を作動させると、生体触媒を含む水性液状物質が第 2シリンジ 22から第 2チューブ 12を経て第 2チャネル 2に注入される。そして、疎水性液状物質 は第 1チャネル 1から第 3チャネル 3に流通され、水性液状物質は第 2チャネル 2から 第 3チャネル 3に流通され、第 3チャネル 3内で疎水性液状物質と水性液状物質とが 接触する。このとき、第 3チャネル 3は、マイクロチャネルチップ 10内におけるチャネル であるため、流通した疎水性液状物質と水性液状物質とが接触すると、それぞれの 表面積が増加し、疎水性化合物と生体触媒との接触効率を大幅に向上させることが できる。このため、生体触媒の存在下、疎水性化合物の反応効率を十分に高めるこ とができ、ひいては数十倍の反応速度で反応させることも可能となる。また、上記のよ うに疎水性化合物の反応効率を十分に高くすることができるため、生体触媒の存在 下、疎水性化合物について、有機化学的に重要な、加水分解反応、酸化還元反応 、転移反応、置換反応、脱離反応、縮合反応、付加反応、異性化反応、不斉合成反 応等をも行うことができる。更に、上記のように界面活性剤を使用することなく疎水性 化合物の反応効率を十分に高めることができるため、低コストで疎水性化合物を反応 させることができる。 [0030] According to the above reaction apparatus, when the first syringe 21 is operated, the hydrophobic liquid substance containing the hydrophobic compound is injected from the first syringe 21 into the first channel 1 via the first tube 11. On the other hand, when the second syringe 22 is actuated, an aqueous liquid substance containing a biocatalyst is injected into the second channel 2 from the second syringe 22 through the second tube 12. The hydrophobic liquid material flows from the first channel 1 to the third channel 3, and the aqueous liquid material flows from the second channel 2 to the third channel 3. In the third channel 3, the hydrophobic liquid material and the aqueous liquid are circulated. Substance Contact. At this time, since the third channel 3 is a channel in the microchannel chip 10, when the circulated hydrophobic liquid substance and the aqueous liquid substance come into contact with each other, the surface area of each increases, and the hydrophobic compound and the biocatalyst are separated. Contact efficiency can be greatly improved. For this reason, the reaction efficiency of the hydrophobic compound can be sufficiently increased in the presence of the biocatalyst, and as a result, the reaction can be performed at a reaction rate several tens of times higher. In addition, since the reaction efficiency of the hydrophobic compound can be sufficiently increased as described above, the hydrolysis reaction, oxidation-reduction reaction, transfer reaction of the hydrophobic compound in the presence of the biocatalyst is organically important. Substitution reactions, elimination reactions, condensation reactions, addition reactions, isomerization reactions, asymmetric synthesis reactions, and the like can also be performed. Furthermore, since the reaction efficiency of the hydrophobic compound can be sufficiently increased without using a surfactant as described above, the hydrophobic compound can be reacted at a low cost.
[0031] 更にまた上記反応装置によれば、疎水性液状物質と水性液状物質とは、第 1チヤ ネル 1と第 2チャネル 2とで別々に流通するため、疎水性液状物質と水性液状物質と を所望の速度にして第 3チャネル 3に流通させることができる。即ち第 1チャネル 1を 流通する疎水性化合物の量、及び第 2チャネル 2を流通する生体触媒の量を必要に 応じて自由にコントロールすることができる。従って、未反応の疎水性化合物が生じる のを十分に抑制することができる。  [0031] Furthermore, according to the above reaction apparatus, the hydrophobic liquid substance and the aqueous liquid substance circulate separately in the first channel 1 and the second channel 2, so that the hydrophobic liquid substance and the aqueous liquid substance are separated from each other. Can be passed through the third channel 3 at a desired speed. That is, the amount of the hydrophobic compound flowing through the first channel 1 and the amount of the biocatalyst flowing through the second channel 2 can be freely controlled as necessary. Therefore, generation of unreacted hydrophobic compounds can be sufficiently suppressed.
[0032] 疎水性液状物質及び水性液状物質は、以下の方法によって接触させると、接触効 率が向上するため好ましい。例えば、(A)第 3チャネル内でそれぞれ相を形成して流 通し、各相が分離した状態で接触させる方法、(B)第 3チャネル内でそれぞれ液滴を 形成し、各液滴が交互に流通する状態で接触させる方法、(C)第 3チャネル内でェ マルジヨンを形成して接触させる方法が挙げられる。  [0032] It is preferable that the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other by the following method because the contact efficiency is improved. For example, (A) a method of forming and flowing phases in the third channel and bringing them into contact with each other in a separated state, and (B) a method of forming droplets in the third channel and alternating the droplets. And (C) a method of forming an emulsion in the third channel and bringing it into contact.
[0033] これらの方法 (A)及び(B)は第 3チャネル 3の形状、第 3チャネル 3の材質に対する 疎水性液状物質及び水性液状物質それぞれの接触角、粘性、流通する液体の量及 び流通のスピード等を制御することによってそれぞれ実現することができる。また方法 (C)は例えば後述する他の実施形態とすることにより実現することができる。  [0033] In these methods (A) and (B), the shape of the third channel 3, the contact angle of each of the hydrophobic liquid substance and the aqueous liquid substance with respect to the material of the third channel 3, the viscosity, the amount of the flowing liquid, and Each can be realized by controlling the speed of distribution and the like. The method (C) can be realized by, for example, another embodiment described later.
[0034] また、上記疎水性反応物の反応に用いた生体触媒は、再利用することが可能であ る。すなわち、第 2シリンジ 22から注入し、第 2チューブ 12及び第 3チャネル 3を経て 受器 4に到達した後に、受器 4から生体触媒を取り出し、これを第 2シリンジ 22に再注 入しても良い。本反応は生体触媒反応であるため,触媒が失活するまでは何度でも 繰り返し用いることができる。 [0034] The biocatalyst used for the reaction of the hydrophobic reactant can be reused. That is, it is injected from the second syringe 22 and passes through the second tube 12 and the third channel 3. After reaching the receiver 4, the biocatalyst may be removed from the receiver 4 and reinjected into the second syringe 22. Since this reaction is a biocatalytic reaction, it can be used repeatedly until the catalyst is deactivated.
[0035] 上記疎水性化合物は、固体であっても液体であってもよぐ揮発性の化合物であつ てもよレ、。ただし、固体である場合は何らかの疎水性溶媒に溶解させる力、若しくは 分散させる必要がある。例えば、疎水性化合物としては、トルエン、ナフタレン、フヱノ ール、ベンズアルデヒド、ァニソール、カテコール、ヒドロキシ安息香酸等の芳香族化 合物又はその誘導体、チォフェン、ベンゾチォフェン、ジベンゾチォフェン、フラン、 イミダゾール、チアゾール、ピリジン、ピラジン、インドール等のへテロ環状化合物又 はその誘導体、ペンタン、へキサン、ペンタデカン、ォクタデカン、ァラキドン酸、リノ ール酸等の C5〜C20の脂肪族炭化水素又はその誘導体、 α ビネン、リモネン、メ ントール等のテルペン類、ケトン類、ジケトン類、ポリケトン類、ェポキサイド類、エステ ル類、ラタトン類、アミノ酸類等が挙げられる。また疎水性溶媒としては、トルエン等の 芳香族系溶媒、ヘプタン、へキサン、シクロへキサン、 η テトラデカン、イソオクタン 等の脂肪族系溶媒;ジメチルエーテル、テトラヒドロキシフラン、 t ブチルメチルエー テル、ジイソプロピルエーテル等のエーテル系溶媒、酢酸ェチル等のエステル系溶 媒、塩化メチレン等のハロゲン系溶媒等が挙げられる。 [0035] The hydrophobic compound may be a solid or liquid or a volatile compound. However, if it is a solid, it must be dissolved or dispersed in some hydrophobic solvent. Examples of hydrophobic compounds include toluene, naphthalene, phenol, benzaldehyde, anisole, catechol, hydroxybenzoic acid and other aromatic compounds or derivatives thereof, thiophene, benzothiophene, dibenzothiophene, furan, imidazole, thiazole, Heterocyclic compounds such as pyridine, pyrazine, indole or derivatives thereof, C5-C20 aliphatic hydrocarbons such as pentane, hexane, pentadecane, octadecane, arachidonic acid, linoleic acid, or derivatives thereof, α-vinene, limonene Terpenes such as menthol, ketones, diketones, polyketones, epoxides, esters, latatones, amino acids and the like. Examples of the hydrophobic solvent include aromatic solvents such as toluene, aliphatic solvents such as heptane, hexane, cyclohexane, η tetradecane, and isooctane; dimethyl ether, tetrahydroxyfuran, t-butyl methyl ether, diisopropyl ether, and the like. Ether solvents, ester solvents such as ethyl acetate, and halogen solvents such as methylene chloride.
[0036] また上記生体触媒としては、例えば、リパーゼ、エステラーゼ、プロテアーゼ、ァミラ ーゼ、イソメラーゼ、デヒドロゲナーゼ、リアーゼ、トランスフェラーゼ、キナーゼ、ァノレ ドラーゼ、リガーゼ等の酵素、又はシゾサッカロマイセス属酵母、ピチア属酵母、キヤ ンディダ属酵母、シユードモナス属細菌、スフインゴモナス属細菌、アルカリゲネス属 細菌、ブルクホルデリア属細菌、ァシネトパクター属細菌、コリネバタテリゥム属細菌、 バチルス属細菌、ブレビバチルス属細菌、ジォバチルス属細菌、ノカルディア属細菌 、ロドコッカス属細菌、ゴルドニァ属細菌、又はマイコバクテリゥム属細菌等の微生物 力 S挙げられる。これらを水等に溶解又は分散して用いることができる。  [0036] Examples of the biocatalyst include, for example, enzymes such as lipase, esterase, protease, amylase, isomerase, dehydrogenase, lyase, transferase, kinase, anoredolase, ligase, Schizosaccharomyces yeast, Pichia yeast , Candida yeast, Pseudomonas bacteria, Sphingomonas bacteria, Alkagenes bacteria, Burkholderia bacteria, Acinetopacter bacteria, Corynebacterium bacteria, Bacillus bacteria, Brevibacillus bacteria, Giobacillus bacteria, Nocardia Microbial power S such as genus bacteria, Rhodococcus bacteria, Gordonia bacteria, or Mycobacterium bacteria. These can be used by dissolving or dispersing in water or the like.
[0037] 図 3は、第 3チャネル 3の第 2〜第 3の態様を示す断面図である。図 3の(a)に示す 第 2の態様のチャネル 21aは、二つの基材を積層して形成されるチャネルである。す なわち、一方の基材 23aの下部と、他方の基材 23bの上部とにそれぞれ溝を設け、 貝占り合わせることによってチャネル 21aが形成される。図 3の(b)に示す、第 3の態様 のチャネル 21bは、三つの基材を積層して形成されたものである。すなわち、中間層 である基材 24bに貫通溝を設け、その上部と下部に、基材 24bを挟持するように基材 24a及び 24cを積層してチャネル 21bが形成される。なお、チャネル 21a及びチヤネ ル 2 lbは第 3チャネル 3に相当するものである。 FIG. 3 is a cross-sectional view showing the second to third aspects of the third channel 3. The channel 21a of the second embodiment shown in (a) of FIG. 3 is a channel formed by laminating two base materials. In other words, grooves are provided in the lower part of one base material 23a and the upper part of the other base material 23b, Channel 21a is formed by shelling. The channel 21b of the third embodiment shown in (b) of FIG. 3 is formed by laminating three base materials. That is, a through groove is provided in the base material 24b which is an intermediate layer, and the base material 24a and 24c are laminated so as to sandwich the base material 24b between the upper part and the lower part, thereby forming the channel 21b. Note that channel 21a and channel 2 lb are equivalent to channel 3.
[0038] これらの基材 23a, 23b, 24a〜24cは任意に定めることができ、石英ガラス又はパ ィレックス(登録商標)ガラス等のガラス、 PDMS、ポリカーボネート又はポリイミド等の ポリマー、鉄、ステンレス、アルミニウム、ニッケル又は銅等のメタル、又はシリコン等を 使用することができ、積層する場合のそれぞれの基材は、同一の種類であっても異な つた種類であってもよい。  [0038] These base materials 23a, 23b, 24a to 24c can be arbitrarily determined, glass such as quartz glass or Pyrex (registered trademark) glass, polymers such as PDMS, polycarbonate or polyimide, iron, stainless steel, aluminum In addition, metals such as nickel or copper, silicon, or the like can be used, and the respective base materials in the case of stacking may be of the same type or different types.
[0039] 図 4は、本発明による疎水性化合物の反応装置の他の実施形態に係るマイクロチ ャネルチップを示す部分平面図である。図 4に示すように、本実施形態のマイクロチ ャネルチップ 200は、第 1チャネル 1の先端部 laが、分散部 31を介して第 3チャネル 3の端部と対向していること以外は第 1実施形態のマイクロチャネルチップ 10と同様 の構成を有する。  FIG. 4 is a partial plan view showing a microchannel chip according to another embodiment of the hydrophobic compound reactor according to the present invention. As shown in FIG. 4, the microchannel chip 200 of the present embodiment is the first implementation except that the tip portion la of the first channel 1 is opposed to the end portion of the third channel 3 via the dispersion portion 31. The configuration is the same as that of the microchannel chip 10 of the embodiment.
[0040] ここで、分散部 31は、例えば板状となっており、図 5に示すように複数の貫通孔 32 を有している。したがって、第 1チャネル 1は分散部 31の貫通孔 32を介して第 3チヤ ネル 3に接続されている。なお、図 5は、第 1チャネル 1の先端部 laから第 3チャネル 3 の端部に向力 方向から見た分散部 31を示す部分正面図である。  [0040] Here, the dispersing portion 31 is, for example, plate-shaped and has a plurality of through holes 32 as shown in FIG. Therefore, the first channel 1 is connected to the third channel 3 through the through hole 32 of the dispersion part 31. FIG. 5 is a partial front view showing the dispersion portion 31 as viewed from the direction of the force from the tip end portion la of the first channel 1 to the end portion of the third channel 3.
[0041] このマイクロチャネルチップ 200によれば、第 1チャネル 1に疎水性液状物質を流通 させ、第 2チャネル 2に水性液状物質を流通させると、第 1チャネル 1を流通する疎水 性液状物質は、第 1チャネル 1の先端部 l aに到達する。一方、第 2チャネル 2を流通 する水性液状物質は、第 3チャネル 3に流入される。そして、第 1チャネル 1の先端部 laに到達した疎水性液状物質は、分散部 31の貫通孔 32を通って第 3チャネル 3に 流入され、疎水性液状物質と水性液状物質とが混合される。このとき、疎水性液状物 質は、マイクロスフィァ (微小カプセル)形状となる。このため、疎水性液状物質と水性 液状物質とが混合されることによりェマルジヨンが形成され、疎水性液状物質と水性 液状物質とが接触する。こうして疎水性液状物質と水性液状物質とが接触すると、接 触効率を大幅に向上させることが可能となる。 [0041] According to the microchannel chip 200, when the hydrophobic liquid substance is circulated through the first channel 1 and the aqueous liquid substance is circulated through the second channel 2, the hydrophobic liquid substance flowing through the first channel 1 is The first channel 1 reaches the tip la. On the other hand, the aqueous liquid material flowing through the second channel 2 flows into the third channel 3. Then, the hydrophobic liquid material that has reached the tip portion la of the first channel 1 flows into the third channel 3 through the through hole 32 of the dispersion portion 31, and the hydrophobic liquid material and the aqueous liquid material are mixed. . At this time, the hydrophobic liquid substance has a microsphere shape. Therefore, the emulsion is formed by mixing the hydrophobic liquid substance and the aqueous liquid substance, and the hydrophobic liquid substance and the aqueous liquid substance come into contact with each other. When the hydrophobic liquid substance and the aqueous liquid substance come into contact with each other in this way, Tactile efficiency can be greatly improved.
[0042] 本発明は上記実施形態に限定されるものではない。例えば上記実施形態では、疎 水性液状物質および水性液状物質を流通するためにシリンジ 21, 22を用いている 力 シリンジ 21 , 22に代えて、ダイヤフラム式ポンプ等を用いてもよい。  [0042] The present invention is not limited to the above embodiment. For example, in the above embodiment, a diaphragm pump or the like may be used instead of the force syringes 21 and 22 that use the syringes 21 and 22 to distribute the hydrophobic liquid substance and the aqueous liquid substance.
[0043] また、上記実施形態において、第 1チャネル 1,第 2チャネル 2,第 3チャネル 3内に は逆止弁を設けることも有用である。逆止弁が設けられると、流体の逆流を防ぐことが でき、逆流によるトラブルを未然に防ぐことができる。  In the above embodiment, it is also useful to provide check valves in the first channel 1, the second channel 2, and the third channel 3. If a check valve is provided, fluid backflow can be prevented, and problems due to backflow can be prevented.
[0044] 更に、上記実施形態で用いたマイクロチャネルチップ 10には加熱装置や冷却装置 を設けることも有用である。本発明の反応装置を用いて反応させる場合、化学反応に は発熱反応や吸熱反応があるため、温度を調節できる装置が設けられていると、より 確実に反応を促進することができる。また、化学反応により温度変化が生じると、流体 力 S膨張することにより、不要な気泡が生じるおそれがあり、この気泡はチャネルの目 詰まりを生じさせる原因となりうる。このため、斯かる点からも温度を調節できる装置が 設けられることは有用である。  Furthermore, it is also useful to provide a heating device or a cooling device for the microchannel chip 10 used in the above embodiment. When the reaction is carried out using the reaction apparatus of the present invention, the chemical reaction includes an exothermic reaction and an endothermic reaction. Therefore, if a device capable of adjusting the temperature is provided, the reaction can be promoted more reliably. In addition, when a temperature change is caused by a chemical reaction, the fluid force S expands, which may cause unnecessary bubbles, which may cause clogging of the channel. For this reason, it is useful to provide a device capable of adjusting the temperature from this point.
[0045] 更にまた、上記実施形態においては、第 3チャネル 3の他端側では分岐チャネル 3 aが枝分かれして第 4チューブ 8に接続されている力 分岐チャネル 3aは必ずしも必 要ではない。あるいは逆に、分岐チャネル 3aが 2つ以上になってもよい。  Furthermore, in the above-described embodiment, the force branch channel 3 a in which the branch channel 3 a is branched and connected to the fourth tube 8 on the other end side of the third channel 3 is not necessarily required. Or conversely, there may be two or more branch channels 3a.
実施例  Example
[0046] 以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、以 下に挙げる実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following examples.
[0047] (実施例 1) [Example 1]
まず、ノカルディオフオーム型細菌 Rhodococcus sp.を培養し、この菌を用いて、菌 体濃度が OD = 10となるように水性液体である菌体懸濁液 Aを調製した。一方、 n  First, the nocardiooff-ohmic bacterium Rhodococcus sp. Was cultured, and using this bacterium, a cell suspension A, an aqueous liquid, was prepared so that the cell concentration was OD = 10. While n
660  660
ーテトラデカン中にジベンゾチォフェンを 0. 02wt% (ImM)の割合で溶解させた疎 水性液体 Aを用意した。なお、ジベンゾチォフェンは、ノカルディオフオーム型細菌 R hodococcus sp.の存在下、 2—ヒドロキシビフエニルに酸化して、硫酸イオンを水溶液 中に放出する性質を有するものである。  -Hydrophobic liquid A in which dibenzothiophene was dissolved in tetradecane at a ratio of 0.02 wt% (ImM) was prepared. Dibenzothiophene has the property of being oxidized to 2-hydroxybiphenyl and releasing sulfate ions into an aqueous solution in the presence of the nocardiochrome bacterium Rhodococcus sp.
[0048] 次に、図 1に示す反応装置を用意した。そして、上記菌体懸濁液 Aを第 2シリンジ 2 2 (開口径 φ 4. 5mm)に注入し、上記疎水性液体 Aを第 2シリンジ 22と同じ開口径の 第 1シリンジ 21に注入した。そして、第 1シリンジ 21から第 1チューブ 21を経て第 1チ ャネル 1に疎水性液体 Aを流通させると共に、第 2シリンジ 22から第 2チューブ 12を 経て第 2チャネル 2に菌体懸濁液 Aを流通させた。そして、チャネル幅 100 z mの第 3 チャネル内で疎水性液体 Aと菌体懸濁液 Aとを接触させ、ジベンゾチォフェンの反応 を行った。このとき、疎水性液体 Aと菌体懸濁液 Aとの比が体積比で 1: 1となるように 流通させた。そして、反応時間を 30秒とし、このときの反応生成物である 2—ヒドロキ シビフヱニルの濃度を測定した。この測定値を 1分あたりに換算した結果を図 6に示 す。なお、図 6において、本実施例の結果は「反応 A」で示してある。 [0048] Next, the reaction apparatus shown in Fig. 1 was prepared. Then, the cell suspension A is transferred to the second syringe 2 2 (opening diameter φ 4.5 mm), and the hydrophobic liquid A was injected into the first syringe 21 having the same opening diameter as the second syringe 22. Then, the hydrophobic liquid A is circulated from the first syringe 21 via the first tube 21 to the first channel 1 and the cell suspension A is passed from the second syringe 22 via the second tube 12 to the second channel 2. Circulated. Then, the hydrophobic liquid A and the cell suspension A were brought into contact in the third channel having a channel width of 100 zm, and the reaction of dibenzothiophene was performed. At this time, it was circulated so that the ratio of the hydrophobic liquid A and the cell suspension A was 1: 1 by volume. The reaction time was 30 seconds, and the concentration of 2-hydroxybiphenyl, the reaction product at this time, was measured. Figure 6 shows the result of converting this measured value per minute. In FIG. 6, the result of this example is indicated by “Reaction A”.
[0049] (実施例 2) [0049] (Example 2)
反応時間を 1分としたこと以外は実施例 1と同様にして反応生成物である 2—ヒドロ キシビフエニルの濃度を測定した。 1分あたりの換算結果を図 6に示す。なお、図 6に おいて、本実施例の結果は「反応 B」で示してある。  The concentration of 2-hydroxybiphenyl as a reaction product was measured in the same manner as in Example 1 except that the reaction time was 1 minute. Figure 6 shows the conversion results per minute. In FIG. 6, the result of this example is indicated by “Reaction B”.
[0050] (実施例 3) [Example 3]
反応時間を 3分としたこと以外は実施例 1と同様にして反応生成物である 2—ヒドロ キシビフエニルの濃度を測定した。 1分あたりの換算結果を図 6に示す。なお、図 6に おいて、本実施例の結果は「反応 C」で示してある。  The concentration of 2-hydroxybiphenyl as a reaction product was measured in the same manner as in Example 1 except that the reaction time was 3 minutes. Figure 6 shows the conversion results per minute. In FIG. 6, the result of this example is indicated by “Reaction C”.
[0051] (実施例 4) [0051] (Example 4)
炭素炭素二重結合の酸化能を有するマイコバクテリゥム属細菌 Mycobacterium sp. を、エチレンガスを封入し密栓した培養容器にて培養した。この菌を用いて、菌体濃 度が OD = 17となるように水性液体である菌体懸濁液 Bを調製した。一方、 n—へ Mycobacterium sp. Having the ability to oxidize carbon-carbon double bonds was cultured in a culture vessel sealed with ethylene gas and sealed. Using this bacterium, a cell suspension B, which is an aqueous liquid, was prepared so that the cell concentration was OD = 17. Meanwhile, to n—
600 600
キサデカン中にスチレンを 2wt% (174mM)の割合で溶解させた疎水性液体 Bを用 意した。なお、原料であるスチレンは、マイコバクテリゥム属細菌 Mycobacterium sp.の 存在下、 R—スチレンオキサイド(R_ l, 2_エポキシェチルベンゼン)に酸化される 性質を有するものである。  A hydrophobic liquid B in which styrene was dissolved in xadecane at a ratio of 2 wt% (174 mM) was prepared. Styrene, a raw material, has the property of being oxidized to R-styrene oxide (R_l, 2_epoxyethylbenzene) in the presence of Mycobacterium sp.
[0052] 菌体懸濁液 Aの代わりに菌体懸濁液 Bを用レ、、疎水性液体 Aの代わりに疎水性液 体 Bを用い、反応時間を 0. 1時間(6分)としたこと以外は実施例 1と同様にして反応 生成物である R—スチレンオキサイドの生成量(/i g)を測定した。なお、この際の R— スチレンオキサイドの光学純度は 99%以上であった。この測定値を 1時間あたりに換 算した結果を図 7に示す。なお、図 7において、本実施例の結果は「反応 D」で示して ある。 [0052] The cell suspension B is used instead of the cell suspension A, the hydrophobic liquid B is used instead of the hydrophobic liquid A, and the reaction time is 0.1 hour (6 minutes). Except for this, the production amount (/ ig) of R-styrene oxide as a reaction product was measured in the same manner as in Example 1. In this case, R— The optical purity of styrene oxide was 99% or more. Figure 7 shows the results of converting these measured values per hour. In FIG. 7, the result of this example is indicated by “Reaction D”.
[0053] (実施例 5)  [0053] (Example 5)
反応時間を 0. 2時間(12分)としたこと以外は実施例 4と同様にして反応生成物で ある R—スチレンオキサイドの生成量( z g)を測定した。なお、この際の光学純度は 9 9%以上であった。この測定値を 1時間当たりに換算した結果を図 7に示す。なお、図 7におレ、て、本実施例の結果は「反応 E」で示してある。  The production amount (z g) of R-styrene oxide as a reaction product was measured in the same manner as in Example 4 except that the reaction time was 0.2 hour (12 minutes). The optical purity at this time was 99% or more. Figure 7 shows the result of converting this measured value per hour. In FIG. 7, the result of this example is indicated by “Reaction E”.
[0054] (比較例 1) [Comparative Example 1]
マイクロチャネルチップを用いずに 100ml容三角フラスコを用い、反応時間を 1時 間としたこと以外は実施例 1と同様にして反応生成物である 2—ヒドロキシビフエニル の濃度を測定した。 1分あたりの換算結果を図 6に示す。なお、図 6において、本比較 例の結果は「control」で示してある。  The concentration of 2-hydroxybiphenyl as a reaction product was measured in the same manner as in Example 1 except that a 100 ml Erlenmeyer flask was used without using a microchannel chip, and the reaction time was 1 hour. Figure 6 shows the conversion results per minute. In FIG. 6, the result of this comparative example is indicated by “control”.
[0055] (比較例 2) [0055] (Comparative Example 2)
マイクロチャネルチップを用いずに試験管(ガラス製、 φ 21mm X 200mm)を用い 、反応時間を 20時間としたこと以外は実施例 4と同様にして反応生成物である R—ス チレンオキサイドの生成量(/i g)を測定した。なお、この際の光学純度は 99%以上 であった。この測定値を 1時間当たりに換算した結果を図 7に示す。なお、図 7におい て、本実施例の結果は「control」で示してある。  Production of R-styrene oxide as a reaction product in the same manner as in Example 4 except that a test tube (made of glass, φ21 mm X 200 mm) was used without using a microchannel chip, and the reaction time was 20 hours. The amount (/ ig) was measured. The optical purity at this time was 99% or more. Figure 7 shows the result of converting this measured value per hour. In FIG. 7, the result of this example is indicated by “control”.
[0056] 以上の実施例:!〜 5及び比較例 1 , 2の結果より、本発明による疎水性化合物の反 応方法によれば、反応効率が大幅に向上することが分かった。このことから、本発明 による疎水性化合物の反応方法によれば、反応効率を十分に高くできることが確認 された。また、このように反応効率を十分に高くできるため、幅広い種類の反応で、生 体触媒の存在下、疎水性化合物の反応を行うことができるものと考えられる。 産業上の利用可能性 [0056] From the results of the above Examples:! To 5 and Comparative Examples 1 and 2, it was found that the reaction efficiency of the hydrophobic compound according to the present invention was greatly improved. This confirms that the reaction efficiency of the hydrophobic compound according to the present invention can be sufficiently increased. In addition, since the reaction efficiency can be sufficiently increased as described above, it is considered that a hydrophobic compound can be reacted in the presence of a biocatalyst in a wide variety of reactions. Industrial applicability
[0057] 本発明によれば、幅広い種類の反応で疎水性化合物の反応効率を十分に高くで きる。すなわち、有機化学的に重要な加水分解反応、酸化還元反応、転移反応、置 換反応、脱離反応、縮合反応、付加反応、異性化反応、不斉合成反応等への応用 が可能であり、今後の疎水性化合物の生体触媒反応の分野について進展が期待で きる。 [0057] According to the present invention, the reaction efficiency of the hydrophobic compound can be sufficiently increased in a wide variety of reactions. In other words, it is applied to hydrolysis reactions, oxidation-reduction reactions, transfer reactions, substitution reactions, elimination reactions, condensation reactions, addition reactions, isomerization reactions, asymmetric synthesis reactions, etc. that are important in organic chemistry. It is possible to make progress in the field of biocatalytic reactions of hydrophobic compounds in the future.

Claims

請求の範囲 The scope of the claims
[1] 生体触媒を用いて疎水性化合物を反応させる疎水性化合物の反応装置であって 疎水性化合物を含む疎水性液状物質を流通させる第 1チャネル、  [1] A hydrophobic compound reaction apparatus for reacting a hydrophobic compound using a biocatalyst, and a first channel for circulating a hydrophobic liquid substance containing the hydrophobic compound,
生体触媒を含む水性液状物質を流通させる第 2チャネル、及び  A second channel for distributing an aqueous liquid substance containing a biocatalyst, and
前記第 1チャネル及び前記第 2チャネルに接続され、前記疎水性液状物質および 前記水性液状物質を流通させる第 3チャネルを有するマイクロチャネルチップを備え ることを特徴とする疎水性化合物の反応装置。  An apparatus for reacting a hydrophobic compound, comprising: a microchannel chip connected to the first channel and the second channel and having a third channel through which the hydrophobic liquid substance and the aqueous liquid substance circulate.
[2] 前記第 3チャネルのチャネル幅力 Slmm以下であることを特徴とする請求項 1記載の 疎水性化合物の反応装置。 [2] The hydrophobic compound reactor according to [1], wherein the channel width force of the third channel is not more than Slmm.
[3] 生体触媒を用いて疎水性化合物を反応させる疎水性化合物の反応方法であって 疎水性化合物を含む疎水性液状物質と、生体触媒を含む水性液状物質とを、 lm m以下のチャネル幅を有するチャネル内で接触させることを特徴とする疎水性化合 物の反応方法。 [3] A method for reacting a hydrophobic compound by using a biocatalyst to react the hydrophobic compound with a hydrophobic liquid substance containing the hydrophobic compound and an aqueous liquid substance containing the biocatalyst with a channel width of lm m or less. A method for reacting a hydrophobic compound, characterized in that the contact is made in a channel having a surface.
[4] 前記第 3チャネル内で前記疎水性液状物質及び前記水性液状物質を流通させ、 前記疎水性液状物質及び前記水性液状物質の相が互いに分離した状態で接触さ せることを特徴とする請求項 3記載の疎水性化合物の反応方法。  [4] The hydrophobic liquid substance and the aqueous liquid substance are circulated in the third channel, and the phases of the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other in a separated state. Item 4. A method for reacting a hydrophobic compound according to Item 3.
[5] 前記第 3チャネル内で前記疎水性液状物質の液滴と、前記水性液状物質の液滴と をそれぞれ形成し、交互に流通させて接触させることを特徴とする請求項 3記載の疎 水性化合物の反応方法。 5. The sparse structure according to claim 3, wherein droplets of the hydrophobic liquid material and droplets of the aqueous liquid material are respectively formed in the third channel, and are circulated and contacted alternately. Reaction method of aqueous compound.
[6] 前記第 3チャネル内で前記疎水性液状物質及び前記水性液状物質からなるエマ ルジョンを形成させて、前記疎水性液状物質と前記水性液状物質とを接触させること を特徴とする請求項 3記載の疎水性化合物の反応方法。 [6] The emulsion consisting of the hydrophobic liquid substance and the aqueous liquid substance is formed in the third channel, and the hydrophobic liquid substance and the aqueous liquid substance are brought into contact with each other. The reaction method of the hydrophobic compound as described.
[7] 前記生体触媒が、前記疎水性化合物を細胞内に取り込む能力を有する微生物で あることを特徴とする請求項 3〜6のいずれか一項に記載の疎水性化合物の反応方 法。 7. The method for reacting a hydrophobic compound according to any one of claims 3 to 6, wherein the biocatalyst is a microorganism having an ability to take up the hydrophobic compound into cells.
[8] 前記微生物が、ピチア属酵母、キャンディダ属酵母、シユードモナス属細菌、ロドコ ッカス属細菌、マイコバクテリゥム属細菌、バチルス属細菌、ブレビバチルス属細菌、 又はジォバチルス属細菌であることを特徴とする請求項 7記載の疎水性化合物の反 応方法。 [8] The microorganism is Pichia yeast, Candida yeast, Pseudomonas bacteria, Rhodoco 8. The method for reacting a hydrophobic compound according to claim 7, wherein the method is a bacterium belonging to the genus Bacus, Mycobacterium, Bacillus, Brevibacillus, or Gibacillus.
PCT/JP2005/010952 2004-06-30 2005-06-15 Reaction apparatus for hydrophobic compound and method of reaction therewith WO2006003790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-194633 2004-06-30
JP2004194633A JP2007275689A (en) 2004-06-30 2004-06-30 Hydrophobic compound-reacting device and reacting method

Publications (1)

Publication Number Publication Date
WO2006003790A1 true WO2006003790A1 (en) 2006-01-12

Family

ID=35782602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010952 WO2006003790A1 (en) 2004-06-30 2005-06-15 Reaction apparatus for hydrophobic compound and method of reaction therewith

Country Status (2)

Country Link
JP (1) JP2007275689A (en)
WO (1) WO2006003790A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233483A (en) * 2008-03-25 2009-10-15 Kakei Gakuen Active slug reactor
US8969337B2 (en) 2011-12-15 2015-03-03 Alkermes Pharma Ireland Limited Prodrugs of secondary amine compounds
CN104525286A (en) * 2014-12-21 2015-04-22 北京工业大学 Micro-fluidic chip for realizing synchronous liquid drop fusion based on T-shaped channel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187553B2 (en) * 2010-04-23 2012-05-29 Empire Technology Development Llc Microreactors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108972A (en) * 1987-10-21 1989-04-26 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai Reactor for liquid-liquid different phases
JP2002273206A (en) * 2001-03-16 2002-09-24 Mitsubishi Chemicals Corp Synthetic reaction device and synthetic reaction method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108972A (en) * 1987-10-21 1989-04-26 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai Reactor for liquid-liquid different phases
JP2002273206A (en) * 2001-03-16 2002-09-24 Mitsubishi Chemicals Corp Synthetic reaction device and synthetic reaction method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233483A (en) * 2008-03-25 2009-10-15 Kakei Gakuen Active slug reactor
US8969337B2 (en) 2011-12-15 2015-03-03 Alkermes Pharma Ireland Limited Prodrugs of secondary amine compounds
CN104525286A (en) * 2014-12-21 2015-04-22 北京工业大学 Micro-fluidic chip for realizing synchronous liquid drop fusion based on T-shaped channel

Also Published As

Publication number Publication date
JP2007275689A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
Wohlgemuth et al. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis
Žnidaršič‐Plazl The promises and the challenges of biotransformations in microflow
Gruber et al. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors
Rios et al. Progress in enzymatic membrane reactors–a review
Tomaszewski et al. Biocatalytic production of catechols using a high pressure tube-in-tube segmented flow microreactor
Pinto et al. Advances on whole-cell biocatalysis in flow
Lloret et al. Improving the catalytic performance of laccase using a novel continuous-flow microreactor
ZNIDARŠIC-PLAZL Enzymatic microreactors utilizing non-aqueous media
Malvessi et al. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis
Stojkovič et al. Continuous synthesis of L-malic acid using whole-cell microreactor
Thomas et al. Comparative investigation of fine bubble and macrobubble aeration on gas utility and biotransformation productivity
Šalić et al. Synergy of Microtechnology and Biotechnology: Microreactors as an Effective Tool for Biotransformation Processes §
Illner et al. A falling‐film microreactor for enzymatic oxidation of glucose
He et al. Development of a monolith based immobilized lipase micro-reactor for biocatalytic reactions in a biphasic mobile system
Ardao et al. In vitro multienzymatic reaction systems for biosynthesis
Li et al. Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor
Naramittanakul et al. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing
Kim et al. Microbial granulation for lactic acid production
Hu et al. Biocatalysts used for multi-step reactions in continuous flow
Yesil-Celiktas et al. Silica-based monoliths for enzyme catalyzed reactions in microfluidic systems with an emphasis on glucose 6-phosphate dehydrogenase and cellulase
Marques et al. Continuous steroid biotransformations in microchannel reactors
Gkantzou et al. Development of a ZnO nanowire continuous flow microreactor with β-glucosidase activity: characterization and application for the glycosylation of natural products
WO2006003790A1 (en) Reaction apparatus for hydrophobic compound and method of reaction therewith
Li et al. Continuous-flow microreactor-enhanced clean NAD+ regeneration for biosynthesis of 7-oxo-lithocholic acid
Adebar et al. Concepts for flow chemistry with whole-cell biocatalysts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP